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Abstract— This paper deals with the stability analysis of
decentralized sampled-data Linear Time Invariant (LTI) con-
trol systems with asynchronous sensors and actuators. We
consider the case where each controller in the decentralized
setting has its own sampling and actuation frequency which
translates to asynchrony between sensors and actuators. The
errors induced due to sampling and asynchronicity are modelled
using two different operator approaches, leading to simple L2-
stability criteria for the overall decentralized control system.
The simplicity of the obtained criteria is illustrated by an
example and simulation results exhibit the effectiveness of the
approach.

I. INTRODUCTION

Decentralized control systems can be found aplenty in
technological, environmental or societal environments [1, 2].
In such systems, controllers are assigned to individual sub-
systems, using only local plant information (see Fig. 1 for
a typical example). Since the feedback scheme involved in
decentralized control is local, there are a few advantages
of decentralization. Firstly, a substantial amount of wiring
can be avoided. Secondly, owing to the decoupled nature
of the controllers, the diagnosis and maintenance is easier.
The aforementioned two points also translate to overall lower
running costs [1], [2] and [3]. However, the design of such
a decentralized control scheme may be quite complex since
the local design has to be done from a global perspective.
In this paper, a particular problem within the sampled-data
implementation [4, 5] of decentralized controls is considered.
More precisely, we will analyze the effect of asynchronism
between the local sampled data controllers on the overall
stability of the system. At an implementation level, con-
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Fig. 1: A decentralized controller setup.

trollers are usually algorithms programmed on embedded
processors which work at different frequencies. Moreover,
sensors and actuators are distributed over different commu-
nication channels which function aperiodically. This renders
the synchronization of the different elements in control loops
quite challenging [6]. This may in turn affect the overall
performance of the system and even its stability as illustrated
in the following example. Consider the decentralized LTI
system defined by

Σ1 : ẋ1(t) = −2x1(t)− x2(t) + u1(t)

Σ2 : ẋ2(t) = 4x2(t)− 2.8x1(t) + u2(t)
(1)

where u1(t) = −x̂1(t), u2(t) = −4.6x̂2(t) are the decentral-
ized control inputs to systems Σ1 and Σ2 respectively, and
x̂1(t), x̂2(t) are the state values obtained through sampling
and hold. In the event both systems Σ1 and Σ2 are sampled
periodically as well as synchronously with a sampling period
T = 0.59 (i.e., x̂i(t) = xi(kT ),∀t ∈ [kT, (k + 1)T ), i =
{1, 2}), the overall system is stable as illustrated in Figure
2a. However, as can be seen from Figure 2b, the stability
is affected when the sampling is periodic but control loops
are asynchronous. Figure 2b presents the case when a shift
δ = 0.2 is introduced in the sampling of the second state, i.e.,
when x̂2(t) = x2(kT + δ),∀t ∈ [kT + δ, (k+ 1)T + δ). The
stability problem can become even more complex when both
the sensors and actuators involved within individual control
loops are asynchronous.

In this paper, we will address the problem of stability
analysis for the case of LTI systems with decentralized
sampled-data linear controllers subject to asynchronicity.
More precisely, we consider that each sampled-data con-
troller has its own sampling and actuation frequencies. This
particular problem setting gives rise to complexities induced
by sampling, asynchronicity, network effects, etc. The de-
centralized control problem that we introduce in this paper
is unique to the best of our knowledge.

Although the problem considered in this paper is novel,
stability analysis methods have been proposed for centralized
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Fig. 2: (a) The decentralized LTI system (1) is stable for
synchronous sampling with T = 0.59. (b) The stability is
affected when x2(t) is sampled asynchronously with respect
to x1(t) with a shift of δ = 0.2.

controllers subjected to sampling and asynchronism between
sensors and actuators [7, 8, 9]. However, the period between
sampling and actuation instants was treated to be constant
and all the system state data was considered to be sampled
at same time instants. In the scope of sampled-data and
networked control systems [10, 11, 12], there are a few
similarities with the problem we consider. For example,
decentralized event-triggered control and delay introduced
due to network effects can also be seen as a form of
asynchronism [13]. In comparison to the very few existing
results addressing problems similar to the one considered
in this paper, we propose a novel and simple approach that
guarantees stability.

The main contribution of this paper is to provide ap-
proaches for L2-stability analysis of decentralized sampled-
data controllers. For the sake of generality, we consider
the sampling and actuation intervals to be time-varying and
possibly unknown (but bounded). We take into account the
asynchronicity between individual controllers as well as the
asynchronicity between sensors and actuators within a local
control loop. By using tools based on input-output methods
[14, 15], related to the ones previously used for systems with
delays [16, 17, 18, 19], we provide two novel and different
stability analysis methods based on easy-to-check frequency-
domain criteria.

The remainder of this paper has been structured as fol-
lows. In Section II, we introduce the problem formulation,
followed by technical preliminaries. Sections III and IV
deal with the transformation of the closed-loop sampled-data
dynamics into a feedback interconnection model and provide
a stability criterion. Section V provides a numerical example
corroborating the presented results.

Notations: R is the set of all real numbers, imply-
ing Rn is the set of all n-dimensional real vectors.
Diag(M1,M2, ...,Mn) is the block diagonal matrix with
elements Mi of appropriate dimensions. L2e(a, b) is the
extended L2-space of all square integrable and Lebesgue
measurable functions defined on the interval [a, b], with the
L2-norm defined as ‖q‖2L2

= 〈q, q〉, and the inner product
〈p, q〉 =

∫ b

a
p(s)T q(s)ds.

II. PROBLEM FORMULATION AND TECHNICAL
PRELIMINARIES

A. Motivating Problem

1) System Model: The system under consideration con-
sists of a set of Linear Time Invariant (LTI) systems, wherein
each individual system is influenced by its corresponding
control input and other system states. Figure 1 depicts
this decentralized control configuration. Consider that the
dynamics of each LTI system (denoted Σi) is given by

ẋi(t) = Aixi(t) +Biui(t) +

M∑
j=1,i6=j

Aijxj(t),∀t ∈ R, (2)

with i ∈ {1, 2, ..,M}, xi(t) ∈ Rni and ui(t) ∈ Rmi . The
matrices Ai, Bi and Aij are of appropriate dimensions. The
term Aijxj(t) denotes the influence of the states of the jth

plant Σj on the dynamics of system Σi. Here, we consider
the case where the control of the global system is linear.
Furthermore, we assume that it is decentralized in the sense
that the control input ui(t) only depends on the local state
variables xi(t). Furthermore, we consider that the control
inputs are asynchronous. The system states xi(t) are sampled
according to a sampling sequence {sik}k∈Z defined by

{sik : sik+1 − sik = hik, k ∈ Z, i ∈ {1, 2, ..,M}}. (3)

The sequence of sampling intervals {hik}k∈Z satisfying
hik ∈ [hi, h̄i] takes into account imperfection in sampling
caused by e.g. jitter, data packet dropouts, etc. Note that
the sampling instants of different systems are not necessarily
synchronous. The control input ui(t) based on xi(sik) will be
implemented at a time instant aik at the level of the actuator
of system Σi. We consider that the sequence of actuation
times {aik}k∈Z satisfies

{aik : aik = sik + ηik, η
i
k ≤ hik, k ∈ Z, i ∈ {1, 2, . . . ,M}},

(4)
where ηki ∈ [η

i
, η̄i] denotes the asynchrony between sensors

and actuators. Such an asynchrony may be due to network
delays, control computation delay, etc. Based on this consid-
eration, the control input to the system Σi is given by the
sampled-data decentralized static state-feedback law

ui(t) = Fixi(s
i
k), ∀t ∈ [aik, a

i
k+1). (5)

The goal of this paper is to analyse the stability of the system
defined by (2), (3), (4) and (5) 1.

B. Preliminaries

We introduce some basic concepts of linear operator the-
ory that are used in this paper. An operator G : L2e(a, b)→
L2e(c, d) receives an input p ∈ L2e(a, b) and produces an
output q ∈ L2e(c, d).

1The exact mathematical concept of stability that we use in this paper
will be formalized in Section II-B
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1) Bounded operators: The operator G : L2e(a, b) →
L2e(c, d) is said to be bounded if there exists a constant
γ ∈ R so that ‖G(p)‖L2

≤ γ‖p‖L2
for all p ∈ L2e(a, b). The

minimal constant γ satisfying the aforementioned inequality
is called the induced L2-gain of the operator G, and is
denoted by ‖G‖L2

or γ(G).
2) Feedback interconnection: The standard feedback in-

terconnection of two operators G1 and G2, is given by

ΣG1G2
:

{
p2 = G1p1 + f

p1 = G2p2 + g.
(6)

Figure 3 shows the graphical representation of the standard
feedback interconnection.

3) Well-posed system: A feedback system is said to be
well-posed if all the closed-loop transfer matrices are well-
defined and proper [20]. The implication for the standard
feedback interconnection ΣG1G2

given by (6) is that the
well-posedness is guaranteed only if I−G1G2 is invertible.

4) L2-stability: An operator G is said to be L2-stable if
it has a finite L2-gain [21].

5) Small-Gain Theorem: A feedback interconnection of
two operators G1 and G2 given by (6), has a finite L2-gain
for the mapping [

f
g

]
→
[
p1

p2

]
(7)

if
γ(G1)γ(G2) < 1, (8)

where γ(G1) and γ(G2) are the L2-gain of the operators
G1 and G2 respectively [22].
In this paper, we will use an operator approach to take
into account the asynchrony in decentralized control loops.
Stability will be analysed in the L2-sense by modelling
the system and the effects of sampling and asynchrony
using operators. Two methods will be presented. The first
method models the overall effect of sampling and asynchrony
between sensors and actuators in a global manner using one
operator. The second method takes the difference between
the effects of sampling and asynchrony using two separate
operators.

III. STABILITY ANALYSIS USING A SINGLE
OPERATOR FOR SAMPLING AND ASYNCHRONY

The configuration shown in Figure 1, defined by (2) can
also be expressed by the standard state-space equation

Ẋ(t) = AX(t) +BU(t), ∀ t ∈ R, (9)

wherein the system state X(t) ∈ Rn and the control input
U(t) ∈ Rm can be decomposed as

X(t) =
[
xT1 (t) xT2 (t) ... xTM (t)

]T
,

U(t) =
[
uT1 (t) uT2 (t) ... uTM (t)

]T
.

(10)

with xi(t) ∈ Rni , ui(t) ∈ Rmi ,
∑M

i=1 ni = n and∑M
i=1mi = m. Similarly, the system matrix A ∈ Rn×n

and the input matrix B ∈ Rn×m are given by

A =


A1 A12 . . . A1M

A21 A2 . . . A2M

...
...

. . .
...

AM1 AM2 . . . AM

 ,
B = diag(B1, B2, . . . , BM ).

(11)

A. System Model Reformulation

Let x̂i(t) represent the information used in computing the
control input ui(t) under the influence of asynchrony and
sampling:

x̂i(t) = xi(s
i
k),∀t ∈ [aik, a

i
k+1),

X̂(t) =
[
x̂T1 (t) x̂T2 (t) ... x̂TM (t)

]T (12)

with k ∈ Z and i ∈ {1, 2, . . . ,M}. Consequently, the
decentralized control law can be defined as

U(t) = FX̂(t) (13)

with F = diag(F1, F2, ..., FM ). The closed-loop system
model defined by (2), (3), (4), (5) can, therefore, be for-
mulated as follows:

Ẋ(t) = AX(t) +BFX̂(t)

= (A+BF )X(t) +BF (X̂(t)−X(t))

= AclX(t) +BclE(t),

(14)

where Acl := A + BF and Bcl := BF . The vector E(t)
in (14) represents the error induced in the system (9) by
sampling and asynchrony, i.e,

E(t) := X̂(t)−X(t) =
[
eT1 (t) eT2 (t) ... eTM (t)

]T
,

(15)
where

ei(t) = x̂i(t)− xi(t),
= xi(s

i
k)− xi(t).

(16)

Choosing an auxiliary output

Y (t) = Ẋ(t) =
[
ẋ1(t)T ẋ2(t)T ... ẋM (t)T

]T
,

=
[
yT1 (t) yT2 (t) ... yTM (t)

]T (17)

and by using an integral operator ∆i : Lni
2e(−∞,∞) →

Lni
2e(−∞,∞), we can rewrite (16) as follows:

ei(t) = (∆iyi)(t) := −
∫ t

sik

yi(θ)dθ,∀t ∈ [aik, a
i
k+1), k ∈ Z.

(18)
The operator ∆i accounts for the error induced in the system
Σi (in closed-loop with its local controller) by sampling and
asynchrony.
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B. Stability Analysis

Motivated by the problem under consideration in Section
II-A, we study the stability of the feedback interconnection
of G and ∆ in the standard form (see Figure 4), defined by

ΣG∆ :

{
Y = GE + f

E = ∆Y + g,
(19)

where f, g ∈ Ln
2e(−∞,∞). The operator G is defined by

the transfer function

G(s) = Ccl(sI −Acl)
−1Bcl +Dcl, (20)

where
Ccl = Acl = A+BF,

Dcl = Bcl = BF,
(21)

and the operator ∆ = diag(∆1,∆2, ...,∆M ), where ∆i

is defined by (18). The feedback interconnection ΣG∆ is
equivalent to the decentralized control system given by (2),
(3), (4) and (5), affected by perturbations in the measured
state value. That is,

ẋi(t) = Aixi(t) +BiFi

(
xi(s

i
k) + wi(t)

)
+

M∑
j=1,i6=j

Aijxj(t),

wi(t) = gi(t) +

∫ t

sik

fi(s)ds, xi(0) = 0.

(22)
fi and gi are components of f and g, with appropriate dimen-
sions. Before providing the stability criterion, we introduce
the following technical lemma which is an adaptation of the
result in [17] for continuous-time systems with time delay.

Lemma 1: The L2 induced norm of the operator ∆ is
upper-bounded by γ, where

γ =
M

max
i=1
{h̄i + η̄i}. (23)

Proof: The proof is available in the technical report
[23].
Using Lemma 1, the following stability result can be ob-
tained.

Theorem 2: The feedback interconnection of operators G
and ∆, denoted by ΣG∆ in (19) is L2-stable if

sup
ω∈R

σ̄
(
G(jω)

)
<

(
M

max
i=1
{h̄i + η̄i}

)−1

, (24)

where G(jω) = Ccl(jωI−Acl)
−1Bcl +Dcl is the frequency

response function matrix of the system defined by (14) and
(17), with the matrices Acl, Bcl, Ccl and Dcl defined in (21),
and σ̄

(
G(jω)

)
is the largest singular value of the G(jω)

Proof: The proof is available in the technical report
[23].

IV. STABILITY ANALYSIS USING TWO SEPARATE
OPERATORS

We have seen that Theorem 2 provides an easy-to-check
criterion for stability analysis of the closed-loop LTI system
(9), since it only requires a frequency-domain check of an
LTI system. However, this result may be conservative since
both the effects of sampling and asynchrony are modelled
using a global operator. Below, we propose an alternative
approach in which the error induced by the sampling and
asynchrony are considered separately, in terms of an operator
that represents the effect of sampling and hold, and an op-
erator that represents the delay induced by asynchrony. This
alleviates conservatism by providing flexibility in employing
more accurate function bounding inequalities.

A. Feedback interconnection system representation

In this section, we show that the operator ∆ can be
decomposed into two separate operators. The operator ∆sam

represents the error induced by sampling whereas the oper-
ator ∆asy denotes the error induced by asynchrony between
the sensors and actuators. Let us recall the definition of E(t)
defined as in (15). Let x̃i(t) denote the sampled version of
xi(t), along the sampling sequence {sik}k∈Z and be given
by

x̃i(t) = xi(s
i
k) ∀t ∈ [sik, s

i
k+1). (25)

We care to stress the difference between x̃i(t) in (25) and
x̂i(t) in (12) in terms of their domain of definition. Let us
define

esami (t) := x̃i(t)− xi(t), ∀t ∈ [sik, s
i
k+1). (26)

Note that esami (t) corresponds to the error between the signal
x(t) and it’s sampled version (see Figure 5 for a graphical
illustration). Given the signal yi(t) in (17), the sampling
induced error can be characterized by

esami (t) = −
∫ t

sik

yi(θ)dθ =: (∆sam
i yi)(t). (27)

Considering the rectangular signal x̃i(t), representing the
sampled version of system state xi(t), and the signal x̂i(t)
as given in (12) representing the signal actually used at the
level of actuators, the effect of asynchrony can be captured
by introducing an error

easyi (t) = x̂i(t)− x̃i(t), ∀t ≥ 0 (28)

as illustrated in Figure 6. Let us remark that

easyi (t) :=

{
xi(s

i
k−1)− xi(sik), ∀t ∈ [sik, a

i
k)

0, ∀t ∈ [aik, s
i
k+1)

(29)

Considering yi(t) as given in (17), we define

easyi (t) = (∆asy
i y)(t)

:=

−
∫ sik
sik−1

yi(θ)dθ, ∀t ∈ [sik, a
i
k)

0, ∀t ∈ [aik, s
i
k+1).

(30)
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Since
x̃i(t) = xi(t) + esami (t),

x̂i(t) = x̃i(t) + easyi (t),
(31)

we have x̂i(t) = xi(t) + esami (t) + easyi (t), which leads to
the decomposition of ∆i in (18) given by

(∆iyi)(t) = (∆sam
i yi)(t) + (∆asy

i yi)(t), (32)

as shown in Figure 7. Then, we have for the reformulated
system (14) and (17),

E(t) =
[
eT1 (t) eT2 (t) ... eTM (t)

]T
(33)

with

ei(t) = (∆iy)(t)

= (∆sam
i y)(t) + (∆asy

i y)(t), ∀t ∈ [sik, s
i
k+1).

(34)

B. Stability Analysis

In the following lemma, we compute the L2-norm of
the operator ∆i by upper-bounding each of the operators
introduced by the decomposition shown in (34), thereby
providing a bound on the operator ∆.

∆i

∆sam
i

∆asy
i

+
yi

esami

easyi

ei

Fig. 7: The decomposition of operator ∆i into operators
∆sam

i and ∆asy
i , that introduce the sampling error esami and

asynchrony error easyi respectively.

Lemma 3: The L2-induced norm of the operator ∆ is
upper-bounded by γ1, where

γ1 =
M

max
i=1

{
2h̄i
π

+

√
h̄iη̄i

}
. (35)

Proof: The proof is available in the technical report
[23].
Based on Lemma 3, we provide in Theorem 4 a less
conservative and also easy-to-check stability criterion for the
L2-stability of the feedback interconnection ΣG∆.

Theorem 4: The feedback interconnection ΣG∆ of oper-
ators G and ∆ as defined in (19), where ∆ satisfies the
decomposition (34), is L2-stable if

sup
ω∈R

σ̄
(
G(jω)

)
<

(
M

max
i=1

{
2h̄i
π

+

√
h̄iη̄i

})−1

, (36)

where G(jω) = Ccl(jωI−Acl)
−1Bcl +Dcl is the frequency

response function matrix of the closed-loop system defined
by (14) and (17), with the matrices Acl, Bcl, Ccl and Dcl

defined in (21).
Proof: The proof is available in the technical report

[23].

V. SIMULATION RESULTS

In this section, we apply the stability criteria provided in
Theorems 2 and 4 to the decentralized LTI system previously
considered in Section I, equation (1). Expressing the decen-
tralized system (1) in the standard state-space model given
by (9), we have

A =

[
−2 −1
2.8 4

]
, B =

[
1 0
0 1

]
, F =

[
−1 0
0 −4.6

]
, (37)

which provides

Acl = Ccl = A+BF =

[
−3 −1
2.8 −0.6

]
,

Bcl = Dcl = BF =

[
−1 0
0 −4.6

]
.

(38)

The L2-norm of the operator G can be obtained easily from
the H∞ norm of the transfer function [24] in (20) and is
5.2143. By employing Theorem 2, we can state that the
system remains stable for all h̄i and η̄i satisfying

2
max
i=1
{h̄i + η̄i} <

1

5.2143
. (39)
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Fig. 9: The evolution of (a) system states and (b) control
input for (37), with parameters h̄1, h̄2, η̄1 and η̄2 chosen
according to the feasibility region shown in Figure 8.

Similarly, using Theorem 4, L2-stability is guaranteed if

2
max
i=1

{
2h̄i
π

+

√
h̄iη̄i

}
<

1

5.2143
. (40)

The feasible values of h̄i and η̄i satisfying (39) and (40) are
shown in Figure 8. It is quite clear that the criterion obtained
using Theorem 4, given by (40), provides less conservative
results in comparison to the criterion obtained using Theorem
2, given by (39). This corroborates our theoretical result
that by encompassing the error induced due to sampling and
asynchrony within two separate operators, we obtain a less
conservative result. Additionally, the criterion is simple to
employ since the only computation involved is in obtaining
the L2-norm of the system operator. Choosing the parameters
h̄1 = 0.117, h̄2 = 0.1035, η̄1 = 0.0945 and η̄2 = 0.0405,
we simulate the system by introducing a rectangular wave
perturbation wi(t) = 0.5, ∀t ≤ ai10, i ∈ {1, 2}. We can see
in Figure 9a that the system (37) is indeed stable.

VI. CONCLUSION

In this paper, the stability analysis problem for LTI sys-
tems with decentralized sampled-data linear controllers sub-
jected to asynchrony has been studied. Two different stability
analysis methods based on easy-to-check frequency-domain
criteria have been provided. The method primarily included
modelling the error induced by sampling and asynchrony
using operators, and obtaining the L2-gain bounds on these
operators. The effectiveness of the method was illustrated
using numerical simulations.
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