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Abstract— We present stability criteria for equilibria of a
class of linear complementarity systems, subjected to discrete
and distributed delay. We present necessary and sufficient
conditions for local exponential stability, inferred from the
spectrum location of a corresponding system of delay differ-
ential algebraic equations. Subsequently, we obtain sufficient
LMI based conditions for global exponential stability using
Lyapunov-Krasovskii functionals.

I. INTRODUCTION

In this paper, we study the stability properties of dynamical
systems of which the dynamics are subject to delays and
complementarity relationships.

On the one hand, delay systems have been widely studied
and examples naturally arise in engineering, biology and
control theory [7], [14], [15]. On the other hand, comple-
mentarity systems, being dynamical systems subject to com-
plementarity conditions, have been used a.o. to model non-
smooth mechanical systems [2], classes of hybrid systems
[9] and power electronics converters [16]. However, systems
with dynamics affected by both delays and complementarity
conditions have been far less studied; these systems will be
called delay complementarity systems in this paper.

Nevertheless, such systems also arise in a variety of
applications, thereby motivating the further study of the
stability properties of these systems. Firstly, delay com-
plementarity models for directional drilling systems have
recently been proposed in [10], [12]. Directional drilling
models [5] describe the directional tendency of deep drilling
systems used to generate complex curved boreholes in order
to reach hard-to-access resources in the earth’s crust. Delays
appear in these models due to the fact that the deformed
drill-string (inducing a directional tendency of the drilling
bit) has to fit into a borehole generated in the recent past.
Moreover, complementarity relations appear due to the non-
smooth mechanics of the unilateral contact between the drill-
string and bit on the one hand and the borehole on the other.
The stability analysis pursued in the current paper is essential
to understand an instability phenomenon called borehole
spiraling in such systems and to support controller design
avoiding such instabilities. Another application in which

B. Biemond is with the Optomechatronics Department, the
Netherlands Organization for Applied Scientific Research TNO TNO,
jjbbiemond@gmail.com

W. Michiels is with the Department of Computer Science, KU Leuven,
Belgium, Wim.Michiels@cs.kuleuven.be

N. van de Wouw is with the Department of Mechanical
Engineering, Eindhoven University of Technology, the Netherlands,
N.v.d.Wouw@tue.nl. N. van de Wouw is also with the Delft Center
for Systems and Control, Delft University of Technology, the Netherlands,
and the Department of Civil, Environmental and Geo-engineering,
University of Minnesota, U.S.A.

delays and complementarity may appear is that of robotic
teleoperation [11] in which delays are induced by networked
communication between the robots and the unilateral contact
between the robots and their environment can (in case of hard
contacts) be described by complementarity relations.

The main contribution of this paper is the development
of tools for (both the local and global) stability analysis of
equilibria for a class of linear delay complementarity systems
defined in more detail in the next section.

The structure of the paper is as follows. After introducing
some notations, we introduce the considered class of delay
complementarity systems and state the main assumptions in
Section II, which induce the presence of a unique equi-
librium. In Section III, we analyze local stability of this
equilibrium, and in Section IV we propose conditions for the
global stability. Finally, we illustrate the obtained stability
criteria in Section V by means of an example.

Notations. Given a, b ∈ Rn, let a ⊥ b denote aT b = 0 and
ai, for all i ∈ {1, 2, . . . n}, denote the i-th element of the
state a and a > 0 denotes ai > 0 for i = 1, 2, . . . , n. For
x1 ∈ Rn1 , x2 ∈ Rn2 , . . . , xs ∈ Rns , we denote the con-
catenated vector

(
xT1 xT2 · · · xTs

)T
as (x1, x2, . . . , xs).

Given m,n ∈ N>0, let Omn denote the zero matrix with
dimension m×n, In the n-dimensional identity matrix, and
let the ek, with k ∈ N>0, denote the k-th column of the
identity matrix. For M ∈ Rm×m and x ∈ R, we use He(M)
to denote M +MT , ‖x‖2M for xTMx and write M � 0 and
M � 0 if ‖x‖2M is positive or non-negative for all x 6= 0,
respectively.

II. THE CLASS OF DELAY COMPLEMENTARITY SYSTEMS

We are interested in the stability properties of delay
complementarity systems whose dynamics are described by

ẋ(t) =A0x(t) +A1x(t− τ) +A2

∫ t

t−τ
x(s)ds

+B2d+B3λ(t), (1a)

y(t) = C0x(t) + C1x(t− τ) + C2

∫ t

t−τ
x(s)ds

+D2d+D3λ(t), (1b)
0 ≤ λ(t) ⊥ y(t) ≥ 0, (1c)

with x ∈ Rn the (instantaneous) state of the system, d ∈ Rs
a constant disturbance, λ ∈ R` forcing terms, associated with
the complementarity constraints, and the variable ẋ denoting
the right-sided derivative with respect to t. The dynamics
of (1) are nonlinear due to the complementarity constraints
(1c). These constraints mean that for each i ∈ {1, . . . , `}
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and for each time-instant t, we have λi(t) ≥ 0, yi(t) ≥ 0
and yi(t)λi(t) = 0. It should be pointed out that as long as
for each i ∈ {1, . . . , `}, we either have yi(t) > 0 (a strictly
open constraint) or λi(t) > 0 (a strictly closed constraint),
Equations (1) are equivalent to (1a), supplemented with
for each i ∈ {1, . . . , `} either λi(t) = 0 or yi(t) = 0,
with yi defined by (1b). The latter correspond to a system
described by delay differential algebraic equations (DDAEs),
also called a descriptor system with delay. Note, however,
that along the trajectories constraints may open or close.

The initial condition of system (1) is given by an abso-
lutely continuous function Φ on [−τ, 0] such that x(s) =
Φ(s) for s ∈ [−τ, 0]. Given a solution x(t) to (1), for every
t ∈ R≥0, we introduce the function xt : [−τ, 0]→ Rn such
that xt(s) = x(t+ s) for every s ∈ [−τ, 0].

In order to have a unique solution λ(t) to (1c) for all initial
functions xt(0), we adopt the following assumption:

Assumption 1. Matrix D3 is a P-matrix, i.e., every principal
minor is strictly positive (see [3]).

Equations (1) can be compactly written as

ẋ = A(xt) +B3λ, (2a)
0 ≤ λ(t) ⊥ E(xt) +D3λ(t) ≥ 0, (2b)

where we introduce the functionals A(xt) = A0xt(0) +

A1xt(−τ)+A2

∫ 0

s=−τ xt(s)ds+B2d and E(xt) = C0xt(0)+

C1xt(−τ) +C2

∫ 0

s=−τ xt(s)ds+D2d. The vectors B2d and
D2d imply that the complementarity part of this equation
is a generalised linear complementarity system (generalized
LCS), cf. [3]. The isolated and distributed delay terms in this
expression introduce additional complexity.

Assumption 1 implies that for all E ∈ R` and all d, there
exists a unique λ that is a solution to 0 ≤ λ ⊥ E+D3λ ≥ 0,
cf. (2b), which we denote by λ = SOL(E , D3), and that is
a piecewise linear function in E , cf. [4, Proposition 1.4.6].
Hence, (2) allows the equivalent description as functional
differential equation:

ẋt(0) = A(xt) +B3SOL(E(xt), D3), (3)

where we define

ẋt(s) := lim
h↓0

xt(s+h)−xt(s)
h , s ∈ [−τ, 0).

We can directly observe from (2) that the system has
equilibrium position xe characterised by:

0 = (A0 +A1 + τA2)xe +B2d+B3λe, (4a)
0 ≤ λe ⊥ βe ≥ 0, (4b)

where, for notational convenience, we introduce βe = (C0 +
C1 + τC2)xe +D2d+D3λe.

In the following sections, we investigate the stability of
this equilibrium point (for stability notions for functional
differential equations we refer to [7], [8]). For this purpose,
we introduce x̃ = x − xe and λ̃ = λ − λe and observe that

(2) is equivalent to

˙̃x = A0x̃(t) +A1x̃(t− τ) +A2

∫ t

t−τ
x̃(s)ds+B3λ̃, (5a)

0 ≤ λ̃+ λe ⊥ βe + C0x̃(t) + C1x̃(t− τ)

+ C2

∫ t

t−τ
x̃(s)ds+D3λ̃ ≥ 0. (5b)

For each t, we define x̃t : [−τ, 0] → Rn such that x̃t(s) =
xt(s) − xe for s ∈ [−τ, 0] and observe that this implies
x̃(t + s) = x̃t(s) for all s ∈ [−τ, 0). In addition, we define
the constant function x̄e : [−τ, 0]→ Rn as x̄e(s) ≡ xe.

III. LOCAL STABILITY ANALYSIS

In many cases, for each k ∈ {1, . . . , `} (recall that ` is
the dimension of λ, i.e., the number of constraints), we have
that either eTk βe or eTk λe are non-zero, i.e., at the equilibrium
position xe, each complementarity constraint is either strictly
open, or strictly closed (closed with a nonzero constraint
force), respectively. (This condition holds generically when
d 6= 0.) In such cases, the local stability properties of the
equilibrium point can be analysed using a spectral approach.

To do so, we introduce the ` × `-dimensional diagonal
matrix Ec with Eckk = 1 if eTk βe = 0 and Eckk = 0
otherwise. We then find that the local dynamics near the
equilibrium point xe of (2) is determined by a descriptor
system, described by the DDAE governed by (5a) and

0 =

(
Ec O``
O`` I` − Ec

)
(
C0x̃(t) + C1x̃(t− τ) + C2

∫ t
t−τ x̃(s)ds+D3λ̃

λ̃

)
,

(6)

where we exploited (4) and the definition of the matrix Ec

to infer Ecβe = 0 and (I` − Ec)λe = 0.
After removing the zero rows in (6), the resulting DDAE

has index one (a semi-explicit equation), inferred from
Assumption 1, and it satisfies the assumptions made in [13].
Accordingly, the behaviour of solutions near the equilibrium
point of (2) and (6) and the local stability properties can
be characterised by the location of the spectrum, providing
necessary and sufficient stability conditions. In particular the
equilibrium is locally exponentially stable if and only if all
characteristic roots are located in the open left half complex
plane. The latter can be obtained by solving the nonlinear
eigenvalue problem in (µ, v),−µ

 I 0
0 0
0 0

+

 A0 B3

ÊcC0 ÊcD3

0 F̂ c


+

 A1 0

ÊcC1 0
0 0

 e−µτ +

 A2 0

ÊcC2 0
0 0

 1−e−µτ
µ

 v = 0,

(7)
where Êc, respectively F̂ c, are obtained by removing the

zero rows in Ec, respectively I`−Ec. A dedicated approach
for computing all eigenvalues in a prescribed right half plane
is outlined in Section 4 of article [13], which is accompanied
by publicly available software.

As this DDAE-approach ignores constraints that are non-
active at the equilibrium point, only local stability results
can be attained. In the following section, sufficient stability
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conditions are given in terms of Lyapunov functionals. While
this approach yields only sufficient conditions for stability,
global results can be attained. In addition, also equilibrium
positions xe can be studied for which not all constraints are
either strictly open, or closed with a nonzero constraint force.

IV. LYAPUNOV-KRASOVSKII FUNCTIONAL ANALYSIS

Global asymptotic stability of the equilibrium xe of the
system (2), and, equivalently, of the origin for the system (5),
can be verified by the existence of a Lyapunov-Krasovskii
functional V as specified the following lemma, that can
be found e.g. in [8, Theorem 3.2 and Corollary 3.1]. To
formulate the lemma, for given continuous functional V
and solution x̃t to the delay complementarity system (5),
we define V̇ (x̃t) = limh↘0

1
h (V (x̃t+h) − V (x̃t)), and use

the notation ‖ · ‖s for the supremum norm, i.e., ‖φ‖s =
sups∈[−τ,0] ‖φ(s)‖2.

Lemma 1. The origin of (5) is globally asymptotically stable
if there exist a continuous functional V , nonnegative and
radially unbounded functions a and c, and a positive definite
function b such that a) c(‖x̃t‖s) ≥ V (x̃t) ≥ a(‖x̃t(0)‖) for
all xt and b) the functional V (x̃t), when evaluated along
solutions to (2), satisfies V̇ (x̃t) ≤ −b(‖x̃t(0)‖).

A. Design of the Lyapunov-Krasovskii functional

Following [3], we observe that the variable λ̃, when eval-
uated along a solution, becomes a function λ̃(t) for which
the right-derivative exists almost everywhere, and given (5),
this right-sided derivative depends only on the instantaneous
state x̃t. We denote this right limit as λ̃′ and define the map
SOLT(x̃t) : AC([−τ, 0],Rn) 7→ R` × R` such that

SOLT(x̃t) ≡
(

SOL(E(x̃t + xe), D3)− λe
λ̃′(x̃t)

)
. (8)

With GrSOLT denoting the graph of this function, we will
now provide conditions that guarantee that there exists a
Lyapunov-Krasovskii functional V such that V̇ (x̃t) < 0 for
all (x̃t, λ̃, λ̃

′) ∈ GrSOLT. We apply the S-procedure to attain
LMI conditions that guarantee these properties.

In [3], in the context of delay-free complementarity
systems, a Lyapunov function is proposed that is a quadratic
term of the concatenation of x(t) and SOL(E(x(t)), D3), i.e.

VC(x(t)) =

(
x(t)

SOL(E(x(t)), D3)

)T (
P Q
QT R

)
(

x(t)
SOL(E(x(t)), D3)

)
,

such that a piecewise quadratic Lyapunov function in x is
attained. Inspired by this approach and in pursuit of the
extension to delay complementarity systems, we define

V0(x̃t) =

(
x̃t(0)

λ̃(x̃t)

)T (
P Q
QT R

)(
x̃t(0)

λ̃(x̃t),

)
with λ̃(xt) = SOL(E(x̃t+xe, D3))−λe. Similar to [1], we

then design the continuous Lyapunov-Krasovskii functional

as follows,

V (x̃t) = V0(x̃t) +
∫ 0

−τ x̃
T
t (s)S1x̃t(s)ds

+
∫ 0

−τ
∫ 0

θ
x̃Tt (s)S2x̃t(s)dsdθ +

∫ 0

−τ
˙̃xt(s)

TS3
˙̃xt(s)ds

+
∫ 0

−τ
∫ 0

θ
˙̃xt(s)

TS4
˙̃xt(s)dsdθ,

(9)
where P, S1, S2, S3, S4 ∈ Rn×n and R ∈ R`×` are sym-
metric matrices, Q ∈ Rn×` and S1, S2, S3, S4 � 0. Further
conditions on P,Q and R to ensure positive definiteness are
discussed in Section IV-C. The used integral terms in x̃t
and ˙̃xt in (9) have originally been designed for linear delay
system analysis without complementarity, see e.g. [6].

B. Evaluation of Lyapunov-Krasovskii functional along so-
lutions

To pursue sufficient conditions for global exponential
stability of the equilibrium point xe for (2), we now present
sufficient conditions for item b) of Lemma 1, i.e. for
V̇ (x̃t) ≤ −b(‖x̃t(0)‖) with b a positive definite function,
holding for almost all t when x̃t satisfies (5). For nota-
tional convenience, given x̃t, we introduce the vector ζ =(
x̃(t), ˙̃x(t), ˙̃x(t− τ), λ̃(t), λ̃′(t), 1

)
.

Lemma 2. Let b1 ∈ R>0. The Lyapunov-Krasovskii func-
tional V (x̃t) in (9) satisfies, along the solutions of the
complementarity system (2),

V̇ (x̃t) + b1V0(x̃t) =ζTΦζ −
∫ t

t−τ

˙̃xT (s)dsS1

∫ t

t−τ

˙̃x(s)ds

+2x̃T (s)S1

∫ t

t−τ

˙̃x(s)ds−
∫ t

t−τ
x̃T (s)S2x̃(s)ds

−
∫ t

t−τ

˙̃xT (s)S4
˙̃x(s)ds (10)

for all (x̃t, λ̃, λ̃
′) ∈ GrSOL′, where we introduced

Φ =


τS2 + b1P P + b1Q O O Q O
PT + b1QT S3 + τS4 + b1R O Q O O

O O −S3 O O O

O QT O O R O
QT O O R O O
O O O O O O

 .

(11)

Proof. Substituting the definition of the function x̃t into (9),
we find:

V (x̃t) =

(
x̃(t)

λ̃(t)

)T (
P Q
QT R

)(
x̃(t)

λ̃(t)

)
+

∫ t

t−τ
x̃T (s)TS1x̃(s)ds+

∫ 0

−τ

∫ t

t+θ
x̃T (s)S2x̃(s)dsdθ

+

∫ t

t−τ
˙̃x(s)TS3

˙̃x(s)ds+

∫ 0

−τ

∫ t

t+θ

˙̃xT (s)S4
˙̃x(s)dsdθ. (12)

Differentiating this expression and substituting x̃(t − τ) =
x̃(t)−

∫ t
t−τ

˙̃x(s)ds, we obtain:

V̇ (x̃t) = 2

(
x̃(t)

λ̃(t)

)T (
P Q
QT R

)(
˙̃x(t)

λ̃′(t)

)
−
∫ t
t−τ

˙̃xT (s)dsS1

∫ t
t−τ

˙̃x(s)ds+ 2x̃T (t)TS1

∫ t
t−τ

˙̃x(s)ds

+
∫ 0

−τ

(
x̃T (t)S2x̃(t) − x̃T (t+ θ)S2x̃(t+ θ)

)
dθ

+ ˙̃x(t)TS3
˙̃x(t) − ˙̃x(t− τ)TS3

˙̃x(t− τ)

+
∫ 0

−τ

(
˙̃xT (t)S4

˙̃x(t) − ˙̃xT (t− θ)S4
˙̃x(t− θ)

)
dθ,
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which, by adding b1V0 to left- and right-hand side, corre-
sponds to (10).

In Lemma 2, we have not yet exploited any information of
the set GrSOLT. To do so, we use the S-procedure and add
terms to the right-hand side of (10) which are nonnegative
on GrSOLT. These terms are designed as follows.

• Term 1: The system dynamics (5a) are equiv-
alent to the statement 0 = − ˙̃x(t) + (A0 +

A1)x̃(t) +
(
A2 −A1

) ∫ t
t−τ

(
x̃(s)
˙̃x(s)

)
ds+B3λ̃(t). Pre-

multiplication with the vector 2ζTT0 yields

0 = ζTΨ0ζ
T + 2ζT η0

∫ t

t−τ

(
x̃(s)
˙̃x(s)

)
ds, (13)

with Ψ0 = He
(
T0

(
A0 +A1 −I O B3 O O

))
and η0 = T0

(
A2 −A1

)
. This expression holds for

all matrices T0 =
(
TT00 TT01 · · · T05

)T ∈
R(3n+2`+1)×n.

• Term 2: The condition λ̃+λe ⊥ βe+C0x̃(t)+C1x̃(t−
τ) +C2

∫ t
t−τ x̃(s)ds+D3λ̃ in (5b) is equivalent to the

condition that 2(λ̃ + λe)
TT1(βe + C0x̃(t) + C1x̃(t −

τ)+C2

∫ t
t−τ x̃(s)ds+D3λ̃) = 0 holds for any diagonal

matrix T1 ∈ R`×`. Rewriting gives

0 = 2λ̃TT1D3λ̃+ 2λ̃T
(
T1 (βe + (C0 + C1)x̃(t)

+
(
C2 −C1

) ∫ t

t−τ

(
x̃(s)
˙̃x(s)

)
ds

)
+DT

3 T1λe

)
+ 2λTe T1

(
βe + (C0 + C1)(x̃(t)) +

(
C2 −C1

)∫ t

t−τ

(
x̃(s)
˙̃x(s)

)
ds

)
.

Hence, we find

0 =ζTΨ1ζ + 2ζT η1

∫ t

t−τ

(
x̃(s)
˙̃x(s)

)
ds, (14)

with

Ψ1 = He
O3n,3n O3n,2`+1

T1(C0 + C1) O O
O O O

λTe T1(C0 + C1) O O

T1D3 O
T1βe+

DT3 T1λe
O O O
O O O

 ,

η1 =


O3n,2n

T1C2 −T1C1

O O
λTe T1C2 −λTe T1C1

 and where we ex-

ploited the observation that (4) implies λTe T1βe = 0.
• Term 3: The inequalities in (5b) imply

Ξζ +
(
C2 −C1

O O

) ∫ t
t−τ

(
x̃(s)
˙̃x(s)

)
ds ≥ 0, with

Ξ =

(
C0 + C1 O O D3 O βe

O O O I O λe

)
. As

uTT2u ≥ 0 if u ≥ 0 for any symmetric matrix

T2 ∈ R2`×2` with nonnegative elements, we find:

0 ≤ζTΨ2ζ + 2ζT η2

∫ t

t−τ

(
x̃(s)
˙̃x(s)

)
ds

+

∫ t

t−τ

(
x̃(s)
˙̃x(s)

)T
ds
(
C2 −C1
O O

)T
T2
(
C2 −C1
O O

)
∫ t

t−τ

(
x̃(s)
˙̃x(s)

)
ds, (15)

with Ψ2 = ΞTT2Ξ and η2 = ΞTT2

(
C2 −C1

O O

)
.

• Term 4: We note that the complementarity relation (5b)
implies that, for each k ∈ {1, . . . , `}, either λ̃′k(t) = 0
(recall the definition of λ′ in the beginning of Section
IV-A) or

eTk (βe + C0x̃(t) + C1x̃(t− τ)

+C2

∫ t

t−τ
x̃(s)ds+D3λ̃

)
= 0.

Hence, we find

λ̃′
T
T3 (βe + C0x̃(t) + C1x̃(t− τ)

+C2

∫ t
t−τ x̃(s)ds+D3λ̃

)
= 0

for any diagonal T3 ∈ R`×` and

0 =ζTΨ3ζ + 2ζT η3

∫ t

t−τ

(
x̃(s)
˙̃x(s)

)
ds (16)

holds with

Ψ3 = He
(
E5T3

(
C0 + C1 O O D3 O βe

))
and η3 = ET5 T3

(
C2 −C1

)
, where E5 =(

O`,3n O` I` O`,1
)T

.
• Term 5: From the complementarity relation (5b) it also

follows that 0 = 2(λ̃+ λe)
TT4(C0

˙̃x(t) +C1
˙̃x(t− τ) +

C2

∫ t
t−τ

˙̃x(s)ds+D3
˙̃
λ) holds for arbitrary diagonal T4.

Hence, we find

0 = ζTΨ4ζ + 2ζT η4

∫ t

t−τ

(
x(s)− xe
ẋ(s)

)
ds, (17)

with

Ψ4 = He
((
O`,3n I` O`,` λe

)T
T4(

O C0 C1 O D3 O
))

and η4 =
(
O`,3n I` O`,` λe

)T
T4

(
O C2

)
.

With the five S-procedure terms given in the list above, we
can provide matrix inequality conditions that guarantee the
property in Lemma 2 for (x̃t, λ̃, λ̃

′) ∈ GrSOLT as follows.

Lemma 3. Consider matrices T0 ∈ R(3n+2`+1)×n, T1 ∈
R`×`, T2 ∈ R(2`)×(2`), T3, T4 ∈ R`×` and U ∈ R2n×2n,
with T1, T3, T4 diagonal, T2 symmetric with nonnegative
elements, and U � 0. With c12 denoting an orthonormal
matrix that spans the column space of

(
C2 −C1

O O

)
, we assume

cT12T2c12 � 0. (18)

Evaluated along solutions to (2), the Lyapunov-Krasovskii
functional (9) verifies V̇ (x̃t) ≤ −b1V0(x̃t) if

τ
(
C2 −C1

O O

)T
T2

(
C2 −C1

O O

)
+ U −

(
S2 O
O S4

)
≺ 0 (19)
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and (
Ψ −τη
−τηT −τU

)
� 0, (20)

hold, where Ψ = Φ +
∑4
k=0 Ψk, with Φ depending on

b1 and defined in Lemma 2, η = µ +
∑4
k=0 ηk, with

µ = 2

(
Onn S1

O2n+2`+1,n O2n+2`+1,n

)
.

Proof. We sum (10), (13), (14), (15), (16) and (17) to attain:

V̇ + b1V0(x̃t) ≤ ζTΨζ + 2ζT η

∫ t

t−τ

(
x̃(s)
˙̃x(s)

)
ds

+

∫ t

t−τ

(
x̃(s)
ẋ(s)

)T
ds
((

C2 −C1
O O

)T
T2

(
C2 −C1
O O

)
+
(
O O
O −S1

))
∫ t

t−τ

(
x̃(s)
˙̃x(s)

)
ds −

∫ t

t−τ
x̃T (s)S2x̃(s)ds−

∫ t

t−τ

˙̃xT (s)S4
˙̃x(s)ds

(21)

We will now upper bound the third term of the right-hand
side of (21). With (18), we can apply Jensen’s inequality
(see, e.g. [7]) to find∫ t

t−τ

(
x̃(s)
˙̃x(s)

)T
ds
(
C2 −C1
O O

)T
T2

(
C2 −C1
O O

) ∫ t

t−τ

(
x̃(s)
˙̃x(s)

)
ds

≤ τ

∫ t

t−τ

(
x̃(s)
˙̃x(s)

)T (
C2 −C1
O O

)T
T2

(
C2 −C1
O O

)(x̃(s)
˙̃x(s)

)
ds (22)

and as S1 � 0 by construction, removing the term
(
O O
O −S1

)
is allowed. To upper bound the second term in the right-hand
side of (21), similar to [1], we use that for any U = UT ∈
Rn×n, with U � 0:

2ζT η
∫ t
t−τ

(
x̃(s)
˙̃x(s)

)
ds

≤
∫ t
t−τ

(
ζT ηU−1ηT ζ +

(
x̃(s)
˙̃x(s)

)T
U

(
x̃(s)
˙̃x(s)

))
ds

≤ τζT ηU−1ηT ζ +
∫ t
t−τ

(
x̃(s)
˙̃x(s)

)T
U

(
x̃(s)
˙̃x(s)

)
ds.

(23)

Combining these overapproximations with (21), we find:

V̇ ≤ −b1V0(x̃t) + ζT
(
Ψ + τηU−1ηT

)
ζ

+

∫ t

t−τ

(
x̃(s)
˙̃x(s)

)T (
τ
(
C2 −C1

O O

)T
T2

(
C2 −C1

O O

)
+U −

(
S2 O
O S4

)) ( x̃(s)
˙̃x(s)

)
ds. (24)

Consequently, V̇ ≤ −b1V0(x̃t) holds if (19) holds as well
as Ψ + τηU−1ηT ≺ 0 that, by the Schur complement, is
equivalent to (20), concluding the proof.

C. Main result

Below, we formulate the main theorem of this paper that
provides sufficient conditions for global asymptotic stability
of the equilibrium position xe of the delay complementarity
system (2) in terms of LMIs. In this theorem, to ensure
positive definiteness of the Lyapunov-Krasovskii functional
as required in item a) of Lemma 1, two options are provided.
The second option may provide less conservative results as
the complementarity relation in (2b) is used, but is only
applicable when C1 = 0, C2 = 0.

Theorem 4. Consider the delay complementarity system (2)
and suppose there exist symmetric matrices P,Q and matrix
R such that either (

P Q
QT R

)
� 0

holds, or that C1 = 0, C2 = 0 and there exist matrices
T5 ∈ R`×`, T6 ∈ R2`×2`, with T5 diagonal and T6 symmetric
and having non-negative elements, such that(

P Q On1

QT R O`1
O1` O1n 0

)
−He

((
O``
I`
λTe

)
T5 (C0 D3 βe )

)
−
(
C0 D3 βe
O`` I` λe

)T
T6

(
C0 D3 βe
O`` I` λe

)
�
(

In+` On+`,1

On+`,1 0

)
.

(25)
If, in addition, there exist matrices T0, T1, T2, T3, T4, U as
in Lemma 3 and matrices S1, S2, S3, S4 � 0, which verify
the LMIs (19) and (20) for some scalar b1 > 0, then the
equilibrium position xe of (2) is globally asymptotically
stable, and functional (9) satisfies V̇ (x̃t) ≤ −b1V0(x̃t).

Proof. The proof of this theorem exploits Lemma 1 and
we first construct the function a(r) as in item a) of this
lemma. If

(
P Q

QT R

)
� 0, we select a(r) as σr2, with σ the

minimum eigenvalue of the matrix
(
P Q

QT R

)
, and observe

σ > 0. With S1, S2, S3, S4 � 0, we find V (x̃t) ≥ V0(x̃t) =∥∥∥∥(x̃t(0)

λ̃(x̃t)

)∥∥∥∥2

(
P Q

QT R

) ≥ σ

∥∥∥∥(x̃t(0)

λ̃(x̃t)

)∥∥∥∥2

≥ σ‖x̃t(0)‖2 =

a(‖x̃t(0)‖).
If C1, C2 = 0 and (25) holds, then (5) yields

0 ≤ λ̃ + λe ⊥ βe + C0x̃(t) + D3λ̃ ≥ 0, which

implies 2

x̃t(0)

λ̃
1

T O``I`
λTe

T5

(
C0 D3 βe

)x̃t(0)

λ̃
1

 =

0 since T5 is diagonal. In addition, the
mentioned complementarity inequality impliesxt(0) − xe

λ− λe
1

T (
C0 D3 βe
O`` I` λe

)T
T6

(
C0 D3 βe
O`` I` λe

)xt(0) − xe
λ− λe

1

 � 0,

since T6 has non-negative elements. Consequently, pre- and
postmultiplication of (25) with

(
x̃(t)T λ̃(x̃Tt ) 1

)
and its transpose, respectively, directly implies

V0(x̃t) ≥
∥∥∥∥( x̃(t)

λ̃(x̃t)

)∥∥∥∥2

≥ ‖x̃(t)‖2. Since V (x̃t) ≥ V0(x̃t),

we can select a(r) = r2 such that V (x̃t) ≥ a(‖x̃t(0)‖) is
attained. In both cases of the theorem, we have designed a
such that V (x̃t) ≥ a(‖x̃t(0)‖) follows. Hence, item a) of
Lemma 1 is verified.

To verify item b) of Lemma 1, we observe that Lemma 3
yields V̇ (x̃t) ≤ −b1V0(x̃t), which, with the result above,
implies V̇ (x̃t) ≤ −b(‖x̃t(0)‖), with b(r) = b1a(r), that is a
positive definite function. Hence, all conditions in Lemma 1
are verified and global asymptotic stability of the origin of
(5) follows.
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Fig. 1. A solution for α = 0 (left pane) and α = 1 (right pane).

V. EXAMPLE

We consider (1) with dimension n = 2, two constraints
` = 2, delay τ = 0.1 and system matrices given by

A0 =

(
0 1
0 0

)
, A1 =

(
0 0

−1 −0.4

)
, A2 = 02,2,

B2 =

(
0
α

)
, B3 =

[
0 0
6 −6

]
, C0 =

(
1 0

−1 0

)
,

C1 = 02,2; , C2 = 02,2, D2 =

(
1
1

)
;D3 = I2,

where α ≥ is a parameter. For this problem the comple-
mentarity constraints read as

0 ≤ λ1 ⊥ x1 + 1 + λ1 ≥ 0, 0 ≤ λ2 ⊥ −x1 + 1 + λ2 ≥ 0,

which allow to express λ as a function of x as

λ1 =

{
−x1 − 1, x1 ≤ −1,

0, otherwise
, λ2 =

{
x1 − 1, x1 ≥ 1,
0, otherwise.

A computation based on (4) yields:

xe =

(
α
0

)
, λe =

(
0
0

)
, βe =

(
1 + α
1 − α

)
, α ≤ 1,

xe =

(
α+6
7
0

)
, λe =

(
0
α−1
7

)
βe =

(
α+13

7
0

)
, α > 1.

A linearized stability analysis of the equilibrium, based on
solving (7), yields that it is locally asymptotically stable, with
spectral abscissa (real part of rightmost characteristic root)
equal to −0.155 for α < 1 and −0.149 for α > 1. Note that
for α = 1 the second constraint is closed and the constraint
force vanishes, so that the spectral approach cannot be used.

Global asymptotic stability is guaranteed if the LMI fea-
sibility problem (19), (20) and (25) has a solution. This is
for instance the case for α = 0, with Lyapunov function (9),
where

P =

(
2.21 0.415
0.415 2.13

)
, Q = 02, R =

(
12.8 0

0 12.8

)
,

S1 =

(
0.531 −0.0753

−0.0753 0.0907

)
, S2 =

(
2.12 −0.0185

−0.0185 1.406

)
,

S3 =

(
0.117 0.00122

0.00122 0.0133

]
, S4 =

(
2.2345 0.3532
0.3532 0.4504

)
.

In Figure 1 we depict the solution x with initial condition
φ(s) = (0 8)T , s ∈ [−0.1, 0], for α = 0 (left) and α = 1
(right). In Figure 2, we show x1, λ1, λ2 corresponding to
the solution for α = 1, illustrating that the first, respectively
the second constraint becomes active if x1 leave the interval
[−1, 1] from below, respectively from above.
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t
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2
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x 1
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1
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1, 
2

Fig. 2. Variables x1 (upper pane) , λ1 (lower pane, red dashed curve)
and λ2 (lower pane, solid curve), corresponding to the solution for α = 1
shown in Figure 1 (right).

VI. CONCLUSIONS

We have introduced a class of delay complementarity
systems. Both necessary and sufficient conditions for the
local asymptotic stability of equilibria are presented, and
sufficient conditions for the global asymptotic stability.
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