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Abstract— Torsional stick-slip vibrations decrease the per-
formance and reliability of drilling systems used for the
exploration of energy and mineral resources. In this work,
we present the design of a nonlinear observer-based output-
feedback control strategy to eliminate these vibrations. We ap-
ply the controller to a drill-string model based on a real-life rig.
To facilitate the design and implementation of the controller, we
employ model reduction to obtain a low-order approximation
of this model. Conditions, guaranteeing asymptotic stability
of the desired equilibrium, corresponding to nominal drilling
operation, are presented. The proposed control strategy has a
significant advantage over existing vibration control systems in
current drilling rigs as it only requires surface measurements
instead of expensive down-hole measurements and can handle
multiple modes of torsional vibration. Case study results using
the proposed control strategy show that stick-slip oscillations
can indeed be eliminated in realistic drilling scenarios.

I. INTRODUCTION

Drilling systems, as schematically shown in Fig. 1, are
used to drill deep wells for the exploration and production
of oil and gas, mineral resources and geo-thermal energy.
Surface and down-hole measurements [1]–[3] show that these
systems experience different types of oscillations, which
decrease the drilling rate of penetration due to damage to
the drill bit (e.g. bit tooth wear), drill pipes and bottom hole
assembly (e.g. twisted pipe). The focus of the current paper is
on the aspect of mitigation of torsional stick-slip oscillations
by means of control as these vibrations are known to be
highly detrimental to drilling efficiency, reliability and safety.

For the design of controllers to eliminate torsional vibra-
tions most studies rely on one- or two degree-of-freedom
(DOF) models for the torsional drill-string dynamics only,
see e.g. [4]–[6]. In these models, it is generally assumed that
the resisting torque at the bit-rock interface can be modeled
as a frictional contact with a velocity weakening effect as
reported in [7], [8]. In fact, modelling of the coupled axial
and torsional dynamics, as for example in [9], shows that
the velocity weakening effect in the torque-on-bit (TOB) is
a consequence of the drilling dynamics. The fact that such
coupling effectively leads to a velocity weakening effect of
the TOB (see e.g. [10], [11]) motivates to adopt a modelling-
for-control approach for drill-string dynamics involving the
torsional dynamics only, as we will pursue in this paper.
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Fig. 1. Schematic drilling system (adapted from [12]).

Different control strategies to suppress torsional vibrations
can be found in literature. In [13], the use of torque feed-
back in addition to a speed controller is investigated. The
underlying idea is making the top rotary system behave in a
“soft” manner, hence the name Soft Torque Rotary System,
see also [5]. In these research contributions, it is assumed
that the drilling system behaves like a 2-DOF torsional
pendulum of which the first torsional mode can be damped
using a PI-controller based on the surface angular velocity.
In [8], [14], the above soft torque approach is compared
with a control method based on torsional rectification, which
outperforms the soft torque approach in simulation studies
by using improved torque feedback based on the twist of the
drill-string near the rotary. A linear H∞ controller synthesis
approach is presented in [6]. Herein, the bit-rock interaction,
key in causing stick-slip, is not taken into account in the
controller design and stability analysis of the closed-loop
dynamics. A control design approach, where information of
the nonlinear bit-rock interaction model is explicitly taken
into account in the controller synthesis, is proposed in [4],
[15], [16]. Drawbacks of the approaches in [4], [6] are, firstly,
the necessity of down-hole measurements reflecting the twist
of the drill-string between surface and bit, which can not be
measured in practice, and, secondly, the fact that only one
torsional mode of the drill-string is taken into account.

Increasing demands on the operating envelope and a
tendency towards drilling deeper and inclined wells impose
higher demands on the controllers used in drilling systems.
Industrial controllers are not always able to eliminate stick-
slip vibrations under the imposed operating conditions. Two
main reasons for this deficiency are the influence of multiple
dynamical modes of the drill-string on torsional vibrations
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and uncertainty in the bit-rock interaction. The main contri-
bution of this paper is an output-feedback control strategy
mitigating torsional stick-slip vibrations while 1) only using
surface measurements, 2) taking into account a multi-modal
drill-string model and 3) including severe velocity weakening
and uncertainty in the bit-rock interaction.

Preliminaries: In support of the controller design result in
Section III-A we present the following definitions on input-
to-state-stability and the strict passivity property. The concept
of local input-to-state stability has been introduced in [17].

Definition 1: The system ẋ(t) ∈ F (x(t), e(t)) is locally
input-to-state stable (LISS) if there exist constants c1, c2 > 0,
a function ρ of class KL and a function µ of class K such that
for each initial condition x(0) = x0, such that ‖x0‖ ≤ c1,
and each piecewise continuous bounded input function e(t)
defined on [0,∞) and satisfying supτ∈[0,∞) ‖e(τ)‖ ≤ c2, it
holds that
• all solutions x(t) exist on [0,∞) and,
• all solutions satisfy

‖x(t)‖ ≤ ρ (‖x0‖ , t) + µ

(
sup
τ∈[0,t]

‖e(τ)‖
)
, ∀t ≥ 0. (1)

Consider the linear time-invariant minimal realization

ẋ = Ax+Gw
z = Hx+Dw

(2)

with the state x ∈ Rn, input and output w, z ∈ R.
Definition 2: The system (2) or the quadruple

(A,G,H,D) is said to be strictly passive if there exist an
ε > 0 and a matrix P = P> > 0 such that[

A>P + PA+ εI PG−H>
G>P −H −D −D>

]
≤ 0. (3)

II. DRILL-STRING MODEL
We consider a jack-up drilling rig and a corresponding

finite element method (FEM) model representation, with 18
elements. The rig is equipped with an AC top drive and Soft
Torque system [18], however, stick-slip vibrations have been
observed in the field. The model has been validated with
field data under different conditions (in terms of weight-on-
bit (WOB) and angular velocity) and can be written as

Mq̈ +Dq̇ +Ktqd = SwTw(q̇) + SbTbit(q̇1) + SmTm (4)

with the coordinates q ∈ Rn̄ with n̄ = 18, the top drive
motor torque input Tm ∈ R being the control input, the
bit-rock interaction torque Tbit ∈ R and the interaction
torques Tw ∈ Rn̄−1 between the borehole and the drill-string
acting on the nodes of the FEM model. The coordinates
q represent the angular displacements of the nodes of the
finite element representation, where the first element (q1)
describes the rotation of the bit and the last element (q18)
the rotation of the top drive at surface. Next, we define
the difference in angular position between adjacent nodes
as qd :=

[
q1 − q2 q2 − q3 · · · q17 − q18

]>
. In (4), the

mass, damping and stiffness matrices are, respectively, given
by M ∈ Rn̄×n̄, D ∈ Rn̄×n̄ and Kt ∈ Rn̄×n̄−1, the matrices
Sw ∈ Rn̄×n̄−1, Sb ∈ Rn̄×1 and Sm ∈ Rn̄×1 represent the

generalized force directions of the interaction torques, the
bit torque and the input torque, respectively. The interaction
torques Tw are modeled as Coulomb friction, that is

Tw,i ∈ Ti Sign (q̇i) , for i = 2, . . . , 18, (5)

with Ti representing the amount of friction at each element
and the set-valued sign function defined as

Sign (y) ,

 −1, y < 0
[−1, 1] , y = 0
1, y > 0.

(6)

The bit-rock interaction model is given by

Tbit(q̇1) ∈ Sign (q̇1)
(
Td + (Ts − Td) e−vd|q̇1|

)
(7)

with Ts the static torque, Td the dynamic torque and vd =
30
Ndπ

indicating the decrease from static to dynamic torque.
The model (4), (5) and (7) together forms a differential
inclusion that we can write in state-space Lur’e-type form as:

˙̄x = Āx̄+ Ḡw̄ + Ḡ2w̄2 + B̄u
z̄ = H̄x̄
z̄2 = H̄2x̄
ȳ = C̄x̄
w̄ ∈ −ϕ(z̄)
w̄2 ∈ −φ(z̄2),

(8)

where x̄ :=
[
q>d q̇>

]> ∈ R2n̄−1 is the state, z̄ :=

ωbit ∈ R and z̄2 := [q̇2, . . . , q̇18]
> ∈ Rn̄−1 are the angular

velocity arguments of the set-valued nonlinearities ϕ and
φ, respectively. The bit-rock interaction torque is given by
w̄ ∈ R and the drill-string-borehole interaction torques are
given by w̄2 ∈ Rn̄−1, u := Tm ∈ R is the control input and
ȳ :=

[
ωtd Tpipe

]> ∈ R2 is the measured output, which
implies that only surface measurements will be employed.
The angular velocities of the top drive and the bit are defined
as ωtd := q̇18 and ωbit := q̇1, respectively, and the pipe
torque Tpipe is the torque in the drill-string directly below
the top drive. The matrices Ā, B̄, Ḡ, Ḡ2, H̄ and H̄2 in (8),
with appropriate dimensions are given by

Ā =

[
017×17 ā
−M−1Kt −M−1D

]
, ā =


1 −1 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 1 −1


B̄ =

[
017×1

M−1Sm

]
, Ḡ =

[
017×1

M−1Sb

]
, Ḡ2 =

[
017×17

M−1Sw

]
,

H̄ =
[
01×17 1 01×17

]
, H̄2 =

[
017×18 I17

]
,

and C̄ ∈ R2×2n̄−1 indicates the measured output. Note that
ϕ(z̄) := Tbit(z̄) and φ(z̄2) := [Tw,2(q̇2), . . . , Tw,18(q̇18)]

>.
The relevant frequency response functions for the linear part
of the drill-string dynamics (8) are represented by the solid
lines in Figs. 2, 3 and 4.

A. Reduced-order model
To facilitate the design and to decrease the implementation

burden of observer-based output-feedback controllers (see
Section III), we apply model reduction to obtain a low-
order approximation of the drilling system dynamics (8), that
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Fig. 2. Frequency response function of the full-
order and reduced-order model from input torque
Tm to bit velocity ωbit.
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Fig. 3. Frequency response function of the full-
order and reduced-order model from bit torque
Tbit to bit velocity ωbit, i.e. bit mobility.
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Fig. 4. Frequency response function of the full-
order and reduced-order model from input torque
Tm to top drive velocity ωtd.
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Fig. 5. Bit-rock interaction model.

approximates the input-output behavior from inputs u and w̄
to outputs ȳ and z̄. The inputs and outputs related to the drill-
string-borehole interaction (Tw,i) are not taken into account
in the reduction process, but can be approximated using the
transformation matrix obtained from the reduction procedure.
Hence, system (8) can be represented as a Lur’e type system
Σ̄ =

(
Σ̄lin, ϕ

)
, consisting of high-order linear dynamics Σ̄lin

with a single static output-dependent nonlinearity ϕ, related
to the bit-rock interaction, in the feedback loop. We will
use the model reduction approach for Lur’e-type systems as
proposed in [19] to obtain the reduced-order linear system
Σlin. Interconnecting this system with the nonlinearity ϕ
yields the reduced-order drill-string system Σ = (Σlin, ϕ).
The reduced-order system model can then be written as (now
again taking into account drill-string-borehole interactions):

ẋ = Ax+Gw +G2w2 +Bu
z = Hx
z2 = H2x
y = Cx
w ∈ −ϕ(z)
w2 ∈ −φ(z2)

(9)

with state x ∈ Rn, n = 7 and an experimentally validated
bit-rock interaction as shown in Fig. 5. The relevant fre-
quency response functions for the linear part of the dynamics
in (9) are shown in Figs. 2, 3 and 4. Clearly, the first three
resonance modes are dominant, while those dominant modes
(and the rigid-body mode) are accurately captured, which
motivates the choice to reduce to a model order of n = 7.

III. OUTPUT-FEEDBACK CONTROLLER DESIGN

We employ an observer-based controller synthesis strategy
for Lur’e-type systems with discontinuities as in [4], [20].
The conditions for controller synthesis as in [4] achieving
global asymptotic stability are infeasible for the realistic
drill-string model presented here for three reasons: firstly, the
incorporation of more realistic drill-string dynamics includ-
ing multiple torsional flexibility modes, see Figs. 2, 3 and 4,
secondly, the incorporation of a bit-rock interaction model
based on field data, which shows a rather severe velocity
weakening effect, see Fig. 5 and, thirdly, the restriction on
the availability of only surface measurements. Therefore,
we employ a controller synthesis strategy to design locally
stabilizing controllers and we show that such local stability
properties suffice in realistic drilling scenarios.

A. State-feedback controller

In this section, we discuss the design of a state-feedback
controller for generic systems in the form

ξ̇ = Aξ +Bufb +Gw̃
z̃ = Hξ
w̃ ∈ −ϕ̃(z̃)

(10)

that stabilizes the origin ξ = 0 of the system state ξ ∈ Rn.
Stabilization of the origin of (10) corresponds to the desired
operation of constant angular velocity of the drilling system.
The control input is given by ufb ∈ Rm, the input and output
of the set-valued nonlinearity ϕ̃ are given by z̃ ∈ R and
w̃ ∈ R, respectively, and the system matrices are A ∈ Rn×n,
B ∈ Rn×m, G ∈ Rn×1 and H ∈ R1×n. We introduce the
linear static state-feedback law, ufb = Kξ̂ = K (ξ − e),
where we take the “measurement” (or observer) error e :=
ξ− ξ̂ into account, moreover, K ∈ Rm×n is the control gain
matrix and ξ̂ the observer estimate of the state ξ; the observer
will be treated in more detail in Section III-B. The resulting
closed-loop system is described by the differential inclusion:

ξ̇ = (A+BK) ξ +Gw̃ −BKe
z̃ = Hξ
w̃ ∈ −ϕ̃(z̃).

(11)

The transfer function Gcl(s) from the input w̃ to
the output z̃ of system (11) is given by Gcl =
H(sI − (A+BK))

−1
G, s ∈ C. Now, let us state the

following assumptions on the properties of the set-valued
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Fig. 6. Schematic representation of system (11) after transformation using
a dynamic multiplier.

nonlinearity ϕ̃(z̃). Hereto, we first define a set Sa for
which a particular sector condition is satisfied Sa :=
{z̃ ∈ R|z̃a1 < z̃ < z̃a2} with z̃a1 < 0 < z̃a2.

Assumption 1: The set-valued nonlinearity ϕ̃ : R → R
satisfies

• 0 ∈ ϕ̃(0);
• ϕ̃ is continuously differentiable and bounded ∀ z̃ ∈ Sa;
• ϕ̃ locally satisfies the [0, k] sector condition, with
k > 0, in the sense that w̃ [w̃ + kz̃] ≤ 0 ∀ w̃ ∈
{w̃ ∈ −ϕ̃(z̃)|z̃ ∈ Sa}.

The intended control goal is to render the closed-loop
system (11) locally input-to-state stable with respect to the
input e, as formalized in Definition 1, by a proper design
of the controller gain K. We use the concept of a dynamic
multiplier to transform the original system into a feedback
interconnection of two passive systems. In Fig. 6, a block
diagram of the system including the dynamic multiplier
with transfer function M(s) = 1 + γs, s ∈ C, is shown;
furthermore the loop transformation gain 1

k is included given
the fact that the nonlinearity ϕ̃(·) belongs to the sector [0, k].
The linear system Σ1 in Fig. 6 can be written in state-space
form as follows:

Σ1 :

{
ξ̇ = (A+BK) ξ +Gw̃ −BKe
z̆ = H̆ξ + D̆w̃ + Z̆e

(12)

with H̆ := H + γH (A+BK), D̆ := 1
k + γHG and Z̆ :=

−γHBK. For system Σ2 in Fig. 6 we can write:

Σ2 :

{
˙̃z = − 1

γ z̃ + 1
γ z̆ − 1

γk w̃

w̃ ∈ −ϕ̃(z̃)
(13)

The following theorem states sufficient conditions under
which system (11) is LISS with respect to input e.

Theorem 1: Consider system (11) and suppose there exists
a constant γ > 0 such that

(
A+BK,G, H̆, D̆

)
is strictly

passive. Then system (11) is LISS, with respect to input e
for any ϕ̃(·) satisfying Assumption 1.

Proof: The proof can be found in [21].

B. Observer design

We will use an observer to find an estimate of the states
of system (10), since we only rely on surface measurements.
Following [20], we propose the following observer, with

measured output ỹ = Cξ (ỹ ∈ Rk and C ∈ Rn×k):
˙̂
ξ = (A− LC) ξ̂ +Bufb +Gŵ + Lỹ

ẑ = (H −NC) ξ̂ +Nỹ
ŵ ∈ −ϕ̃ (ẑ)

ŷ = Cξ̂

(14)

and observer gain matrices L ∈ Rn×k and N ∈ R1×k.
Next, we state an additional assumption on the nonlin-
earity ϕ̃(·). Hereto, we first define the set Sb as Sb :=
{z̃ ∈ R|z̃b1 < z̃ < z̃b2} with z̃b1 < 0 < z̃b2, such that for
all z̃ ∈ Sb the monotonicity property holds.

Assumption 2: The set-valued nonlinearity ϕ̃ : R → R is
such that ϕ̃ is monotone for all z̃ ∈ Sb, i.e. for all z1 ∈ Sb
and z2 ∈ Sb with w1 ∈ ϕ̃(z1) and w2 ∈ ϕ̃(z2), it holds that
(w1 − w2)(z1 − z2) ≥ 0.

The observer error has been defined as e = ξ − ξ̂ before.
Consequently, the observer error dynamics can be written as

ė = (A− LC) e+G (w̃ − ŵ)
w̃ ∈ −ϕ̃(z̃)

ŵ ∈ −ϕ̃
(
Hξ̂ +N

(
ỹ − Cξ̂

))
.

(15)

The following theorem provides sufficient conditions for the
design of the observer gains L and N such that the origin
e = 0 is a locally exponentially stable (LES) equilibrium
point of the observer error dynamics (15).

Theorem 2: Consider system (10) and the observer (14)
with (A− LC,G,H −NC, 0) strictly passive and the ma-
trix G being of full column rank. If it holds that

‖ξ(t)‖ ≤ ε z̃b,min‖H‖ , ∀t ≥ 0,

for some ε ∈ (0, 1) and z̃b,min := min (|z̃b1| , |z̃b2|), then e =
0 is a locally exponentially stable equilibrium point of the ob-
server error dynamics (15) for any ϕ̃ satisfying Assumptions
1 and 2 with the region of attraction containing the set{
e ∈ Rn| ‖e0‖ ≤ (1− ε) z̃b,min

‖H −NC‖

(
λmax(Po)

λmin(Po)

)− 1
2

}
with the initial observer error e(0) = e0. The matrix Po
results from the existence of Po = P>o > 0 and Qo =
Q>o > 0 such that Po (A− LC)+(A− LC)Po = −Qo and
G>Po = H−NC, which is equivalent to the strict passivity
of (A− LC,G,H −NC, 0).

Proof: The proof can be found in [21].

C. Output-feedback control
The state-feedback controller and the observer from the

previous sections together form an observer-based output-
feedback controller. We use the estimated state ξ̂ of the
observer (14) in the closed-loop system (11) and prove local
asymptotic stability of the equilibrium (ξ, e) = (0, 0) of the
interconnected system (11), (15).

Theorem 3: Consider system (11) and observer (14). Sup-
pose the conditions in Theorem 1 are satisfied for system
(11) and that the observer error dynamics in (15) satisfies the
conditions in Theorem 2. Then, (ξ, e) = (0, 0) is a locally
asymptotically stable equilibrium point of the interconnected
system (11), (15) for any ϕ̃ satisfying Assumptions 1 and 2.

Proof: The proof can be found in [21].
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IV. SIMULATION RESULTS

In this section, we will show the application of the
observer-based output-feedback controller (see Section III) to
the reduced-order drill-string model presented in Section II.
To stabilize the desired equilibrium xeq of system (9) we
have to design the controller gain K and the observer gains
L and N . The control torque u = uff +Kξ̂, consists of the
constant feedforward torque uff and the feedback torque
Kξ̂ based on the observer estimate ξ̂. We assume that the
resistive torques along the drill-string are constant and can be
compensated by uff . The equilibrium xeq and feedforward
torque uff can be obtained from the equilibrium condition
of system (9) that has to satisfy Axeq − Gϕ (Hxeq) −
G2φ (H2xeq)+Buff = 0 and the requirement that y1 = ωtd
matches the desired equilibrium velocity ωeq .

Now, we have to write the system (9) in the form (10) and
such that the set-valued nonlinearity satisfies the conditions
in Assumptions 1 and 2. Therefore, we write the reduced-
order drill-string system in perturbation states, i.e. ξ := x−
xeq . Furthermore, we apply a linear loop transformation to
change the properties of the nonlinearity ϕ. This results in
the following state-space representation

ξ̇ = Atξ +Bufb +Gw̃
z̃ = Hξ
w̃ ∈ −ϕ̃ (z̃)

(16)

with At := A + δGH , δ > 0 a constant to apply the linear
loop transformation, ϕ̃ (z̃) := ϕ (z̃ +Hxeq)−ϕ (Hxeq)+δz̃
and w̃ = w−weq−δz̃. The transformed nonlinearity ϕ̃ (z̃) is
shown in Fig. 7. As can be seen in this figure, ϕ̃ (z̃) belongs
locally to the sector [0, k] with k = 570 Nms/rad (note δ =
29.2 Nms/rad in this case). The physical meaning of this
condition is that the amount of velocity weakening in the
bit-rock interaction is limited. A larger sector, including the
total nonlinearity ϕ̃ (z̃), would result in high control gains
K. Such high gains result in high control torques u that can
not be realized by the top drive and are therefore infeasible
in practice. In Fig. 7, we have also indicated the point z̃a1 =
−28.9 rpm for which it holds that for z̃a1 < z̃ < z̃a2 the
sector condition is satisfied (i.e. z̃a2 can be chosen arbitrarily
large in this case) and the point z̃b1 = −20.1 rpm such that
for z̃b1 < z̃ < z̃b2 it holds that ϕ̃ is monotonically increasing
(i.e. z̃b2 can also be chosen arbitrarily large in this case), as
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Fig. 8. Simulation result of the reduced-order model with an existing
industrial controller.

stated in Assumption 1 and 2, respectively.
The controller and observer gains are designed according

to the conditions given in Theorem 1 and Theorem 2,
respectively. The results are obtained by using SeDuMi 1.3
[22], a linear matrix inequality (LMI) solver. Hence, the
controller gains K are determined by finding a solution such
that (At + BK,G, H̆, D̆) is strictly passive. To find the
observer gains L and N we have to satisfy the strict passivity
conditions for (At − LC,G,H −NC, 0).

First, we will show a simulation result of the reduced-order
drill-string system in closed-loop with an existing industrial
controller (based on [5]). For the simulations, we introduce
a so-called startup scenario, which is based on practical
startup procedures for drilling rigs. Herein, the drill-string
is first accelerated to a low constant rotational velocity with
the bit above the formation (off bottom) and, subsequently,
the angular velocity and weight-on-bit (WOB) are gradually
increased to the desired operating conditions. The increase
in WOB is modelled as a scaling of the bit-rock interaction
torque. For WOB = 0 (off bottom) there is no velocity
weakening in the TOB and increasing the WOB relates to
an increase in both the static and dynamic torque until the
nominal bit-rock interaction is obtained (see [21] for details).

A simulation result of the reduced-order model with the
industrial controller is shown in Fig. 8. The controller is a
properly tuned active damping system (i.e. PI-control of the
angular velocity) which aims at damping the first torsional
mode of the drill-string dynamics. In the upper plot the
top drive velocity (ωtd) is shown along with the reference
velocity ωref that starts at a velocity of approximately 20
rpm and is gradually increased to the desired equilibrium
velocity, ωeq , of 50 rpm. From the bit response, in the
bottom plot, we can clearly recognize stick-slip oscillations.
The increasing amplitude of the oscillations in the top drive
velocity, demonstrates that these vibrations arise when the
WOB is increased (20 ≤ t < 40 s).

For the designed output-feedback controller, we immedi-
ately activate (at t = 0) the observer to obtain the state
estimate ξ̂; however, this estimate is not used by the industrial
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Fig. 9. Simulation result of the reduced-order model with the designed
output-feedback controller.

PI-controller that is used in the first 20 seconds (since this
controller only uses the top drive velocity as a measured
output). When the state-feedback controller is switched on
at t = 20, it uses the state estimate ξ̂, based on the surface
measurements ωtd and Tpipe only. Fig. 9 shows a simula-
tion result of the closed-loop system with output-feedback
controller, where we used the same initial conditions ξ0 as
for the previous simulation (Fig. 8). Furthermore, the initial
states for the observer ξ̂0 have a 10% offset from the initial
states ξ0. It can be seen that after some transient behavior,
the observer estimates converge to the actual states within
approximately 5 seconds. Moreover, the simulation results
show that the top drive and bit velocity converge to their
equilibrium value and stick-slip oscillations are avoided. The
equilibrium velocity of the bit ωbit,eq := Hxeq is slightly
higher than the equilibrium velocity of the top drive ωtd,eq =
ωeq = 50 rpm. This small mismatch is due to the reduction
as the outputs z and y of the reduced-order system slightly
differ from the original outputs z̄ and ȳ and the feedforward
is designed such that in equilibrium the top drive velocity of
the reduced-order model matches the desired velocity. The
lag between the desired velocity and the top drive velocity
between 25 and 45 s is because we designed a low-gain
controller aiming at stabilization of the desired equilibrium
instead of achieving a high bandwidth. Most importantly, it
can be concluded that the stick-slip vibrations are eliminated
with the designed controller.

V. CONCLUSIONS
In this work, an observer-based output-feedback control

strategy is proposed to eliminate torsional stick-slip vibra-
tions in drilling systems. Particular benefits of the proposed
approach with respect to existing ones are, firstly, the fact that
a realistic multi-modal model of the drill-string dynamics is
taken into account, secondly, that severe velocity weakening
in the bit-rock interaction is taken into account, thirdly, that
only surface measurements are employed and, finally, that
a guarantee for (local) asymptotic stability of the closed-
loop system is given for bit-rock interaction laws lying

within a certain sector (which is beneficial as the bit-rock
interaction is subject to uncertainty in practice). Simulation
results of applying the proposed controller to a realistic
drill-string model show that stick-slip oscillations can be
eliminated, while under the same conditions the existing
industrial controller is unable to do so.
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