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Abstract— The analysis of incremental stability properties
typically involves measuring the distance between any pair
of solutions of a given dynamical system, corresponding to
different initial conditions, at the same time instant. This
approach is not directly applicable for hybrid systems in
general. Indeed, hybrid systems generate solutions that are
defined with respect to hybrid times, which consist of both
the continuous time elapsed and the discrete time, that is the
number of jumps the solution has experienced. Two solutions
of a hybrid system do not a priori have the same time
domain, and we may therefore not be able to compare them
at the same hybrid time instant. To overcome this issue, we
invoke graphical closeness concepts. We present definitions
for incremental stability depending on whether incremental
asymptotic stability properties hold with respect to the hybrid
time, the continuous time, or the discrete time, respectively.
Examples are provided throughout the paper to illustrate these
definitions, and the relations between these three incremental
stability notions are investigated. The definitions are shown
to be consistent with those available in the literature for
continuous-time and discrete-time systems.

I. INTRODUCTION

In the literature, a dynamical system is said to be in-
crementally asymptotically stable when all its solutions are
asymptotically stable, see e.g., [1], [7], [18], [24], [25].
Loosely speaking, this means that: (i) the states of any
two solutions, whose initial conditions are ‘close’ to each
other, remain ‘close’ to each other for all positive time;
(ii) that the states of any two solutions converge towards
each other as time proceeds. Related stability notions are
those of convergent systems (e.g., [4], [15]) and contraction
(e.g., [5], [12]). In the current paper, the focus is on novel
definitions of incremental asymptotic stability for hybrid
systems in the formalism of [8], although we project that this
work will also support further developments on establishing
sufficient conditions for contraction and novel definitions of
convergence for hybrid systems.
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The majority of the literature on incremental stability
(and related stability notions) focuses on smooth dynamical
systems either in continuous time or in discrete time. Some
works addressing such stability properties for classes of non-
smooth systems can be found in [16], [17], [21], [22], [23],
[25]. Results on incremental stability for hybrid dynamical
systems are rare. An exception is the recent work in [11],
where incremental stability is studied for a class of hybrid
systems in the formalism of [8]. Results on convergence for
a class of measure differential inclusions can be found in [9].

The study of incremental stability involves comparing (the
distance between) two solutions associated with different
initial conditions at a certain time instant. The analysis of
incremental stability for hybrid systems in the formalism of
[8] is challenging for two reasons (both associated with the
hybrid nature of the dynamics). Firstly, in [8], solutions to
hybrid systems are defined for hybrid time instants, which are
the pairs consisting of the ordinary continuous time and of
the discrete time, which is the number of jumps experienced
by the solution so far. As any two solutions to the same
hybrid system do not necessarily have identical hybrid time
domains, we cannot directly use available definitions of in-
cremental stability for continuous- and discrete-time systems
for hybrid systems, as it is not a priori clear at which hybrid
time instants solutions should be compared. Secondly, earlier
works in [2], [6] (although in the scope of tracking control
and not in the scope of incremental stability) have shown that
the fact that close solutions may exhibit jumps at (close but)
distinct time instants implies that a conventional Euclidean
distance function is not suitable for generic hybrid systems
with state-triggered jumps. Both issues need to be addressed
carefully when proposing definitions for incremental stability
of hybrid systems.

The authors of [11] have presented a definition of in-
cremental stability in which solutions are compared at the
same continuous time instant, but possibly corresponding to
different discrete times. This can be justified in many ap-
plications, for example in mechanical systems with impacts,
where the number of jumps the solution has encountered is
typically irrelevant. It is assumed for this purpose that the
maximal solutions to the hybrid system (i.e. the solutions
that cannot be extended) have an unbounded domain in the
continuous time direction and that they cannot jump several
times instantaneously. Like in [1], an extended system is then
proposed and Lyapunov-based conditions are given.

In this paper, we present different definitions of incremen-
tal stability for hybrid systems compared to [11]. We start
by recalling the concept of ε-closeness of hybrid arcs (see
[8]), which provides a notion of closeness for two solutions

2015 IEEE 54th Annual Conference on Decision and Control (CDC)
December 15-18, 2015. Osaka, Japan

978-1-4799-7885-4/15/$31.00 ©2015 IEEE 5544



with possibly different time domains. We then propose a
definition of (pre-)incremental stability, which essentially
says that for any two (maximal) solutions, with ‘close’ initial
conditions, we have that their state evolutions and their time
domains remain ‘close’ for all time and converge to each
other when time progresses. Contrary to the definition of
ε-closeness of hybrid arcs, we use a generic mapping to
evaluate the distance between the states of the solutions, and
not necessarily the Euclidean distance. This is justified by the
fact that the latter may be restrictive in the context of incre-
mental stability as demonstrated in [24], [25] for continuous-
time systems and in [2] for hybrid systems. Moreover, it
has been shown in [24] that incremental stability is not
a coordinate-invariant property for continuous-time systems
when exclusively considering the Euclidean distance.

We also introduce the weaker notion of flow uniform
(pre-)incremental asymptotic stability to denote systems
which verify uniform incremental asymptotic stability prop-
erties with respect to the continuous time. The idea is similar
to Definition 3.1 in [19] and [11]. It consists of evaluating
the distance between two solutions at ‘close’ continuous
times, while tolerating an offset between the discrete times
at which the two solutions are compared. This definition
generalizes the one in [11], as it relaxes the assumption
on the maximal solutions mentioned above. Furthermore,
we use more generic mappings to evaluate the distance
between two solutions and we tolerate a mismatch between
the continuous times at which the solutions are compared,
which provides more flexibility. Additionally, we define the
symmetric notion of jump uniform (pre-)incremental asymp-
totic stability for hybrid systems which exhibit incremental
stability properties with respect to the discrete time. This
definition is relevant for systems for which the discrete time
is dominant.

Examples are provided throughout the paper to illustrate
the definitions. Moreover, the relations between the three def-
initions are investigated. We finally show that, if we embed
a uniformly incrementally asymptotically stable continuous-
time (respectively, discrete-time) system as a hybrid system,
it is uniformly incrementally asymptotically stable according
to our definitions, thereby showing the consistency of our
definitions with existing ‘classical’ ones. The proofs are
omitted for the sake of brevity.

II. PRELIMINARIES

Let R := (−∞,∞), R≥0 := [0,∞), Z :=
{. . . ,−2,−1, 0, 1, 2, . . .}, Z≥0 := {0, 1, 2, . . .}, Z>0 :=
{1, 2, . . .}. For (x, y) ∈ R

n+m, (x, y) stands for [xT, yT]T.
A function γ : R≥0 → R≥0 is of class K if it is continuous,
zero at zero and strictly increasing. A continuous function
γ : R2

≥0 −→ R≥0 is of class KL if for each t ∈ R≥0, γ(·, t)
is of class K, and, for each s ∈ R≥0, γ(s, ·) is decreasing
to zero. Let x ∈ R, ⌈x⌉ := min{a ∈ Z : x ≤ a}. For a
set-valued mapping F : Rn ⇉ R

m, the domain of F is the
set domF := {x ∈ R

n : F (x) 6= ∅}.
We study hybrid systems of the form [8]

ẋ ∈ F (x) x ∈ C, x+ ∈ G(x) x ∈ D, (1)

where x ∈ R
n is the state, F is the flow map, G is the

jump map, C is the flow set and D is the jump set. We
assume that system (1) satisfies the hybrid basic conditions
(see Assumption 6.5 in [8]), i.e. the following holds: (i) C
and D are closed subsets of Rn; (ii) F : Rn ⇉ R

n is outer
semicontinuous1 and locally bounded2 relative to C, C ⊂
domF , and F (x) is convex for each x ∈ C; (iii) G : Rn ⇉

R
n is outer semicontinuous and locally bounded relative to

D, and D ⊂ domG. These conditions ensure that system (1)
is well-posed, see Chapter 6 in [8] for more details.

We recall some definitions related to [8]. A subset E ⊂
R≥0×Z≥0 is a hybrid time domain if for all (T, J) ∈ E, E∩
([0, T ]× {0, . . . , J}) =

⋃

j∈{0,1,...,J−1}

([tj , tj+1], j) for some

finite sequence of times 0 = t0 ≤ t1 ≤ . . . ≤ tJ . A function
φ : E → R

n is a hybrid arc if E is a hybrid time domain
and if for each j ∈ Z≥0, t 7→ φ(t, j) is locally absolutely
continuous on Ij := {t : (t, j) ∈ E}. The hybrid arc φ :
domφ → R

n is a solution to (1) if: (i) φ(0, 0) ∈ C ∪ D;
(ii) for any j ∈ Z≥0, φ(t, j) ∈ C and d

dt
φ(t, j) ∈ F (φ(t, j))

for almost all t ∈ Ij ; (iii) for every (t, j) ∈ domφ such that
(t, j+1) ∈ domφ, φ(t, j) ∈ D and φ(t, j+1) ∈ G(φ(t, j)).
A solution φ to (1) is maximal if it cannot be extended, and
it is complete if domφ is unbounded. Note that a solution
may be maximal but not complete. For a solution φ to (1),
supt domφ := sup{t ∈ R≥0 : ∃j ∈ Z≥0 (t, j) ∈ domφ}
and supj domφ := sup{j ∈ Z≥0 : ∃t ∈ R≥0 (t, j) ∈
domφ}.

III. FROM GRAPHICAL CLOSENESS TO INCREMENTAL

ASYMPTOTIC STABILITY

To define incremental stability for hybrid systems, we need
to evaluate the distance between any two solutions of system
(1). A feature of this system is that two solutions do not
have the same hybrid time domain in general (examples are
provided below). As a consequence, we may not be able to
compare them at the same (hybrid) time instant. To avoid that
issue, we resort to graphical closeness concepts. In particular,
the definitions we propose below are inspired by the notion of
ε-closeness of hybrid arcs, see Definition 4.11 in [8], which
is related to the Hausdorff distance between the graphs of
the hybrid arcs and which we recall below.

Definition 1: Given ε > 0, two hybrid arcs φ1 and φ2 are
ε-close if:

(i) for all (t, j) ∈ domφ1 there exists s such that (s, j) ∈
domφ2, |t− s| < ε and |φ1(t, j)− φ2(s, j)| < ε.

(ii) for all (t, j) ∈ domφ2 there exists s such that (s, j) ∈
domφ1, |t− s| < ε and |φ2(t, j)− φ1(s, j)| < ε. �

In Definition 1, the hybrid arcs φ1 and φ2 are not com-
pared at the same hybrid time instant (t, j) but at (t, j) for
one and (s, j) for the other, with |t − s| < ε. In that way,
domφ1 and domφ2 do not need to be equal, they only need
to be ‘close’ enough so that for any (t, j) ∈ domφ1 there
exists an appropriate pair (s, j) ∈ domφ2 and vice-versa.

1The set-valued mapping F : Rn ⇉ R
n is outer semicontinuous if its

graph {(y, z) : y ∈ R
n, z ∈ F (y)} is closed, see Lemma 5.10 in [8].

2See Definition 5.14 in [8].
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Definition 1 may therefore be used to compare two solutions
to (1) at any time instant, even though these do not have same
hybrid time domain.

The distance between two hybrid arcs is evaluated using
the Euclidean distance in Definition 1, which may be restric-
tive in the context of incremental stability as discussed in
the introduction. Inspired by [20], we use a generic positive
function, which we denote δ, instead of the Euclidean dis-
tance, to compare the states of two hybrid solutions and we
will talk of incremental stability properties with respect to a
certain δ, which also allows for ‘output’ incremental stability
(as opposed to incremental stability for the full state). We
concentrate on mappings δ : R

2n → R≥0 which belong
to the set D of continuous mappings that verify for any
(x1, x2) ∈ R

2n: (i) δ(x1, x2) = δ(x2, x1); (ii) x1 = x2 ⇒
δ(x1, x2) = 0. The first condition means that δ is symmetric
and the second one states that δ vanishes when x1 = x2. In
that way, the functions in D are general enough to encompass
the metrics considered in [2], [24], [25] as particular cases
and to accommodate the features of hybrid systems for which
it may be restrictive to ask that δ(x1, x2) = 0 implies
x1 = x2. In this manner, we can consider distance functions
where the set {(x1, x2) : δ(x1, x2) = 0} is larger than the
diagonal {(x1, x2) : x1 = x2}, but still corresponds to a
behaviour that is desired in applications, see [2] for instance.

In view of Definition 1 and the discussion above, we
propose the following definition of incremental asymptotic
stability.

Definition 2: Given δ ∈ D, system (1) is uniformly pre-
incrementally asymptotically stable with respect to δ in
graphical sense (δ-UpIS) if the following conditions hold:
(i) for any ε > 0, there exists s > 0 such that for any pair of

maximal solutions (φ1, φ2) with δ(φ1(0, 0), φ2(0, 0)) <
s it holds that, for all (t, j) ∈ domφ1, there ex-
ists (t′, j) ∈ domφ2 with |t − t′| < ε such that
δ(φ1(t, j), φ2(t

′, j)) < ε;
(ii) for any ε > 0 and r > 0, there exists Θ ≥ 0 such

that for any pair of maximal solutions (φ1, φ2) with
δ(φ1(0, 0), φ2(0, 0)) < r it holds that, for all (t, j) ∈
domφ1 with t + j ≥ Θ, there exists (t′, j) ∈ domφ2

with |t− t′| < ε such that δ(φ1(t, j), φ2(t
′, j)) < ε.

System (1) is uniformly incrementally asymptotically stable
with respect to δ in graphical sense (δ-UIS) when it is δ-
UpIS and any maximal solution to (1) is complete. �

Item (i) of Definition 2 is a uniform global stability
property of all maximal solutions. It means that for any
ε > 0, there exists s > 0 such that any two maximal
solutions φ1 and φ2 are ε-close (in the distance function δ)
as long as δ(φ1(0, 0), φ2(0, 0)) < s. Item (ii) of Definition 2
is a uniform global attractivity property of all the maximal
solutions. It requires that for any ε, r > 0 there exists Θ > 0
such that any two maximal solutions φ1 and φ2 such that
δ(φ1(0, 0), φ2(0, 0)) < s are ε-close (in the distance function
δ) after a uniform amount of ‘time’ Θ. Notice that we do
not explicitly state symmetric statements as in Definition 1,
as items (i) and (ii) of Definition 2 hold for any pair of
maximal solutions.

Definition 2 not only requires the states of any two
solutions to remain close and to converge to each other, it
also requires their hybrid time domains to be close and to
converge to each other, which is a strong requirement as
confirmed by the proposition below.

Proposition 1: Consider system (1) and suppose it is δ-
UIS for a given δ ∈ D. Then, one of the following properties
holds: (i) domφ = R≥0 × {0} for any maximal solution φ;
(ii) domφ = {0} × Z≥0 for any maximal solution φ. �

Proposition 1 implies that, if system (1) is δ-UIS (whatever
δ ∈ D), it is either a purely continuous-time system or a
purely discrete-time system, which is clearly restrictive. In
the next sections, we present alternative definitions to char-
acterize hybrid systems which exhibit incremental stability
properties with respect to the continuous time, or the discrete
time, respectively.

IV. FLOW INCREMENTAL ASYMPTOTIC STABILITY

The definition below is relevant for systems for which
the continuous time is considered dominant over the discrete
(jump) time.

Definition 3: Given δ ∈ D, system (1) is flow uniformly
pre-incrementally asymptotically stable with respect to δ (δ-
FUpIS) if the following conditions hold:
(i) for any ε > 0, there exists s > 0 such that for any pair of

maximal solutions (φ1, φ2) with δ(φ1(0, 0), φ2(0, 0)) <
s it holds that, for all (t, j) ∈ domφ1, there ex-
ists (t′, j′) ∈ domφ2 with |t − t′| < ε such that
δ(φ1(t, j), φ2(t

′, j′)) < ε;
(ii) for any ε > 0 and r > 0, there exists T ≥ 0 such

that for any pair of maximal solutions (φ1, φ2) with
δ(φ1(0, 0), φ2(0, 0)) < r it holds that, for all (t, j) ∈
domφ1 with t ≥ T , there exists (t′, j′) ∈ domφ2 with
|t− t′| < ε such that δ(φ1(t, j), φ2(t

′, j′)) < ε.
System (1) is flow uniformly incrementally asymptotically
stable with respect to δ (δ-FUIS) when, in addition, any
maximal solution φ to (1) is such that supt domφ = ∞.
�

Item (i) of Definition 3 is a uniform global stability
property. It implies that any two solutions φ1 and φ2, which
are initialized close to each other (where δ is used to evaluate
the distance between the initial conditions) remain close to
each other at some close continuous times, while discarding
the numbers of jumps the solutions have experienced. It
also implies that supt domφ1 and supt domφ2 are ‘close’
(otherwise there may not exist (t′, j′) ∈ domφ2 such that
|t− t′| < ε in item (i) of Definition 3). Item (ii) is a uniform
global attractivity property of every solution, as the constant
T is the same for all maximal solutions φ1 and φ2 with
δ(φ1(0, 0), φ2(0, 0)) < r, given ε, r > 0. It can be noted
that the time mismatch t− t′ of the solutions in Definition 3
reminds of Zhukovsky stability for continuous-time systems,
see e.g., Chapter 8.4 in [10]. If δ is the Euclidean distance,
this small time mismatch t−t′ does not allow for the ‘peaking
phenomenon’ of the error δ(φ1(t, j), φ2(t, j

′)) to occur as
described in e.g., [2], [6], [9], [13]. Still, systems exhibiting
the peaking phenomenon can be FU(p)IS in another δ.
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Loosely speaking, Definition 3 consists of projecting the
state trajectories on the hyperplane (t, x) and evaluating the
distance between two solutions on this hyperplane.

Remark 1: Definition 3 differs from the definitions in
[11] on several points. First, a solution may experience
two consecutive jumps (see Example 1 for instance) and
the maximal solutions to system (1) are not required to
be complete in the t-direction in the definition of δ-FUpIS,
which relaxes Assumption 3.1 in [11]. Second, the solutions
φ1 and φ2 in Definition 3 are not compared at the same
continuous time t but at two (potentially) distinct times t
and t′ with |t − t′| < ε, which provides more flexibility.
Third, the function δ is not constrained to be the Euclidean
distance. �

We derive from Definition 3 that, when there exists a pair
of maximal solutions φ1 and φ2 with supt domφ1 = ∞
and supt domφ2 < ∞, the system can never be δ-FUpIS
for any δ ∈ D, as item (i) of Definition 3 can never be
satisfied. Hence, either all maximal solutions should have
an unbounded domain in the t-direction or all should have
a bounded one for the system to be δ-FUpIS. In the first
case, δ-FUpIS would immediately become δ-FUIS. We also
remark that when supt domφ < T ′ < ∞ for all maximal
solutions φ to (1), with T ′ > 0, then item (ii) of Definition
3 trivially holds by taking T = T ′.

A simple example of a δ-FUIS hybrid system is provided
below.

Example 1: [A δ-FUIS system] Consider the system
(

ẋ
σ̇

)

∈

(

−x
[0, ρ]

)

(x, σ) ∈ C
(

x+

σ+

)

=

(

min{x, 1}
σ − 1

)

(x, σ) ∈ D,

(2)

where C = {(x, σ) : x ∈ [0, 1] and σ ∈ [0, N ]}, D =
{(x, σ) : x ∈ [1,∞) and σ ∈ [1, N ]}, ρ > 0 and N ∈ Z>0.
The σ-subsystem is an average dwell-time automaton (see
[3], [6]) which is used to rule out solutions which jump
infinitely many times when x = 1. The parameters ρ and
N are arbitrarily selected. Hence, any maximal solution has
an unbounded domain in the continuous time direction. It
can be noted that the (maximal) solutions to (2) do not a
priori have the same hybrid time domain. Take for instance
φ1 : (t, 0) 7→ (e−tx1(0, 0), 0) with x1(0, 0) ∈ [0, 1) and
φ2(0, 0) = (2, 1) and φ2(t, 1) = (e−t, 0) for t ≥ 0. We have
domφ1 = R≥0×{0} 6= ({0}×{0})∪(R≥0×{1}) = domφ2.

Let φ = (x, σ) be a maximal solution to (2). For any
(t, j) ∈ domφ with t > 0,

x(t, j) = e−t min{x(0, 0), 1}. (3)

We are going to use this expression to prove that system (2)
is δ-FUIS where δ : R4 → R and δ : (x1, σ1, x2, σ2) 7→
|x1 − x2|. We first verify that item (i) of Definition 3 holds.
Let ε > 0, s = ε and φ1 = (x1, σ1), φ2 = (x2, σ2) be two
maximal solutions to (2) such that δ(φ1(0, 0), φ2(0, 0)) =
|x1(0, 0)− x2(0, 0)| < s. Let (t, j) ∈ domφ1. When t = 0,

• if x1(0, j) = x1(0, 0) so j = 0 or x1(0, 0) ∈ [0, 1],
and in both cases |x1(0, j) − x2(0, 0)| = |x1(0, 0) −
x2(0, 0)| < s = ε;

• if x1(0, j) 6= x1(0, 0), necessarily x1(0, j) = 1,
j ≥ 1 and x1(0, 0) > 1. If x2(0, 0) > 1, (0, 1) ∈
domφ2, x2(0, 1) = 1 and |x1(0, j) − x2(0, 1)| = 0.
If x2(0, 0) ≤ 1, |x1(0, j) − x2(0, 0)| = x1(0, j) −
x2(0, 0) < |x1(0, 0)− x2(0, 0)| < s = ε.

When t > 0, in view of (3) and the observation that maximal
solutions to (2) have hybrid time domains that are unbounded
in t-direction, for any (t, j) ∈ domφ1 with t > 0, there
exists j′ ∈ Z≥0 such that (t, j′) ∈ domφ2 and |x1(t, j) −
x2(t, j

′)| = e−t|min{x1(0, 0), 1} −min{x2(0, 0), 1}|. Not-
ing that |min{x1(0, 0), 1}−min{x2(0, 0), 1}| ≤ |x1(0, 0)−
x2(0, 0)|, we have |x1(t, j) − x2(t, j

′)| ≤ e−t|x1(0, 0) −
x2(0, 0)| < s = ε. Hence item (i) of Definition 3 is verified.
Note that t′ = t here.

Let ε, r > 0 and φ1, φ2 be two maximal solutions to (2)
such that δ(φ1(0, 0), φ2(0, 0)) = |x1(0, 0) − x2(0, 0)| < r.
For all (t, j) ∈ domφ1 with t ≥ T and T > max{0, ln( r

ε
)},

there exists j′ ∈ Z≥0 with (t, j′) ∈ domφ2 and |x1(t, j) −
x2(t, j

′)| = e−t|min{x1(0, 0), 1} − min{x2(0, 0), 1}| ≤
e−T r < ε. Item (ii) of Definition 3 is guaranteed with t′ = t.
We have proved that system (2) is δ-FUIS. �

V. JUMP INCREMENTAL ASYMPTOTIC STABILITY

Similar to flow incremental asymptotic stability, we define
below the symmetric notion of jump incremental asymptotic
stability.

Definition 4: Given δ ∈ D, system (1) is jump uniformly
pre-incrementally asymptotically stable with respect to δ (δ-
JUpIS) if the following conditions hold:

(i) for any ε > 0, there exists s > 0 such that for any pair of
maximal solutions (φ1, φ2) with δ(φ1(0, 0), φ2(0, 0)) <
s it holds that, for all (t, j) ∈ domφ1, there exists
(t′, j) ∈ domφ2 such that δ(φ1(t, j), φ2(t

′, j)) < ε;
(ii) for any ε > 0 and r > 0, there exists J ≥ 0 such

that for any pair of maximal solutions (φ1, φ2) with
δ(φ1(0, 0), φ2(0, 0)) < r it holds that, for all (t, j) ∈
domφ1 with j ≥ J , there exists (t′, j) ∈ domφ2 such
that δ(φ1(t, j), φ2(t

′, j)) < ε.

System (1) is jump uniformly incrementally asymptotically
stable with respect to δ (δ-JUIS) when, in addition, any
maximal solution φ to (1) is such that supj domφ = ∞.
�

In item (i) of Definition 4, the distance between two
solutions is evaluated at the discrete time j, without imposing
any conditions on the continuous times by opposition to
Definition 3. It has to be noted that the solutions φ1 and
φ2 in items (i) and (ii) of Definition 4 are evaluated at the
same discrete time j, and not at j and j′, respectively, with
|j − j′| < ε as we might expect. That is justified by the fact
that when ε < 1, |j − j′| < ε implies that j = j′ since
j, j′ ∈ Z≥0. Since the satisfaction of items (i) and (ii) of
Definition 4 for any ε ∈ (0, 1) implies its satisfaction for
any ε ≥ 1, there is no loss of generality in evaluating φ1

and φ2 at the same discrete time j. We emphasize again that
item (ii) of Definition 4 is a uniform attractivity property, as
the constant J is the same for all maximal solutions φ1 and
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φ2 with δ(φ1(0, 0), φ2(0, 0)) < r, given ε, r > 0. Compared
to Definition 3, Definition 4 somehow consists of projecting
the state trajectories on the hyperplane (j, x) (and not (t, x))
and evaluating the distance between two solutions on this
hyperplane.

Similar observations as for Definition 3 can be made.
For instance, when there exists a pair of maximal solutions
(φ1, φ2) with supj domφ1 = ∞ and supj domφ2 < ∞, the
system can never be δ-JUpIS for any δ ∈ D, which implies
that all maximal solutions either have an unbounded domain
in the j-direction or a bounded one for the system to be δ-
JUpIS. An example of a hybrid system which is JUIS with
respect to the Euclidean distance is provided below.

Example 2 (A δ-JUIS system): Consider the system

ẋ = −1 x ∈ [1,∞), x+ = 1
2x x ∈ [0, 1]. (4)

We note that any maximal solution has an unbounded domain
in the discrete time direction, as they all reach in finite
continuous time the set D = [0, 1] and then they jump
infinitely many times. We take δ to be the Euclidean distance.
Let ε > 0, s = ε and φ1, φ2 be two maximal solutions to
(4) such that δ(φ1(0, 0), φ2(0, 0)) < s. We distinguish four
cases to study item (i) in Definition 4.
Case 1: (φ1(0, 0), φ2(0, 0)) ∈ D2.
We have that domφ1 = domφ2 = {0} × Z≥0. Let (0, j) ∈
{0} × Z≥0, then δ(φ1(0, j), φ2(0, j)) = 1

2j |φ1(0, 0) −
φ2(0, 0)| < s = ε.
Case 2: (φ1(0, 0), φ2(0, 0)) ∈ C2.
We have domφi = ([0, φi(0, 0)− 1]× {0}) ∪
({φi(0, 0)− 1} × Z>0) for i ∈ {1, 2}. Consider
(t, 0) ∈ domφ1. If (t, 0) ∈ domφ2, then
δ(φ1(t, 0), φ2(t, 0)) = |φ1(0, 0)−t−(φ2(0, 0)−t)| < s = ε.
If (t, 0) /∈ domφ2, that means that t > φ2(0, 0) − 1,
but t ≤ φ1(0, 0) − 1, therefore φ2(0, 0) < φ1(0, 0).
If φ1(t, 0) > φ2(0, 0), then |φ1(t, 0) − φ2(0, 0)| =
φ1(t, 0) − φ2(0, 0) ≤ φ1(0, 0) − φ2(0, 0) < s = ε.
Finally, if φ1(t, 0) ≤ φ2(0, 0), by continuity of φ2(·, 0) on
[0, φ2(0, 0) − 1), there exists (t′, 0) ∈ domφ2 such that
φ1(t, 0) = φ2(t

′, 0) and δ(φ1(t, 0), φ2(t
′, 0)) = 0. Let j > 0

and (t, j) ∈ domφ1, then we observe φ1(t, j) =
1
2j . There

exists (t′, j) ∈ domφ2 such that φ2(t
′, j) = 1

2j . Hence,
δ(φ1(t, j), φ2(t

′, j)) = 0.
Case 3: (φ1(0, 0), φ2(0, 0)) ∈ D × C.
Let (t, j) ∈ domφ1. If j = 0, necessarily (t, j) = (0, 0) and
the desired result holds. If j > 0, φ1(0, j) =

1
2j φ1(0, 0) and

there exists (t′, j) ∈ domφ2 such that φ2(t
′, j) = 1

2j . Hence,
δ(φ1(0, j), φ2(t

′, j)) = 1
2j (1 − φ1(0, 0)) ≤ 1

2j (φ2(0, 0) −
φ1(0, 0)) < s = ε.
Case 4: (φ1(0, 0), φ2(0, 0)) ∈ C ×D.
Let (t, j) ∈ domφ1. If j = 0, φ1(t, 0) = φ1(0, 0) − t for
(t, 0) ∈ domφ1. Hence |φ1(t, 0)−φ2(0, 0)| = φ1(0, 0)− t−
φ2(0, 0) ≤ φ1(0, 0)− φ2(0, 0) < s = ε. If j > 0, φ1(t, j) =
1
2j and φ2(0, j) =

1
2j φ2(0, 0). Hence, δ(φ1(t, j), φ2(0, j)) <

s = ε in view of the arguments at the end of Case 3. We
have proved that item (i) of Definition 4 holds.

We now study item (ii) of Definition 4. Let ε, r >
0 and φ1, φ2 be two maximal solutions to (4) with

δ(φ1(0, 0), φ2(0, 0)) < r. For any j > 0, it holds that
φi(t, j) = 1

2j min{φi(0, 0), 1} for (t, j) ∈ domφi, i ∈
{1, 2}. Hence, for any (t, j) ∈ domφ1 with j > 0, there
exists (t′, j) ∈ domφ2 such that δ(φ1(t, j), φ2(t

′, j)) =
1
2j |min{φ1(0, 0), 1} − min{φ2(0, 0), 1}| ≤ 1

2j |φ1(0, 0) −
φ2(0, 0)| <

1
2j r. We obtain the desired result by selecting

J = ⌈
ln( r

ε
)

ln(2) ⌉. As a conclusion, we have shown that system
(4) is JUIS with respect to the Euclidean distance. �

VI. RELATIONS BETWEEN THE DEFINITIONS

A system which is δ-FU(p)IS is not necessarily δ-JU(p)IS
and vice versa, as demonstrated by the following examples.

Example 3 (δ-FUIS but not δ-JUpIS): System (2) has
been shown to be δ-FUIS with δ : (x1, σ1, x2, σ2) 7→
|x1 − x2|. Nonetheless, it cannot be δ-JUpIS as some
maximal solutions have an unbounded domain in the
j-direction (consider those for which σ̇ = ρ

2 for instance)
and some have a bounded domain in this direction (when σ
remains constant on flows). As a consequence, item (i) of
Definition 4 does not hold. �

Example 4 (δ-JUIS but not δ-FUpIS): Consider system
(4) and suppose, in order to attain a contradiction, that
it is FUpIS with respect to the Euclidean distance. As
a consequence, for r > 1 and ε ∈ (0, r

2 ), there exists
T ≥ 0 such that the statement in item (ii) of Definition
3 holds. Let φ1 and φ2 be two maximal solutions
with φ1(0, 0) = (α + 1

2 )r and φ2(0, 0) = αr where
α > 1 is a parameter we are free to select. We see that
|φ1(0, 0) − φ2(0, 0)| = r

2 < r. Moreover, since αr > 1,
domφi = ([0, φi(0, 0)− 1]× {0})∪({φi(0, 0)− 1} × Z>0)
for i ∈ {1, 2}. We select α sufficiently large such
that φ1(0, 0) − 1 = (α + 1

2 )r − 1 ≥ T . Let
t = φ1(0, 0)− 1 and j ∈ Z≥0 be such that (t, j) ∈ domφ1.
According to item (ii) of Definition 3, there exists
(t′, j′) ∈ domφ2 such that |t − t′| < ε. Note that
t′ ≤ φ2(0, 0) − 1 by definition of domφ2. Consequently,
|t− t′| = φ1(0, 0)− 1− t′ ≥ φ1(0, 0)−φ2(0, 0). We deduce
that r

2 = φ1(0, 0)− φ2(0, 0) ≤ |t− t′| < ε. This contradicts
the fact that ε ∈ (0, r

2 ). As a consequence, system (8) is not
FUpIS with respect to the Euclidean distance, although it is
JUIS with respect to this distance. �

On the other hand, a system can be both δ-FU(p)IS and
δ-JU(p)IS; examples are mentioned in Section VII.

The proposition below shows the connections between
Definition 2 and Definitions 3-4.

Proposition 2: Let δ ∈ D. The following statements hold.
(i) If system (1) is δ-UpIS, then it is both δ-FUpIS and

δ-JUpIS.
(ii) If system (1) is δ-UIS, then it is either δ-FUIS or δ-

JUIS.
(iii) If system (1) is both δ-FUpIS and δ-JUpIS, it is not

necessarily δ-UpIS. �

Item (iii) of Proposition 2 is due to the fact that the hybrid
time domains of the solutions play a very important role for
δ-UIS. Indeed, a system may very well be both δ-FUpIS
and δ-JUpIS, and not δ-UpIS (for some δ ∈ D), because
two (maximal) solutions, which have close initial conditions
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δ-FUIS ⇒ δ-FUpIS ; δ-JUpIS
δ-JUIS ⇒ δ-JUpIS ; δ-FUpIS

δ-UIS ⇒ δ-UpIS ⇒
: δ-FUpIS and δ-JUpIS

δ-UIS ⇒ δ-FUIS or δ-JUIS

Fig. 1. Relations between Definitions 2, 3, and 4.

according to the distance δ do not have ‘close’ hybrid time
domains. A summary of the relations between Definitions 2,
3, and 4 is provided in Figure 1.

VII. CONSISTENCY WITH DEFINITIONS FOR

CONTINUOUS-TIME AND DISCRETE-TIME SYSTEMS

The proposition below shows that the proposed definitions
are consistent with the definitions of incremental stability
available in the literature for continuous-time systems.

Proposition 3: Consider the continuous-time system ẋ ∈
f(x), where x ∈ R

n, and f : R
n ⇉ R

n is outer
semicontinuous and locally bounded on R

n, and f(x) is
convex for each x ∈ R

n. Suppose that any maximal solution
is complete and that there exist δ ∈ D and β ∈ KL such
that any pair of maximal solutions (x1, x2) verifies for all
t ≥ 0, δ(x1(t), x2(t)) ≤ β(δ(x1(0), x2(0)), t). Then, hybrid
system (1) with F (x) = f(x), C = R

n, G(x) = {x} and
D = ∅, for x ∈ R

n, is δ-FUIS and δ-UIS. �

Proposition 3 states that if a continuous-time system
is uniformly incrementally asymptotically stable, then this
property is preserved when this system is embedded as
a hybrid system of the form (1). Note that the choice
of G in Proposition 3 has no impact on the result. The
following proposition states an equivalent result for discrete-
time systems. Incremental stability of discrete-time systems
is investigated in e.g., [12], [14].

Proposition 4: Consider the discrete-time system x+ ∈
g(x), where x ∈ R

n, g : Rn ⇉ R
n is outer semicontinuous

and locally bounded on R
n, and nonempty for all x ∈ R

n.
Suppose that this system is incrementally asymptotically
stable with respect to δ ∈ D, in the sense that there exists
β ∈ KL such that for any pair of maximal solutions (x1, x2)
and k ∈ Z≥0, δ(x1(k), x2(k)) ≤ β(δ(x1(0), x2(0)), k).
Then, hybrid system (1) with F (x) = {x} , C = ∅,
G(x) = g(x) and D = R

n, for x ∈ R
n, is δ-JUIS and

δ-UIS. �

VIII. CONCLUSION

We have proposed a definition of incremental stability for
hybrid systems based on the notion of ε-closeness of hybrid
arcs. This definition was proved to be rather restrictive, as
it only covers the case of purely continuous-time or purely
discrete-time systems (when all the maximal solutions to
the system are complete). This motivated us to pursue two
alternative definitions, which are relevant in situations where
either the continuous time is dominant and the number of
jumps the solutions have encountered is irrelevant, or the
opposite, where the number of jumps of the solutions is
dominant and the amount of time the solutions have flowed
is not important. The relations between these definitions

have been investigated and we have shown that the proposed
definitions are consistent with those existing in the literature
for purely continuous-time and discrete-time systems.
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