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Abstract— This paper addresses the sensitivity analysis for
hybrid systems with discontinuous (jumping) state trajecto-
ries. We consider state-triggered discontinuities in the state
evolution, potentially accompanied by mode switching in the
control vector field. For a given trajectory with state jumps,
we show how to construct an approximation of the nearby
perturbed trajectory corresponding to a given variation of the
initial condition and input signal. A major complication in the
construction of such an approximation is that, in general, the
jump times corresponding to a nearby perturbed trajectory are
not equal to those of the nominal one. The main contribution
of this work is the development of a notion of error to clarify
in which sense the approximate trajectory is, at each instant of
time, a first-order approximation of the perturbed trajectory.
This notion of error naturally finds application in the (local)
tracking problem of a time-varying reference trajectory of a
hybrid system. To illustrate the possible use of this new error
definition in the context of trajectory tracking, we outline how
the standard linear trajectory tracking control for nonlinear
systems could be generalized for hybrid systems.

I. INTRODUCTION

Sensitivity analysis allows to predict the modification of
a trajectory due to (small) changes in initial conditions
and parameters. This computational technique has proven
beneficial in many aspects of the analysis of dynamical
systems. In this paper, we pursue such sensitivity analysis
for a class of hybrid systems. A hybrid system is a dynamic
system that exhibits both continuous and discrete dynamic
behaviors [8]. It is this inherent nature of hybrid systems that
makes sensivity analysis for this class of systems harder than
for smooth nonlinear dynamics, where sensitivity analysis is
well established (see, e.g., [12, Chapters 3]). The theoretical
framework provided by hybrid systems with (state-triggered)
jumps is suitable to model those systems which, at certain
instants of time, are subjected to rapid and abrupt changes.
Indeed, in the modeling of such systems, it is frequently
convenient and valid to neglect the durations of these rapid
changes and to assume that these changes can be represented
by instantaneous state jumps. Hybrid systems with state-
triggered jumps are, for example, suitable to describe dynam-
ical models in the area of robotics and rigid body mechanics
with unilateral contact constraints [14], [3], including the
study of the dynamics and control of walking or juggling
robots (see, e.g, [28], [23], [19]).
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The sensitivity result presented in this paper draws from
the application of classical sensitivity and perturbation theory
of nonlinear systems (see, e.g., [12, Chapters 3 and 10])
combined with the use of the implicit function theorem to
compute an estimate of the unknown switching time at which
the perturbed trajectory jumps.

We are not the first authors to propose to do so. The same
mathematical tools have been combined in the investigation
of the sensitivity about a nominal trajectory of piecewise-
smooth nonlinear systems in [15], where the concept of salta-
tion matrix was introduced: in [15], however, discontinuities
in the state evolution are not considered. Another interesting
use of classical perturbation theory in combination with the
implicit function theorem is provided in [11] where, although
state jumps are not considered, it is recognized that part of
the analysis could be carried on even in the presence of
discontinuities in the state evolution. In [18, Section 6.4],
one finds an interesting discussion regarding the sensitivity
of hybrid systems in the context of numerical optimal control
of mechanical systems. There, state jumps are specifically
taken into account and the reader is referred to [27, Section
2.2] that, in turn, refers to [13] (in German) as the source of
a key formula for defining the sensitivity of hybrid systems
with state jumps. We will re-establish this key formula for
the class of hybrid systems considered in this work. This
formula allows to compute the gain – the jump gain given
by (27) in Section II in this paper – associated with a
discontinuous event. Continuing with our literature review
on sensitivity analysis for hybrid system with state jumps,
another interesting discussion is presented in [6]. There,
hybrid systems with jumps obtained by combining multi-
ple differential algebraic equations (DAEs) with switching
conditions and reset maps are considered. That paper also
mentions that the jump gain (27) should, in fact, be credited
to the (seemingly forgotten) seminal work of Rozenvasser
[24, equation (11)]. For completeness, we also mention that
a formula related to (27) can be encountered in the context
of discontinuity induced bifurcations for hybrid systems. The
interested reader is referred to [4, Section 2.5.1] and the
work in [20], where the concept of discontinuity map (for
transversal intersections) is introduced.

We leave to historians the settling of the question on who
discovered (27) first. Here, we limit ourselves to mentioning
that the jump gain (27) is indeed a key result that we, as
other researcher before us, rediscovered autonomously. Our
goal in this paper is to rigorously define what a first-order
approximation about a nominal trajectory of a hybrid system
with state jumps is on the basis of the result on the jump
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gain. By doing so, a novel notion of error, which allows
to locally compare a nominal trajectory with a perturbed
trajectory, emerges. This error notion, in turn, leads naturally
to obtain a trajectory tracking controller to locally stabilize
time-varying trajectories for hybrid systems with state jumps.
This is, in our view, the main novelty and contribution of this
paper. Since the proper understanding of the jump gain (27)
is a key ingredient in such developments, we also include a
(re)derivation of this result in this work.

Tracking control for hybrid systems with state-triggered
jumps is a recent and active field of research. Few results
exist to design a controller to make a hybrid system with
state-triggered jumps track a given, time-varying, reference
trajectory. Recent techniques addressing this control problem
both from a theoretical and an experimental viewpoint are
provided in [17], [22], [21], [16], [5], and [1]. Our interest
lies on the situation, commonly encounter in practice, where
the jump times of plant and reference trajectories cannot be
assumed to coincide.

Aiming at developing an effective trajectory tracking con-
trollers for hybrid systems with state-triggered jumps, we
propose to investigate the effects on a nominal trajectory of
variations of the control input and initial conditions. In par-
ticular, we detail how to construct a linear approximation of
the hybrid system about a nominal trajectory with jumps and
then show how to use this approximation to construct a local
trajectory tracking controller. To the best of our knowledge,
the notion of linear approximation that we introduce in this
paper has not be presented before.

The non-trivial aspect of the problem is how to construct
the approximation of the perturbed trajectory as the sum of
the nominal trajectory and a linear term when the perturbed
and nominal trajectories jump at different, although close,
time instants. This difference in the jump times poses also
the problem of defining a proper notion of tracking error.

Mimicking what is done for dynamical systems with no
jumps, the most intuitive definition of tracking error is the
difference between the nominal and actual state. However,
e.g., as illustrated in [1], this definition of error cannot be
used to conclude stability in the sense of Lyapunov and
usually leads to poor tracking performance.

For this reason, different approaches have been proposed
in recent years to redefine the notion of tracking error for
hybrid systems. In [7], e.g., the tracking problem has been
defined in order to neglect in the analysis the times belonging
to infinitesimal intervals about the jumping times. In [1],
instead, a novel definition of the notion of distance between
two jumping trajectories has been proposed. Moreover, for a
subclass of hybrid system with state-triggered jumps corre-
sponding to mechanical systems with fully elastic impacts,
the tracking error distance has been defined as the minimum
between the distance of state from the nominal trajectory and
the distance of state a mirrored version of nominal trajectory.
In [2], a modification of this mirroring approach has been
consider to deal with dissipative impacts. The use of a mirror
reference trajectory has been proposed recently also in [5] for
a tracking problem in polyhedral billiards: the controller in

this case may decide to track either the real reference or the
mirrored reference, mirrored through the billiard boundary.

We claim that the approximation proposed in this paper
allows for a reinterpretation of the mirroring technique in
terms of what we will call extended ante- and post-event
trajectories. Furthermore, we care to emphasize the fact that
the concept of extended ante- and post-event trajectories
allows to cope with the problem of trajectory tracking
for a hybrid-system with state-triggered jumps where the
(continuous-time) dynamics before and after the jump event
are qualitatively different, where simply mirroring the refer-
ence trajectory does not appear to be the best choice. This
is of clear relevance for the applications we have in mind:
the control of mechanical system undergoing repetitive, not
necessarily periodic, impacts with rigid surfaces. A common
situation for walking and jumping robots.

This paper is organized as follows. In Section II, we
discuss the jump gain associated with a nominal trajectory
of a hybrid system and introduce the notion of error between
the nominal and perturbed trajectories of hybrid system with
state jumps. This notion of error is used in Section III to
propose a linear feedback control law for local trajectory
tracking of time-varying reference trajectories with jumps.
Conclusions are finally drawn in Section IV.

II. SENSITIVITY ANALYSIS FOR HYBRID SYSTEMS

In this section, we propose a framework for the sensitivity
analysis of a jumping solution of a hybrid system with state-
triggered jumps. To focus on the complexity and effect of a
state jump on the sensitivity, we consider a nominal trajectory
with a single jump. The treatise of sensitivity analysis of
solutions with multiple jumps is left for future work.

Consider a smooth time-varying control vector field

ẋ(t) = fa(x, u, t), (1)

with state x ∈ Rn and input u ∈ Rm. For reasons that will
soon become clear, we will refer to fa as the ante-event
control vector field. For a given initial condition x0 at time
t0 and a integrable signal µ(t) ∈ Rm, t ∈ [t0, t1], we denote
with αa(t), t ∈ [t0, τ ], the solution of (1) with input

u(t) = µ(t), t ∈ [t0, t1], (2)

up to the occurrence of a triggering event at time τ ∈ [t0, t1].
This event is defined by the satisfaction of implicit condition

g(αa(τ), τ) = 0, (3)

with g : Rn × R → R a smooth real-valued function. We
assume that, for all t, the level set g(·, t) = 0 is an n − 1
dimensional smooth manifold embedded in Rn, (a sufficient
condition being ∂g(x, t)/∂x 6= 0 for all x such that g(x, t) =
0). At the event time τ , the state exhibits a jump according
to a smooth single-valued impulse map ∆ : Rn × R→ Rn

αp(τ) = αa(τ) + ∆(αa(τ), τ), (4)

and subsequently it evolves according to the following post-
event vector field

ẋ(t) = fp(x, u, t) (5)
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with initial condition at x(τ) = αp(τ) and input (2). We
indicate with αp(t), t ∈ [τ, t1], the post-event trajectory.

Ante- and post-event trajectories can be glued together by
“appending” to ante-event trajectory αa the post-trajectory
αp, obtaining the trajectory

α(t) :=

{
αa(t), t ∈ [t0, τ)
αp(t), t ∈ [τ, t1].

(6)

The state trajectory α is (generally) not continuous, due
to the state jump caused by the impulse map ∆. Without
loss of generality, α is by construction right continuous.
Together with the nominal input µ(t), the state trajectory
α(t) forms what we term the nominal state-input trajectory
ξ(t) = (α(t), µ(t)), t ∈ [t0, t1].

We are interested in defining and computing the sensitivity
of ξ(t) to small variations of the initial condition x0 and input
µ(t), t ∈ [t0, t1]. To this end, we will perturb the initial
condition in the direction z0 ∈ Rn and the nominal input
curve µ in the direction v, where v denotes an integrable
curve v(t) ∈ Rm, t ∈ [t0, t1]. Hence, the perturbed initial
condition and input curve are defined, respectively, as

xε(t0) = x0 + εz0 (7)
uε(t) = µ(t) + εv(t), t ∈ [t0, t1], (8)

with ε ∈ R typically small. The corresponding state-input
trajectory will be denoted ξε(t) = (xε(t), uε(t)), t ∈ [t0, t1].
We aim at defining a notion of sensitivity to predict, for small
values of ε, the effect of perturbations to the initial condition
and the nominal input on a jumping solution of the hybrid
system.

The perturbed trajectory ξε = (xε, uε) is defined, similarly
to the nominal trajectory ξ = (α, µ), by appending to
the perturbed ante-event trajectory xaε the the perturbed
post-event trajectory xpε . The event time of the perturbed
trajectory, that we denote τε, typically varies as ε changes.
Indeed, this perturbed event time is implicitly defined by the
condition

g(xaε(τε), τε) = 0. (9)

The above equation is satisfied, for ε = 0, by the nominal
ante-event trajectory αa at the nominal event time τ : see (3).

In order to ensure that ε 7→ τε is, about ε = 0, a continu-
ously differentiable function the following assumption needs
to be fulfilled by the nominal state-input trajectory ξ.

Assumption 2.1: The nominal state-input trajectory satis-
fies the following transversality condition

D1g · fa +D2g · 1 6= 0, (10)

where g is evaluated at (αa(τ), τ) and the ante-event vector
field fa at (αa(τ), u(τ), τ). The notation D1 and D2 denote,
respectively, the partial differentiation with respect the first
and second arguments.
The above transversality condition is a common requirement
when dealing with hybrid system with state-triggered jumps
(see, e.g., [19]). Its role in the sensitivity analysis will
become clear in the proof of the theorem presented later
on in this section.

For t = τε, the value of xpε is computed using the impulse
map ∆, similarly as done in (4). Therefore, we can formulate
the following conditions that the perturbed ante- and post-
event trajectories have to satisfy:

xaε = x0 + εz0, t = t0 (11)
ẋaε = fa(xaε , uε, t), t ∈ [t0, τε] (12)
xpε = xaε + ∆(xaε , t), t = τε (13)
ẋpε = fp(xpε , uε, t), t ∈ [τε, t1]. (14)

One important observation is that, although naturally defined
in the time intervals [t0, τε] and [τε, t1], both the ante-
and post-event trajectories xaε and xpε can individually be
extended over the whole time interval [t0, t1] by, respectively,
forward and backward time integration starting from τε. We
will denote those extensions as x̄aε(t) and x̄pε(t), t ∈ [t0, t1].
These extended ante- and post-event perturbed trajectories
satisfy

x̄aε = x0 + εz0 t = t0, (15)
˙̄xaε = fa(x̄aε , uε, t), t ∈ [t0, t1], (16)
x̄pε = x̄aε + ∆(x̄aε , t), t = τε, (17)
˙̄xpε = fp(x̄pε , uε, t), t ∈ [t0, t1], (18)

where the perturbed event time τε is implicitly defined by
the condition

g(x̄aε(τε), τε) = 0. (19)

This apparently innocuous extension is the cornerstone to
understand the sensitivity differential equation.

Figure 1 gives an indication on why in general we cannot
expect to be able to write the perturbed trajectory xε as

xε(t) = α(t) + εz(t) + o(ε)

with z the solution to an appropriately defined time-varying
linear system. The obstacle is represented by the difference
in the event times for xε and α. The following theorem
shows how to overcome this difficulty, defining the extended
ante- and post-event linearization trajectories z̄a and z̄p and
defining the expansion about the extended ante- and post-
event trajectories ᾱa and ᾱp instead of simply about α.

Theorem 2.1: Consider a nominal state-control trajectory
ξ(t) = (α, µ)(t), t ∈ [t0, t1], of system (1), (3), (4), (5)
with nominal event time τ ∈ [t0, t1] and associated extended
ante- and post-event trajectories ᾱa(t) and ᾱp(t), t ∈ [t0, t1].
Adopt Assumption 2.1. The perturbed state trajectory xε(t),
t ∈ [t0, t1], corresponding to perturbations in the initial
condition and input as in (7), satisfies

xε(t) =

{
ᾱa(t) + εz̄a(t) + o(ε), t < τε
ᾱp(t) + εz̄p(t) + o(ε), t ≥ τε.

(20)

where the extended ante- and post-event linearization trajec-
tories z̄a(t) and z̄p(t), t ∈ [t0, t1], are computed as

z̄a = z0, t = t0 (21)
˙̄za = Aa(t)z̄a +Ba(t)v t ∈ [t0, t1] (22)
z̄p = z̄a +H(τ)z̄a t = τ (23)
˙̄zp = Ap(t)z̄p +Bp(t)v t ∈ [t0, t1] (24)
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Fig. 1. The ante- and post-event nominal trajectories αa and αp, perturbed trajectories xaε and xpε , and the linear approximations αa+εza and αp+εzp.
The extended trajectories, indicated with a bar sign, are depicted using dashed lines.

where

As(t) = D1f
s(ᾱs(t), µ(t), t) (25)

Bs(t) = D2f
s(ᾱs(t), µ(t), t) (26)

with s = {a, p} and

H(τ) =
f+ − f− − ∆̇−

ġ−
D1g

− +D1∆−, (27)

where

αp(τ) = αa(τ) + ∆(αa(τ), τ) (28)

f+ = fp(αp(τ), µ(τ), τ), (29)

f− = fa(αa(τ), µ(τ), τ), (30)

∆̇− = D1∆− · f− +D2∆− · 1 (31)

ġ− = D1g
− · f− +D2g

− · 1 (32)

Dk∆− = Dk∆(αa(τ), τ), k = {1, 2} (33)

Dkg
− = Dkg(αa(τ), τ), k = {1, 2}. (34)

Proof: The extended ante- and post-event perturbed
trajectories satisfy (15)-(18) where the perturbed event time
τε is implicitly defined by the condition (19). On the basis
of Assumption 2.1, the implicit function theorem allows to
conclude the existence of a unique event time τε for small
values of ε. Furthermore, as (19) is identically zero for each
ε in a neighbourhood of zero, the derivative of (19) with
respect to ε allows to obtain a linear approximation of τε as
a function of ε, namely to compute τ ′0 := ∂τε/∂ε|ε=0 and
approximate τε as

τε = τ + ε τ ′0 + o(ε). (35)

The formula to compute τ ′0 will be obtained at the end of
the proof.

The sensitivity equations for the extended ante- and post-
event trajectories x̄a and x̄p are the standard (see, e.g., [12,
Chapter 10]) sensitivity equations given by (22) and (24).

The missing link is how to relate z̄p to z̄a, that is, to show
that z̄p is indeed reinitialized as in (23) at the nominal event
time τ using the linear map H given by (27).

Expanding x̄pε(τε) in series with respect to ε results in

x̄pε(τε) = ᾱp(τε) + εz̄p(τε) + o(ε)

= αp(τ) + εα̇p(τ)τ ′0 + εz̄p(τε) + o(ε)

= αp(τ) + ε(α̇p(τ)τ ′0 + z̄p(τ)) + o(ε). (36)

To obtain the above expression, ᾱp(τε) has been approxi-
mated by linear extrapolation using the value and the time
derivative of ᾱp at time τ and τε has been approximated
using (35). Note that, as ᾱp and its time derivative are then
evaluated at τ , there is no need for the overline sign because
αp is always defined at τ . We have then discarded the terms
of order higher than one in εz̄p(τε) obtaining εz̄p(τ). A
similar expansion can be computed for x̄aε(tε) obtaining

x̄aε(τε) = αa(τ) + ε(α̇a(τ)τ ′0 + z̄a(τ)) + o(ε). (37)

Using (37) and (35), ∆(x̄aε(τε), τε) appearing in (17) can be
expanded as

∆(x̄aε(τε), τε) = ∆(αa(τ), τ)

+ εD1∆(αa(τ), τ) · (α̇a(τ) τ ′0 + z̄a(τ))

+ εD2∆(αa(τ), τ) · τ ′0 + o(ε). (38)

Using (37) and (35), (19) can be expanded as

g(x̄aε(τε), τε) = εD1g(αa(τ), τ) · (α̇a(τ) τ ′0 + z̄a(τ))

+ εD2g(αa(τ), τ) · τ ′0 + o(ε). (39)

As the above expression is identically zero for every ε, we
get

τ ′0 = − D1g(αa(τ), τ) · z̄a(τ)

D1g(αa(τ), τ) · α̇a(τ) +D2g(αa(τ), τ) · 1

= −D1g
− · z̄a(τ)

ġ−
(40)
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where ġ− and D1g
− are defined, respectively, as in (32)

and (34). The expression for (40) is valid as long as ġ− is
different from zero, that is, if Assumption 2.1 is satisfied.

Making use of the series expansions (36), (37), and (38),
we can match the first-order terms of (17), obtaining, at the
event time τ ,

α̇pτ ′0 + z̄p = α̇aτ ′0 + z̄a

+D1∆(αa, τ) · (α̇a τ ′0 + z̄a) + D2∆(αa, τ) · τ ′0. (41)

The above expression can be rearranged as

z̄p = z̄a − (f+ − f− − ∆̇−) τ ′0 +D1∆− · z̄a (42)

where f+, f−, ∆̇−, and D1∆− are defined, respectively,
as in (29), (30), (31), and (33). Substituting in the above
equation the expression for τ ′0 given in (40), we obtain (23)
and in particular the expression for H provided in (27). This
concludes the proof of the theorem.
Remark. Note that the reset map (23) is linear in z̄a and the
reset occurs at the nominal event time τ . �

As mentioned in the introduction, (27) is a (uncommonly)
known expression in the context of numerical optimal control
[27], [18], and parametric sensitivity for hybrid systems [24],
[6]. It is also strictly related to equation (57) that appears
in [11] and can also be interpreted as a generalization, for
piecewise-smooth nonlinear systems with state jumps, of the
saltation matrix introduced in [15] (in [15], ∆ is identically
equal to zero as there is no state jump).

Our contribution lies in the use of extended ante- and post-
event trajectories to achieve the first-order approximation
presented in (20). To the best of our knowledge, this approx-
imation and the use extended anti- and post-event trajectories
is new.

It is worth mentioning that [11, Appendix A] suggests “a
procedure for refining the estimate of the perturbed trajec-
tory” in a neighbourhood of the event time. Non surprisingly,
the need for this refining is due to the difference between the
nominal and perturbed trajectory event times (respectively, τ
and τε, according to our notation). Note, however, that the
approximation in [11] differs from the one that we propose
here as it is not based on using the extended ante- and post-
event trajectories and therefore is not an o(ε) approximation
of the nominal trajectory.

The approximation (20) is key to address the problem of
(local) trajectory tracking for systems with state-triggered
jumps, as we discuss in the following section.

III. TRAJECTORY TRACKING OF A TIME-VARYING
REFERENCE TRAJECTORY

Let ξ = (α, µ) be a nominal state-input trajectory for a
hybrid system characterized by ante- and post-event vector
fields fa and fp. As done in the previous section, τ will
indicate the nominal event time and ᾱa and ᾱp the extended
ante- and post-event trajectories, respectively.

Consider the following state feedback control law

u =

{
µ+K(t)(ᾱa − x), before event detection
µ+K(t)(ᾱp − x), after event detection (43)

where K(t) ∈ Rm×n is a time-varying matrix gain to be
designed. In (43), by event detection we mean the satisfaction
of the condition g(x(t), t) = 0 for the current value of the
state at time t, which is generally not equal to the nominal
event time τ . En passant, as in the example of tracking
control for a bouncing ball proposed in [1], we mention that
event detection is not strictly needed to implement a switch-
ing feedback law as (43). Indeed, due to the discontinuity
in the nominal state trajectory, an equivalent result might be
obtained by simply choosing, between ᾱa − x and ᾱp − x,
the one with minimum norm.
Remark. Strictly speaking, in [1], the nominal trajectory
α(t) and its negative version −α(t) are used in place of
ᾱa(t) and ᾱp(t). For a bouncing ball impacting without
energy loss on a surface (located at position zero), the use
of the mirror trajectory −α(t) can be justified within our
framework observing that −α(t) corresponds to choosing ᾱp

before the nominal event time and to ᾱa after the nominal
event time, so that an equivalent switching law to (43) is
obtained. When the bouncing is not elastic, −α(t) is no
longer a good representative of the extended behavior and
needs to be corrected. Indeed, in [2], the case of non-elastic
impact is considered and the mirrored nominal trajectory is
corrected via the use of the impact restitution coefficient.
Again, this can be interpreted as the need to obtain (an
estimate of) the extended nominal trajectories ᾱa(t) and
ᾱp(t) for properly defining the notion of tracking error to
deal with the difference between the nominal and perturbed
event times. A similar remark applies for the mirroring
technique presented in [5]. �

Our goal in this section is to discuss why (43) is a suitable
choice to design a trajectory tracking controller (assuming ξ
is of infinite extent) and suggest how the time-varying gain
K could be designed. Using (43), we obtain the following
closed-loop ante- and post-event vector fields

facl(x, t) := fa(x, µ+K(t)(ᾱa(t)− x), t), (44)
fpcl(x, t) := fp(x, µ+K(t)(ᾱp(t)− x), t). (45)

By construction, the resulting hybrid system (with no inputs)
has α as nominal trajectory and, consequently, the nominal
switching time remains τ . The sensitivity analysis developed
in Section II leads to the following state matrices for the ante-
and post-event linearization of (44)-(45):

Aa
cl(t) = Aa(t)−Ba(t)K(t), (46)

Ap
cl(t) = Ap(t)−Bp(t)K(t). (47)

The input matrices Ba
cl and Bp

cl are zero as (44) and (45)
have no input. Finally, the gain H , computed using (27), is by
construction equal to the one associated to the nominal open-
loop trajectory ξ = (α, µ). This concludes the derivation of
the extended linearization as discussed in Theorem 2.1 for
the closed-loop dynamics (44)-(45).

In virtue of Theorem 2.1 and, in particular, of the approx-
imation (20), one can reasonably expect to be able to shape
the local behavior of the closed-loop response of the hybrid
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system about the nominal trajectory ξ by choosing suitably
the matrix gain K(t) in (43).

We expect that this will be related to controllability-
like assumptions on the ante- and post-event linearizations
associated to the time-varying matrices Aa, Ba, Ap, Bp,
as well as the jump gain H given in (27). Furthermore, a
modification of the standard linear quadratic regulator (LQR)
problem for linear system with fixed-time jump-gain-induced
state jumps could be used to design the gain K in an
optimal manner. For the sake of brevity, we leave to future
publications the burden of filling in the gaps by providing
a mathematical proof that the proposed approach does work
and demonstrating via numerical simulations and physical
experiments that the control strategy is indeed effective.

IV. CONCLUSIONS

This paper addresses the sensitivity analysis of hybrid
systems with discontinuous state trajectories. We developed
a novel notion of error to obtain, at each instant of time, a
first-order approximation of the change in a trajectory due to
small changes in initial conditions and inputs. This notion of
error naturally finds application in the local tracking problem
of a time-varying reference trajectory of a hybrid system. We
outlined how the standard linear trajectory tracking control
for nonlinear systems can be generalized for hybrid systems,
leaving for future investigation the generalization of linear
quadratic regulator (LQR) theory to compute the optimal
feedback gain in this context. We highlighted the connection
between the switching linear feedback law that we propose
with the idea of trajectory mirroring recently appeared in the
literature.

The notion of error developed in this paper opens the
possibility of further developing perturbation analysis in the
context of hybrid systems. Our current efforts are directed
toward the development of a second-order approximation to
be used in the context of numerical optimal control [25],
[10], [9] as well as the investigation of sensitivity analysis
for mechanical systems with changing state dimension such
as, e.g., the robotic hopping leg described in [26].
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