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A B S T R A C T

Tracking of a desired pressure profile is key in mechanical ventilation to sufficiently support a patient. The aim
of this paper is to improve pressure tracking performance of mechanical ventilation systems. This is achieved
by explicitly taking into account the nonlinear hose characteristics and delays in the control strategy. Through
an experimental case study it is shown that this can significantly improve tracking performance.
. Introduction

Mechanical ventilation is used in Intensive Care Units (ICUs) to
upport breathing of patients. The main goals of mechanical ventilation
re to ensure oxygenation and carbon dioxide elimination (Warner

Patel, 2013). In the past decades, demand for ventilation has in-
reased rapidly and is prospected to increase further in the coming
ears (Needham et al., 2005). Especially during the flu season or a
orld-wide pandemic such as the COVID-19 pandemic that started in
019, demand for mechanical ventilation is high. Improved ventilation
s desired to reduce overall ventilation time.

Mechanical ventilators are a life-saving device. A schematic
verview of a mechanical ventilator, with a single-hose setup and a
atient is depicted in Fig. 1. In this paper, a blower-driven single-hose
etup as depicted in Fig. 1 and Pressure Controlled Ventilation (PCV)
f sedated patients are considered. In PCV, the mechanical ventilator
ims to track a pressure profile near the patient’s mouth as determined
y the clinician, see Fig. 2. The Inspiratory Positive Airway Pressure
IPAP) and Positive End-Expiratory Pressure (PEEP) induce flow in and
ut of the lungs, respectively. This alternating flow of air allows the
ungs to exchange CO2 for O2 in the blood. The objective of the control
ystem is to achieve accurate tracking of the desired target pressure
rofile and therewith to achieve the desired ventilation of the patient.

Accurate tracking of the target pressure is important to achieve
ufficient support for the patient, especially in cases of large flows as
result of large lungs and/or unintentional leaks during non-invasive

entilation. Furthermore, accurate pressure tracking results in bet-
er patient–ventilator synchrony (Hunnekens et al., 2020). According

∗ Corresponding author at: DEMCON Advanced Mechatronics, Best, The Netherlands.
E-mail address: joey.reinders@demcon.com (J. Reinders).

Fig. 1. Schematic representation of the blower-hose-patient system, with the
corresponding resistances, lung compliance, pressures, and flows.

to Blanch et al. (2015), asynchrony between patient and machine is
associated with high mortality.

A large number of control strategies have been investigated to
improve the performance of mechanical ventilators. In Borrello (2005),
an overview of modeling and control techniques for mechanical ven-
tilation is presented. In Hunnekens et al. (2020) and Van de Wouw
et al. (2018), variable-gain control is proposed to overcome the trade-
off between fast pressure rise times and limited overshoot in patient
flow. This variable-gain control strategy shows a reduction in patient
flow overshoot. However, still some overshoot remains and the mea-
sured patient flow is used in this control strategy. The patient flow
is typically not available for control in practice. In Borrello (2001),
an adaptive control strategy is applied to mechanical ventilation. A
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Fig. 2. Airway pressure 𝑝𝑎𝑤 and patient flow 𝑄𝑝𝑎𝑡 during one breathing cycle of
pressure controlled ventilation.

patient model is estimated and the obtained parameters are used to
adapt the controller parameters to achieve the desired closed-loop
behavior. In practice, it is challenging to obtain accurate patient mod-
els, deteriorating performance of such strategies. Also funnel-based
control is applied to mechanical ventilation (Pomprapa et al., 2015).
However, the improvement in tracking performance is limited. In Li
and Haddad (2012) and Scheel et al. (2017), model-based control and
model predictive control are applied, respectively. Also these methods
require accurate patient models, which are typically not available in
practice. Furthermore, iterative learning control is applied in Scheel
et al. (2015) and repetitive control is applied in Reinders et al. (2020b).
These methods achieve superior performance in case of a fully sedated
patient, i.e., the reference is repetitive. However, in case a patient starts
breathing spontaneously, performance of these methods degrades. Fi-
nally, in Reinders et al. (2019, 2020a), an adaptive control scheme is
proposed. This control scheme estimates a linear hose-resistance model
during ventilation and uses this model to compensate the pressure drop
over the hose. In an experimental study, it is shown to improve per-
formance significantly. However, overshoot and long settling times are
observed in case of large flow variations. These performance limitations
are mainly due to delays and nonlinearities in the system which are
neglected.

Although the mentioned control approaches show a significant im-
provement in tracking performance, most of them are neglecting system
delays and the nonlinear characteristics of the hose. The aim of this
paper is to develop a control method that automatically estimates the
nonlinear characteristics of the hose while taking the relevant system
delays into account. The estimated hose model is used to improve
tracking performance. The control method in Reinders et al. (2020a)
is recovered as a special case of the method proposed in this paper in
case of no system delays and nonlinearities of the hose.

The main contribution of this paper is a control strategy that im-
proves pressure tracking performance by explicitly taking into account
delays and the nonlinear hose characteristics of ventilation systems.
Specific contributions include the following. First, a control strategy
with a linear hose-resistance estimator is presented that compensates
the measurement delays in the system. Second, an input-to-state sta-
bility proof of the closed-loop dynamics with this control strategy is
provided. Third, a control strategy that takes into account the nonlinear
characteristics of the hose-resistance is developed. Fourth, an exper-
imental case study evidences a significant improvement in tracking
performance.

The outline of this paper is as follows. In Section 2, the detailed
problem definition is given. Then, in Section 3, a high-level description
of the proposed control strategy is given. In Section 4, linear models
of the open-loop and closed-loop plant with delays are presented.
 p
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Thereafter, in Section 5, the linear resistance estimator with delay com-
pensation is presented. Then, in Section 6, the nonlinear estimator with
delay compensation and the nonlinear pressure drop compensation are
presented to cope with the nonlinear hose characteristics. In Section 7,
a simulation case study of the linear estimator is presented to show the
effectiveness of delay compensation. Thereafter, in Section 8, the results
of an experimental case study are presented. This experimental case
study shows a clear performance improvement by taking measurement
delays and the nonlinear hose characteristics into account. Finally, in
Section 9, the main conclusions of this work are given.

2. Problem formulation

2.1. Control goal

The control goal in PCV is to achieve accurate pressure tracking of
a time-varying pressure target 𝑝𝑡𝑎𝑟𝑔𝑒𝑡(𝑡) for a wide variety of patients.
In Fig. 2 an example of such target pressure profile is shown. The
controlled variable is the airway pressure 𝑝𝑎𝑤, i.e., the pressure near
the patient’s mouth. The airway pressure is measured using the pilot
line and a pressure sensor inside the module, see Fig. 1. The goal is to
ensure that the tracking error

𝑒(𝑡) ∶= 𝑝𝑡𝑎𝑟𝑔𝑒𝑡(𝑡) − 𝑝𝑎𝑤(𝑡), (1)

s small.

.2. System description

The blower-patient-hose system is depicted in Fig. 1. The main
omponents in the system are the blower, the hose-filter system, and
he patient. The blower compresses ambient air to change the blower
utlet pressure 𝑝𝑜𝑢𝑡, such that the airway pressure 𝑝𝑎𝑤 tracks the desired
arget pressure. The difference between the outlet pressure 𝑝𝑜𝑢𝑡 and the
irway pressure 𝑝𝑎𝑤 results in a flow through the hose 𝑄𝑜𝑢𝑡, related by
he hose resistance model 𝑓ℎ𝑜𝑠𝑒(𝑄𝑜𝑢𝑡). 𝑓ℎ𝑜𝑠𝑒(𝑄𝑜𝑢𝑡) can refer to different
ose models, in this paper 𝑓ℎ𝑜𝑠𝑒(𝑄𝑜𝑢𝑡) refers to the considered linear
nd a quadratic hose model. The change in airway pressure 𝑝𝑎𝑤 results
n two flows, namely, the leak flow 𝑄𝑙𝑒𝑎𝑘 and the patient flow 𝑄𝑝𝑎𝑡.
he leak flow is used to flush exhaled CO2-rich air from the hose and

s modeled using a linear leak resistance 𝑅𝑙𝑒𝑎𝑘. The patient flow is
result of the linear resistance 𝑅𝑙𝑢𝑛𝑔 and the difference between the

irway pressure and the lung pressure 𝑝𝑙𝑢𝑛𝑔 , i.e., the pressure inside the
ungs. The patient flow results in a change in the lung pressure. The
elation between patient flow and lung pressure is given by the linear
ung compliance 𝐶𝑙𝑢𝑛𝑔 . This patient model, defined by 𝐶𝑙𝑢𝑛𝑔 and 𝑅𝑙𝑢𝑛𝑔 ,
s referred to as the linear one-compartmental lung model, analyzed
n Bates (2009, pp. 37–60). Note that for notational convenience all
ressures are defined relative to the ambient pressure, i.e., 𝑝𝑎𝑚𝑏 =
. A mathematical description of the system dynamics is derived in
ection 4.

.3. Control relevant system properties

As mentioned in Section 1, previously developed control strategies
or mechanical ventilation often neglect several essential system prop-
rties. The properties addressed in this paper are (1) time delays and
2) nonlinear hose characteristics. Another challenge for mechanical
entilation is that it should achieve the desired performance for a wide
ange of patients.

Several components depicted in Fig. 1 introduce time delays. Two
elays are caused by the propagation speed of a pressure wave through
ir as mentioned in Borrello (2005). The first pressure propagation
elay is the hose delay 𝜏ℎ from 𝑝𝑜𝑢𝑡 to 𝑝𝑎𝑤. This delay is defined
s the time it takes for a pressure wave to propagate through the
ose, i.e., from the blower outlet to the patient’s airway. The second

ressure propagation delay is the pilot-line delay 𝜏𝑝 from 𝑝𝑎𝑤 to the
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Fig. 3. Calibration curve of the hose with two linear resistance models and a quadratic
resistance model. This figure clearly shows the nonlinear nature of the hose resistance.

𝑝𝑎𝑤 sensor, which represents the time it takes for a pressure wave to
propagate through the pilot line. For simplicity 𝜏ℎ and 𝜏𝑝, are lumped
nto one output delay from 𝑝𝑎𝑤 to the 𝑝𝑎𝑤-sensor called the sensor delay
𝑠 = 𝜏ℎ + 𝜏𝑝. The third delay is a delay in the blower dynamics. More
pecifically, it is a delay from the control input 𝑝𝑐𝑜𝑛𝑡𝑟𝑜𝑙 to the blower
utlet pressure 𝑝𝑜𝑢𝑡. A method to partially compensate for these delays
s presented in Section 5.

In Fig. 3, the measured hose resistance characteristics clearly shows
quadratic relation between the flow through the hose 𝑄𝑜𝑢𝑡 and

he pressure drop over the hose 𝛥𝑝 ∶= 𝑝𝑜𝑢𝑡 − 𝑝𝑎𝑤. These nonlinear
ose characteristics are often approximated by a linear hose-resistance
odel. In Fig. 3 it is shown that the linear models accurately describe

he hose-characteristics for a small flow range, in particular in the low
low regime. However, for a large flow range a quadratic model is
ignificantly more accurate. Therefore, in Section 6, a control strategy
s presented that incorporates a nonlinear hose-resistance model.

Concluding, a control strategy for mechanical ventilation should
chieve accurate pressure tracking performance for a wide range of pa-
ients. In previous work, the system delays and nonlinear hose charac-
eristics are often neglected. Therefore, in this paper a control strategy
s presented that takes these system properties into account to improve
ressure tracking performance for a variety of patients.

. Proposed high-level control strategy

A controller for mechanical ventilation has to ensure that the airway
ressure 𝑝𝑎𝑤 tracks the target pressure 𝑝𝑡𝑎𝑟𝑔𝑒𝑡. The main cause of a
ifference in these pressures is the pressure drop over the hose 𝛥𝑝 =

𝑝𝑜𝑢𝑡−𝑝𝑎𝑤. By increasing 𝑝𝑜𝑢𝑡, such that 𝑝𝑜𝑢𝑡 = 𝑝𝑡𝑎𝑟𝑔𝑒𝑡+𝛥𝑝, 𝑝𝑎𝑤 will be equal
to 𝑝𝑡𝑎𝑟𝑔𝑒𝑡. In the developed control strategy a hose-resistance model is
used to estimate 𝛥𝑝 as a function of the measured flow through the hose
𝑄𝑜𝑢𝑡 and hose-resistance parameters. The hose-resistance parameters
can be obtained using an estimator. Because 𝑄𝑜𝑢𝑡 is measured and used
in the control loop, this strategy is independent of the attached patient
type as long as the hose-resistance parameters are obtained correctly.

A block diagram of the developed control strategy is depicted in
Fig. 4. The blower, patient-hose, and delay block denote the ventilation
system dynamics. The estimator, 𝑅̂ℎ𝑜𝑠𝑒(𝑄𝑜𝑢𝑡), and delay blocks with 𝜏𝑠
denote the proposed control strategy. The estimated hose-resistance
model 𝑅̂ℎ𝑜𝑠𝑒(𝑄𝑜𝑢𝑡) and the measured flow through the hose 𝑄𝑜𝑢𝑡 are
used in a feedback loop to estimate the pressure drop over the hose.
By adding this estimated pressure drop 𝛥𝑝̂ to the target pressure 𝑝𝑡𝑎𝑟𝑔𝑒𝑡,
the airway pressure converges to the desired target pressure if the

estimated hose model is correct. Because the hose characteristics are

3

Fig. 4. Schematic representation of the proposed closed-loop system with an estimator
for the hose resistance estimation. Furthermore, delay compensation for estimation is
included. Only one of the dashed lines is active simultaneously. This means that either
the hose model is estimated during open-loop control or the estimated hose model is
used in the control loop.

typically unknown in practice an estimator is used to estimate the
parameters of the hose-resistance model during ventilation.

The block diagram in Fig. 4 has two dashed arrows; these dashed
arrows distinguish between two different phases. Estimation of the
hose-resistance model and compensation for the pressure drop are
separated in two phases. In the estimation phase, the ventilator is
controlled in open loop while estimating the hose parameters. After
convergence, estimation is stopped and the obtained parameters are
used in the compensation strategy, i.e., the compensation phase. In
other words, only one of the two dashed lines is active simultaneously.

The delays in the system and the nonlinear hose characteristics are
explicitly taken into account in this control strategy. The output delay
𝜏𝑠 is compensated by delaying the estimator inputs that are unaffected
by the delay 𝜏𝑠. This is achieved by choosing 𝜏𝑠 appropriately, this is de-
scribed in detail in Section 5. To take the nonlinear hose characteristics
in account a quadratic hose model is used for 𝑅̂ℎ𝑜𝑠𝑒(𝑄𝑜𝑢𝑡) of which the
parameters are estimated by the estimator, this is described in detail
in Section 6. The control method presented in Reinders et al. (2020a)
is retrieved as a special case of the strategy presented in the current
paper. In an experimental case study, it is shown that the method in
the current paper outperforms the control strategy in Reinders et al.
(2020a).

4. Linear closed-loop dynamics

In this section, the linear system dynamics with delays are pre-
sented. First of all, the open-loop system dynamics are presented in
Section 4.1, i.e., the system dynamics in the estimation phase. There-
after, in Section 4.2 the closed-loop system dynamics with a constant
hose-resistance estimate are presented, i.e., the system in the compen-
sation phase. The hose resistance is assumed to be linear throughout
this section.

4.1. Open-loop system dynamics

To obtain the open-loop system dynamics, the patient is modeled
using the linear one-compartmental lung model described in Bates
(2009, pp. 37–60), i.e.,

̇ 𝑙𝑢𝑛𝑔(𝑡) =
𝑝𝑎𝑤(𝑡) − 𝑝𝑙𝑢𝑛𝑔(𝑡)

𝐶𝑙𝑢𝑛𝑔𝑅𝑙𝑢𝑛𝑔
. (2)

Furthermore, the hose, leak, and lung resistance are assumed linear,
hence

𝑄𝑜𝑢𝑡(𝑡) =
𝛥𝑝
𝑅𝑙𝑖𝑛

=
𝑝𝑜𝑢𝑡(𝑡) − 𝑝𝑎𝑤(𝑡)

𝑅𝑙𝑖𝑛
, (3)

𝑄𝑙𝑒𝑎𝑘(𝑡) =
𝑝𝑎𝑤(𝑡)
𝑅𝑙𝑒𝑎𝑘

, and (4)

𝑄𝑝𝑎𝑡(𝑡) =
𝑝𝑎𝑤(𝑡) − 𝑝𝑙𝑢𝑛𝑔(𝑡)

𝑅𝑙𝑢𝑛𝑔
(5)
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with 𝑅𝑙𝑖𝑛 the linear hose resistance, note that 𝑓ℎ𝑜𝑠𝑒(𝑄𝑜𝑢𝑡) becomes
𝑅𝑙𝑖𝑛𝑄𝑜𝑢𝑡 in case of the linear hose model.

Moreover, it is assumed that the internal blower controller achieves
a blower transfer function from 𝑝𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑡) to 𝑝𝑜𝑢𝑡(𝑡) of magnitude one.
The presence of the blower delay 𝜏𝑏 results in the following relation
between the blower outlet pressure 𝑝𝑜𝑢𝑡 and the control pressure 𝑝𝑐𝑜𝑛𝑡𝑟𝑜𝑙:

𝑝𝑜𝑢𝑡(𝑡) ∶= 𝑝𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑡 − 𝜏𝑏). (6)

Combining (2), (3), (4), (5), and (6), using conservation of flow,
i.e., 𝑄𝑜𝑢𝑡 = 𝑄𝑝𝑎𝑡 + 𝑄𝑙𝑒𝑎𝑘, results in the following open-loop system
dynamics with blower delay:

𝑝̇𝑙𝑢𝑛𝑔(𝑡) = 𝐴ℎ𝑝𝑙𝑢𝑛𝑔(𝑡) + 𝐵ℎ𝑝𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑡 − 𝜏𝑏)

𝑝𝑎𝑤(𝑡) = 𝐶ℎ𝑝𝑙𝑢𝑛𝑔(𝑡) +𝐷ℎ𝑝𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑡 − 𝜏𝑏)
(7)

with

𝐴ℎ = −
𝑅𝑙𝑖𝑛 + 𝑅𝑙𝑒𝑎𝑘

𝐶𝑙𝑢𝑛𝑔𝑅̄
, 𝐵ℎ =

𝑅𝑙𝑒𝑎𝑘

𝐶𝑙𝑢𝑛𝑔𝑅̄
,

𝐶ℎ =
𝑅𝑙𝑖𝑛𝑅𝑙𝑒𝑎𝑘

𝑅̄
, and 𝐷ℎ =

𝑅𝑙𝑒𝑎𝑘𝑅𝑙𝑢𝑛𝑔

𝑅̄

(8)

with 𝑅̄ ∶= 𝑅𝑙𝑖𝑛𝑅𝑙𝑒𝑎𝑘 + 𝑅𝑙𝑖𝑛𝑅𝑙𝑢𝑛𝑔 + 𝑅𝑙𝑒𝑎𝑘𝑅𝑙𝑢𝑛𝑔 .
Furthermore, the lumped output delay 𝜏𝑠, in the measurement of

𝑝𝑎𝑤, results in

𝑝̃𝑎𝑤(𝑡) ∶= 𝑝𝑎𝑤(𝑡 − 𝜏𝑠) (9)

with 𝑝̃𝑎𝑤 the measured airway pressure.

4.2. Closed-loop error dynamics for a constant resistance estimate

In this section, the open-loop system dynamics defined in (7) and (8)
re combined with the control strategy depicted in Fig. 4 for a constant
inear hose model estimate 𝑅̂𝑙𝑖𝑛. Note that the hose-resistance estimate
s considered constant; therefore, the measured airway pressure 𝑝̃𝑎𝑤 and
he delay 𝜏𝑠 do not appear in these error dynamics.

From Fig. 4 it is obtained that

𝑝𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑡) = 𝑝𝑡𝑎𝑟𝑔𝑒𝑡(𝑡) + 𝛥𝑝̂(𝑡)

= 𝑝𝑡𝑎𝑟𝑔𝑒𝑡(𝑡) + 𝑅̂𝑙𝑖𝑛𝑄𝑜𝑢𝑡(𝑡),
(10)

here the estimated pressure drop 𝛥𝑝̂ is computed using (3). Next,
𝑜𝑢𝑡(𝑡) is rewritten using conservation of flow, the patient model in (2),
nd the resistance models (4) and (5). This gives

𝑜𝑢𝑡(𝑡) = 𝑄𝑝𝑎𝑡 +𝑄𝑙𝑒𝑎𝑘 (11)

=
𝑝𝑎𝑤(𝑡) − 𝑝𝑙𝑢𝑛𝑔(𝑡)

𝑅𝑙𝑢𝑛𝑔
+

𝑝𝑎𝑤(𝑡)
𝑅𝑙𝑒𝑎𝑘

(12)

= 𝐶𝑙𝑢𝑛𝑔

(

1 +
𝑅𝑙𝑢𝑛𝑔

𝑅𝑙𝑒𝑎𝑘

)

𝑝̇𝑙𝑢𝑛𝑔(𝑡) +
1

𝑅𝑙𝑒𝑎𝑘
𝑝𝑙𝑢𝑛𝑔(𝑡). (13)

Substitution of (13) in (10) results in the control law
𝑝𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑡) = 𝑝𝑡𝑎𝑟𝑔𝑒𝑡(𝑡)

+ 𝑅̂𝑙𝑖𝑛

(

𝐶𝑙𝑢𝑛𝑔

(

1 +
𝑅𝑙𝑢𝑛𝑔

𝑅𝑙𝑒𝑎𝑘

)

𝑝̇𝑙𝑢𝑛𝑔(𝑡) +
1

𝑅𝑙𝑒𝑎𝑘
𝑝𝑙𝑢𝑛𝑔(𝑡)

)

.
(14)

Next, (14) is substituted in the open-loop dynamics of (7) and (8). This
results in the closed-loop dynamics in terms of the state 𝑝𝑙𝑢𝑛𝑔 :

𝑑
𝑑𝑡

(

𝑝𝑙𝑢𝑛𝑔(𝑡) − 𝑅̂𝑙𝑖𝑛𝐵ℎ𝐶𝑙𝑢𝑛𝑔

(

1 +
𝑅𝑙𝑢𝑛𝑔

𝑅𝑙𝑒𝑎𝑘

)

𝑝𝑙𝑢𝑛𝑔(𝑡 − 𝜏𝑏)
)

= 𝐴ℎ𝑝𝑙𝑢𝑛𝑔(𝑡) +
𝑅̂𝑙𝑖𝑛𝐵ℎ
𝑅𝑙𝑒𝑎𝑘

𝑝𝑙𝑢𝑛𝑔(𝑡 − 𝜏𝑏) + 𝐵ℎ𝑝𝑡𝑎𝑟𝑔𝑒𝑡(𝑡 − 𝜏𝑏).
(15)

The patient model in (2) is rewritten to obtain:

𝑝𝑎𝑤(𝑡) = 𝑝̇𝑙𝑢𝑛𝑔(𝑡)𝐶𝑙𝑢𝑛𝑔𝑅𝑙𝑢𝑛𝑔 + 𝑝𝑙𝑢𝑛𝑔(𝑡). (16)

Substituting (16) in the error definition in (1) and differentiating with
respect to time results in

̇(𝑡) = 𝑝̇ (𝑡) − 𝑝̈ (𝑡)𝐶 𝑅 − 𝑝̇ (𝑡). (17)
𝑡𝑎𝑟𝑔𝑒𝑡 𝑙𝑢𝑛𝑔 𝑙𝑢𝑛𝑔 𝑙𝑢𝑛𝑔 𝑙𝑢𝑛𝑔

4

From (15),

𝑝̇𝑙𝑢𝑛𝑔(𝑡) =𝑅̂𝑙𝑖𝑛𝐵ℎ𝐶𝑙𝑢𝑛𝑔

(

1 +
𝑅𝑙𝑢𝑛𝑔

𝑅𝑙𝑒𝑎𝑘

)

𝑝̇𝑙𝑢𝑛𝑔(𝑡 − 𝜏𝑏)

+ 𝐴ℎ𝑝𝑙𝑢𝑛𝑔(𝑡) +
𝑅̂𝑙𝑖𝑛𝐵ℎ
𝑅𝑙𝑒𝑎𝑘

𝑝𝑙𝑢𝑛𝑔(𝑡 − 𝜏𝑏) (18)

+ 𝐵ℎ𝑝𝑡𝑎𝑟𝑔𝑒𝑡(𝑡 − 𝜏𝑏)

nd its time derivative are obtained and substituted in (17). Finally,
ewriting gives the closed-loop error dynamics:

𝑑
𝑑𝑡

(

𝑒(𝑡) − 𝑅̂𝑙𝑖𝑛𝐵ℎ𝐶𝑙𝑢𝑛𝑔

(

1 +
𝑅𝑙𝑢𝑛𝑔

𝑅𝑙𝑒𝑎𝑘

)

𝑒(𝑡 − 𝜏𝑏)
)

= 𝐴ℎ𝑒(𝑡) +
𝑅̂𝑙𝑖𝑛𝐵ℎ
𝑅𝑙𝑒𝑎𝑘

𝑒(𝑡 − 𝜏𝑏) +𝑤(𝑡)
(19)

ith
𝑤(𝑡) = 𝑝̇𝑡𝑎𝑟𝑔𝑒𝑡(𝑡) − 𝐶𝑙𝑢𝑛𝑔𝑅𝑙𝑢𝑛𝑔𝐵ℎ𝑝̇𝑡𝑎𝑟𝑔𝑒𝑡(𝑡 − 𝜏𝑏)

− 𝐵ℎ𝑝𝑡𝑎𝑟𝑔𝑒𝑡(𝑡 − 𝜏𝑏) − 𝐴ℎ𝑝𝑡𝑎𝑟𝑔𝑒𝑡(𝑡) −
𝑅̂𝑙𝑖𝑛𝐵ℎ
𝑅𝑙𝑒𝑎𝑘

𝑝𝑡𝑎𝑟𝑔𝑒𝑡(𝑡 − 𝜏𝑏)

− 𝑅̂𝑙𝑖𝑛𝐵ℎ𝐶𝑙𝑢𝑛𝑔

(

1 +
𝑅𝑙𝑢𝑛𝑔

𝑅𝑙𝑒𝑎𝑘

)

𝑝̇𝑡𝑎𝑟𝑔𝑒𝑡(𝑡 − 𝜏𝑏).

(20)

These closed-loop error dynamics are described by a Neutral Delay
Differential Equation (NDDE), i.e., the delay 𝜏𝑏 is present in both 𝑒 and
̇ .

5. Output delay compensation and linear estimator design

In this section, a method to compensate the effect of the output
delay 𝜏𝑠 on the estimator is presented. Thereafter, a linear resistance
estimator is presented. Finally, stability of the controlled system is
analyzed. In other words, the first and second contribution of this paper
are addressed in this section.

5.1. Output delay compensation

As mentioned in Section 2, the lumped output delay 𝜏𝑠 is considered.
This delay represents the time it takes for the actual 𝑝𝑎𝑤(𝑡) to propagate
to the 𝑝𝑎𝑤-sensor in the ventilation module. The actual measured
airway pressure is 𝑝̃𝑎𝑤(𝑡), see (9). In Fig. 4, a timing mismatch between
the estimator inputs can be recognized when no delay compensation is
included, i.e., 𝜏𝑠 = 0. Namely, 𝑄𝑜𝑢𝑡(𝑡), 𝑝𝑜𝑢𝑡(𝑡), and 𝑝̃𝑎𝑤(𝑡) = 𝑝𝑎𝑤(𝑡 − 𝜏𝑠)
re used by the estimator. This mismatch in timing results in oscilla-
ions of the estimated hose resistance parameters 𝑅̂ℎ𝑜𝑠𝑒(𝑄𝑜𝑢𝑡) when the
entilation dynamics are in a transient phase. If the ventilation system
s in steady state 𝑝𝑎𝑤(𝑡) = 𝑝̃𝑎𝑤(𝑡), hence, the delay does not affect the
stimator inputs.

This mismatch in timing is solved by delaying 𝑝𝑜𝑢𝑡(𝑡) and 𝑄𝑜𝑢𝑡(𝑡)
efore using them in the estimator, such that they match the timing
f 𝑝̃𝑎𝑤(𝑡) = 𝑝𝑎𝑤(𝑡 − 𝜏𝑠). This is achieved by choosing the delay estimate

𝜏𝑠 ≈ 𝜏𝑠 in Fig. 4. Choosing this estimate correctly, i.e., 𝜏𝑠 = 𝜏𝑠, results in
matching timing of the estimator inputs. Several methods from litera-
ture can be used to identify the time delay 𝜏𝑠 experimentally (Bjorklund
& Ljung, 2003). In the remainder of this paper it is assumed that the
parameter 𝜏𝑠 is known; hence, it can be compensated exactly in the
estimator.

5.2. Linear estimator design

In this paper, a Recursive Least Squares (RLS) estimator with expo-
nential forgetting factor, see Ioannou and Sun (1996, p. 200), is used to
estimate the linear hose resistance 𝑅𝑙𝑖𝑛. Other estimators can be used
with the same method to compensate for the output delay 𝜏𝑠. The RLS
estimator with delay compensation is designed as follows:

̇̂𝑅𝑙𝑖𝑛(𝑡) = 𝑃 (𝑡) 𝑝𝑜𝑢𝑡(𝑡−𝜏𝑠)−𝑝𝑎𝑤(𝑡−𝜏𝑠)
𝑚2 𝑄𝑜𝑢𝑡(𝑡 − 𝜏𝑠)

𝑅̂𝑙𝑖𝑛(𝑡)𝑄𝑜𝑢𝑡(𝑡−𝜏𝑠)
(21)
−𝑃 (𝑡)
𝑚2 𝑄𝑜𝑢𝑡(𝑡 − 𝜏𝑠),
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𝑃̇ (𝑡) = 𝛽𝑃 (𝑡) − 𝑃 (𝑡)2
𝑄2

𝑜𝑢𝑡(𝑡 − 𝜏𝑠)
𝑚2

, (22)

here the outlet flow 𝑄𝑜𝑢𝑡 is the exciting variable, 𝑃 (𝑡) is called the
ovariance, 𝑚 is a normalization parameter, and 𝛽 is an exponential
orgetting factor.

If the sensor delay estimate is exact, i.e., 𝜏𝑠 = 𝜏𝑠, the signals used
y the estimator are matched in time. Such exact delay compensation
eads to:

̇̂𝑅𝑙𝑖𝑛(𝑡) = 𝑃 𝛥𝑝(𝑡−𝜏𝑠)−𝑅̂𝑙𝑖𝑛𝑄𝑜𝑢𝑡(𝑡−𝜏𝑠)
𝑚2 𝑄𝑜𝑢𝑡(𝑡 − 𝜏𝑠)

= 𝑃 𝑅𝑙𝑖𝑛𝑄𝑜𝑢𝑡(𝑡−𝜏𝑠)−𝑅̂𝑙𝑖𝑛𝑄𝑜𝑢𝑡(𝑡−𝜏𝑠)
𝑚2 𝑄𝑜𝑢𝑡(𝑡 − 𝜏𝑠)

(23)

𝑃̇ (𝑡) = 𝛽𝑃 (𝑡) − 𝑃 (𝑡)2
𝑄𝑜𝑢𝑡(𝑡 − 𝜏𝑠)2

𝑚2
. (24)

Because all estimator inputs are delayed by 𝜏𝑠, this delay remains
present in the estimator dynamics. Because 𝜏𝑠 is very small compared to
the convergence time, its effect on the convergence time is considered
negligible. Finally, the estimator dynamics can be expressed in terms
of the estimation error 𝑒𝐿𝑆 (𝑡) ∶= 𝑅𝑙𝑖𝑛 − 𝑅̂𝑙𝑖𝑛(𝑡), resulting in

̇𝐿𝑆 (𝑡) = −𝑃 (𝑡)
𝑄2

𝑜𝑢𝑡(𝑡 − 𝜏𝑠)
𝑚2

𝑒𝐿𝑆 (𝑡). (25)

A proof of convergence of this estimator with delay compensation
in open-loop ventilation, i.e., the calibration phase, is presented in the
next section.

5.3. Stability analysis

In this section, stability of the mechanical ventilation system with
the control strategy proposed in Sections 4.2 and 5.2 is analyzed. The
stability analysis in this section consists of two parts. In Section 5.3.1,
stability of the open-loop dynamics in (7) and (8), and convergence
properties of the estimator in (23) and (24) are analyzed; these dynam-
ics represent the estimation phase. Thereafter, input-to-state stability
(ISS) of the closed-loop system with a constant hose-resistance estimate
in (19) and (20), i.e., compensation phase, is proved in Section 5.3.2.
In these dynamics 𝑤(𝑡) is considered the external input, which depends
on 𝑝𝑡𝑎𝑟𝑔𝑒𝑡(𝑡).

Throughout this paper, the follow definition of persistence of exci-
tation is adopted.

Definition 1. A piece-wise continuous scalar signal 𝜙(𝑡) is Persistently
Exciting (PE) if there exist constants 𝛼0, 𝛼1, 𝑇0 ∈ R>0 such that

𝛼1 ≥
1
𝑇0 ∫

𝑡+𝑇0

𝑡
𝜙2 (𝜏) 𝑑𝜏 ≥ 𝛼0,∀𝑡 ≥ 0. (26)

Furthermore, it is assumed that the RLS estimator in (23) and (24)
atisfies Assumption 1.

ssumption 1. The RLS estimator in (23) and (24) is designed and
nitialized such that the following properties hold:

• 𝑃 (0) is initialized to be positive, i.e., 𝑃 (0) > 0.
• 𝑅̂𝑙𝑖𝑛 is initialized to ensure 0 ≤ 𝑅̂𝑙𝑖𝑛(0) ≤ 𝑅𝑙𝑖𝑛.
• 𝛽 is designed to be positive, i.e., 𝛽 > 0.

Assumption 2 states that the target pressure profile is always pos-
tive and bounded. Practically, this is a non-restrictive assumption
ecause PCV requires a strictly positive and bounded pressure target.

ssumption 2. 𝑝𝑡𝑎𝑟𝑔𝑒𝑡(𝑡) is bounded and positive by design; in partic-
lar, 𝜖1 < 𝑝𝑡𝑎𝑟𝑔𝑒𝑡(𝑡) < ∞, ∀𝑡 ≥ 0, with 𝜖1 > 0 a positive constant.

Finally, Assumption 3 states that the estimated sensor delay, used
for delay compensation, is exactly equal to the true sensor delay,
i.e., the sensor delay is perfectly compensated.

Assumption 3. The estimated sensor delay 𝜏𝑠 is exactly equal to the
rue sensor delay 𝜏 , i.e., 𝜏 = 𝜏 .
𝑠 𝑠 𝑠

5

Next, these assumptions are used to show that the hose-resistance
estimate converges to the true parameter in Section 5.3.1 and that the
closed-loop dynamics with hose compensation are ISS in Section 5.3.2.

5.3.1. Convergence of the linear estimator
During the calibration phase, the system is controlled in open

loop, i.e., 𝑝𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑡) = 𝑝𝑡𝑎𝑟𝑔𝑒𝑡(𝑡). The open-loop system dynamics are
escribed by (7) and (8) and the linear estimator dynamics with delay
ompensation are given by (24) and (25). In this section, the following
roperties of the system in the calibration phase are proved under
ssumptions 1–3:

• exponential stability of the open-loop dynamics in (7) and (8), see
Lemma 1;

• exponential convergence of the estimation error 𝑒𝐿𝑆 (𝑡) in (25) to
zero; and

• 𝑅̂𝑙𝑖𝑛(𝑡) remains in the set [0, 𝑅𝑙𝑖𝑛] for all 𝑡 ≥ 0.

Exponential stability of the open-loop dynamics, i.e., the system
ynamics in the calibration phase, is proved in Lemma 1.

emma 1. The open-loop dynamics in (7) and (8) are exponentially
stable.

Proof. The blower delay 𝜏𝑏 in (7) and (8) is a pure input delay, hence,
it does not affect stability of these linear dynamics. Therefore, the open-
loop dynamics are stable iff 𝐴ℎ = −𝑅𝑙𝑖𝑛+𝑅𝑙𝑒𝑎𝑘

𝐶𝑙𝑢𝑛𝑔 𝑅̄
< 0. This holds because

ll physical parameters in 𝐴ℎ are strictly positive. □

Next, the PE property of the exciting variable 𝑄𝑜𝑢𝑡(𝑡) is proved in
emma 2.

emma 2. Consider the open-loop dynamics in (7) and (8), i.e., the
ystem in estimation phase, and Assumption 2. Then, the output 𝑄𝑜𝑢𝑡(𝑡) is
E according to Definition 1.

roof. The PE upper bound is ensured by showing that 𝑄𝑜𝑢𝑡(𝑡) is
ounded. According to (3), 𝑄𝑜𝑢𝑡 = 𝑝𝑜𝑢𝑡−𝑝𝑎𝑤

𝑅𝑙𝑖𝑛
. Since 𝑅𝑙𝑖𝑛 is bounded,

𝑄𝑜𝑢𝑡(𝑡) is bounded if 𝑝𝑜𝑢𝑡 and 𝑝𝑎𝑤 are bounded. In open loop 𝑝𝑜𝑢𝑡(𝑡) ∶=
𝑝𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑡 − 𝜏𝑏) = 𝑝𝑡𝑎𝑟𝑔𝑒𝑡(𝑡 − 𝜏𝑏), invoking Assumption 2 it is ensured that
𝑝𝑜𝑢𝑡(𝑡) is bounded. The airway pressure is defined as 𝑝𝑎𝑤(𝑡) = 𝐶ℎ𝑝𝑙𝑢𝑛𝑔(𝑡)+

ℎ𝑝𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑡− 𝜏𝑏), see (7). Because the dynamics in (7) are exponentially
table according to Lemma 1 and the target pressure is bounded, 𝑝𝑎𝑤(𝑡)
s bounded as well. Hence, 𝑄𝑜𝑢𝑡(𝑡) is bounded and its PE upper bound
s ensured.

The proof of the PE lower bound is a special case of the proof
resented in Reinders et al. (2020a, Lemma 1). In Reinders et al.
2020a, Lemma 1), patient effort (𝑝̇𝑝𝑎𝑡) is considered and 𝑅̂𝑙𝑖𝑛 is not
qual to zero, i.e., not in open-loop ventilation. By following the same
trategy but considering 𝑝̇𝑝𝑎𝑡 = 0 and 𝑅̂𝑙𝑖𝑛 = 0, the PE lower bound 𝛼0 is
nsured. Therewith both PE bounds for 𝑄𝑜𝑢𝑡(𝑡) are proved, hence 𝑄𝑜𝑢𝑡(𝑡)
s PE. □

heorem 1. Consider the estimator dynamics with delay compensation in
24) and (25), and adopt Assumptions 1, 2, and 3. Then, 𝑅̂𝑙𝑖𝑛(𝑡) converges
xponentially and monotonically to 𝑅𝑙𝑖𝑛(𝑡) and 0 ≤ 𝑅̂𝑙𝑖𝑛(𝑡) ≤ 𝑅𝑙𝑖𝑛 holds for
𝑡 ≥ 0.

Proof. First, Corollary 4.3.2 in Ioannou and Sun (1996) is invoked.
This corollary guarantees that if the exciting variable, i.e., 𝑄𝑜𝑢𝑡(𝑡), is PE
and 𝛽 > 0, then the estimated parameter 𝑅̂𝑙𝑖𝑛(𝑡) converges exponentially
to the true parameter 𝑅𝑙𝑖𝑛. These conditions are met by invoking
Lemma 2 and Assumption 1. Therewith, the least-squares estimation
error 𝑒𝐿𝑆 (𝑡) = 𝑅𝑙𝑖𝑛 − 𝑅̂𝑙𝑖𝑛(𝑡) converges to zero exponentially, i.e., 𝑅̂𝑙𝑖𝑛(𝑡)
onverges to 𝑅𝑙𝑖𝑛 exponentially.

Next, it is proved that 𝑅̂𝑙𝑖𝑛(𝑡) converges monotonically and therewith
emains in the set 0 ≤ 𝑅̂ (𝑡) ≤ 𝑅 for 𝑡 ≥ 0. First, it is shown that
𝑙𝑖𝑛 𝑙𝑖𝑛
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𝑃 (𝑡) remains positive if the estimator design ensures Assumption 1.
For an arbitrary small positive 𝑃 (𝑡) in (24) it is seen that 𝑃̇ (𝑡) > 0,
because 𝛽 > 0. Therefore, 𝑃 (𝑡) > 0 for all 𝑡 ≥ 0. Next, (25) is used to
how monotonic convergence of 𝑅̂𝑙𝑖𝑛(𝑡). The estimation error dynamics

are 𝑒̇𝐿𝑆 (𝑡) = −𝑃 (𝑡)𝑄
2
𝑜𝑢𝑡(𝑡−𝜏𝑠)
𝑚2 𝑒𝐿𝑆 (𝑡), with 𝑃 (𝑡) > 0, 𝑄2

𝑜𝑢𝑡(𝑡 − 𝜏𝑠) > 0,
nd 𝑚 > 0. Therefore, 𝑒𝐿𝑆 (𝑡) is converging monotonically to zero
nd never changing sign. Furthermore, 𝑅̂𝑙𝑖𝑛(0) is chosen as defined in
ssumption 1, hence, 0 ≤ 𝑅̂𝑙𝑖𝑛(𝑡) ≤ 𝑅𝑙𝑖𝑛 for all 𝑡 ≥ 0. □

Concluding, it is shown that the system is exponentially stable
uring the calibration phase. Furthermore, the hose-resistance estimate
onverges to the true parameter exponentially and monotonically, and
≤ 𝑅̂𝑙𝑖𝑛(𝑡) ≤ 𝑅𝑙𝑖𝑛,∀𝑡 ≥ 0.

.3.2. ISS of the closed-loop system with linear compensation
In this section, ISS of the closed-loop tracking error dynamics as

resented in (19) with respect to the input 𝑤(𝑡) is ensured. In other
ords, ISS of the controlled system in the compensation phase is
uaranteed. This is achieved by using Theorem 2 below, the proof of
his theorem is appended in Appendix.

heorem 2. Consider a scalar NDDE
𝑑
𝑑𝑡

(𝑒(𝑡) − 𝛾𝑒(𝑡 − 𝜏)) = 𝑎𝑒(𝑡) + 𝑏𝑒(𝑡 − 𝜏) +𝑤(𝑡) (27)

with an external input 𝑤(𝑡), a state 𝑒(𝑡), a positive real delay 𝜏, and real
scalar system parameters 𝛾, 𝑎, and 𝑏. The given neutral delay differential
equation is input-to-state stable if

• 0 ≤ 𝛾 < 1;
• 𝑎 < 0;
• 𝑏 ≥ 0;
• |𝑎| > |𝑏|.

Theorem 2 states that the scalar NDDE (19), representing the error
dynamics in the compensation phase, is ISS with respect to the input
𝑤(𝑡) if the parametric bounds in Theorem 2 are satisfied. Substituting
the system parameters of (19) in the inequalities in Theorem 2 results
in the following inequality conditions on the system parameters:

0 ≤ 𝑅̂𝑙𝑖𝑛𝐵ℎ𝐶𝑙𝑢𝑛𝑔

(

1 +
𝑅𝑙𝑢𝑛𝑔

𝑅𝑙𝑒𝑎𝑘

)

< 1, (28)

𝐴ℎ < 0, (29)
𝑅̂𝑙𝑖𝑛𝐵ℎ
𝑅𝑙𝑒𝑎𝑘

≥ 0, (30)

|𝐴ℎ| > |

𝑅̂𝑙𝑖𝑛𝐵ℎ
𝑅𝑙𝑒𝑎𝑘

|. (31)

ssuming that all system parameters, i.e., resistances and compliance,
re positive, bounds on 𝑅̂𝑙𝑖𝑛 are obtained such that the inequalities are
atisfied. From these bounds a single bound for the resistance estimate
̂ 𝑙𝑖𝑛 is obtained that ensures all bounds (28)–(29):

≤ 𝑅̂𝑙𝑖𝑛 < 𝑅𝑙𝑖𝑛 +
𝑅𝑙𝑒𝑎𝑘𝑅𝑙𝑢𝑛𝑔

𝑅𝑙𝑒𝑎𝑘 + 𝑅𝑙𝑢𝑛𝑔
. (32)

If the bound in (32) is ensured, then the NDDE in (19) is ISS according
to Theorem 2. In Theorem 1 it is ensured that 0 ≤ 𝑅̂𝑙𝑖𝑛(𝑡) ≤ 𝑅𝑙𝑖𝑛 in
the estimation phase. Therefore, 𝑅̂𝑙𝑖𝑛 in the compensation phase always
satisfies (32). Therewith, the system is ISS in the compensation phase.
Therewith, the second contribution of this paper is complete.

6. Quadratic hose resistance and estimator

In this section, the quadratic hose resistance is addressed and in-
cluded in the proposed control strategy to improve performance. This
is the third contribution of this paper.
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6.1. Quadratic hose resistance

In Section 2, the nonlinearity of the hose is recognized as a relevant
system property for control which is often neglected in literature. In
Fig. 3, it is clearly seen that the relation between the flow through the
hose 𝑄𝑜𝑢𝑡 and the pressure drop over the hose 𝛥𝑝 is nonlinear. This
nonlinearity is accurately modeled by the following relation:

𝛥𝑝 = 𝑅𝑙𝑖𝑛𝑄𝑜𝑢𝑡 + 𝑅𝑞𝑢𝑎𝑑𝑄𝑜𝑢𝑡|𝑄𝑜𝑢𝑡| (33)

with 𝑅𝑙𝑖𝑛 and 𝑅𝑞𝑢𝑎𝑑 the linear and quadratic resistance coefficients,
respectively. Note that 𝑓ℎ𝑜𝑠𝑒(𝑄𝑜𝑢𝑡) in Fig. 4 is replaced by the quadratic
hose model in (33). To compensate for the pressure drop 𝛥𝑝 in the
control strategy of Fig. 4, estimates of the parameters 𝑅𝑙𝑖𝑛 and 𝑅𝑞𝑢𝑎𝑑
are used to compute the estimated pressure drop 𝛥𝑝̂ = 𝑅̂𝑙𝑖𝑛𝑄𝑜𝑢𝑡 +
𝑅̂𝑞𝑢𝑎𝑑𝑄𝑜𝑢𝑡|𝑄𝑜𝑢𝑡|.

6.2. Quadratic hose model estimation

To estimate the parameters of the quadratic hose model, 𝑅𝑙𝑖𝑛 and
𝑅𝑞𝑢𝑎𝑑 , the estimator with delay compensation in (21) and (22) is
extended to
̇̂𝜃(𝑡) =𝑃 (𝑡)

𝑝𝑜𝑢𝑡(𝑡 − 𝜏𝑠) − 𝑝𝑎𝑤(𝑡 − 𝜏𝑠)
𝑚2

𝜙0(𝑡 − 𝜏𝑠)

− 𝑃 (𝑡)
𝜃̂(𝑡)𝜙0(𝑡 − 𝜏𝑠)

𝑚2
𝜙0(𝑡 − 𝜏𝑠)

(34)

nd

̇ (𝑡) = 𝛽𝑃 (𝑡) − 𝑃 (𝑡)
𝜙0(𝑡 − 𝜏𝑠)𝜙𝑇

0 (𝑡 − 𝜏𝑠)

𝑚2
𝑃 (𝑡), (35)

here 𝜃̂(𝑡) =
[

𝑅̂𝑙𝑖𝑛(𝑡)
𝑅̂𝑞𝑢𝑎𝑑 (𝑡)

]

, 𝑃 (𝑡) =

𝑃11(𝑡) 𝑃12(𝑡)
𝑃21(𝑡) 𝑃22(𝑡)

]

, 𝜙0(𝑡) =
[

𝑄𝑜𝑢𝑡(𝑡)
𝑄𝑜𝑢𝑡(𝑡)|𝑄𝑜𝑢𝑡(𝑡)|

]

, 𝑚 is the scalar normalization

arameters, and 𝛽 is the scalar exponential forgetting factor. To handle
he output delay 𝜏𝑠 in the estimator the same method as proposed in
ection 5.1 is used, i.e., 𝑝𝑜𝑢𝑡(𝑡) and 𝑄𝑜𝑢𝑡(𝑡) are delayed by 𝜏𝑠 before
ntering the estimator. The performance gain with this quadratic hose
odel is experimentally shown in Section 8.

. Simulation case study

In this section, the results of a simulation case study are presented.
n this case study, the dynamics with a linear hose-resistance model
rom Section 4 and the linear estimator and compensator from Section 5
re considered. The goal of this simulation case study is threefold. First,
t shows the effect of delay compensation, proposed in Section 5.1,
n the estimator and resulting tracking performance. Second, it shows
he potential of the proposed control strategy. Third, it validates the
btained analytical results of Section 5.3.2.

A test case description is given in Section 7.1 and the simulation
esults are presented and discussed in Section 7.2.

.1. Test case description

In this simulation case study, a sedated patient under Pressure
ontrolled Ventilation (PCV) ventilation is considered. The patient
nd hose parameters are presented in Table 1. The considered target
ressure consists of a filtered block signal where PEEP and IPAP are
and 20 mbar, respectively. The breathing frequency, i.e., respiratory

ate, of the target pressure is 15 breaths per minute.
Three different controllers are compared in this simulation case

tudy. An integral feedback controller with transfer function 𝐶(𝑠) =
6.285
𝑠 , with 𝑠 ∈ C the Laplace variable, is used as a benchmark control

strategy. Furthermore, two hose-compensation (HC) controllers are
considered. The first HC controller does not compensate the sensor
delay, i.e., 𝜏 = 0. The second HC controller compensates the sensor
𝑠
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Table 1
Controller settings and the patient-hose configuration, as used in the simulations.

Parameter Value Unit

𝛽 0.7 s−1

𝑃 (0) 5 × 10−8 s/mL2

𝑅̂𝑙𝑖𝑛(0) 0 mbar s/L
𝑚 1 –
𝑅𝑙𝑒𝑎𝑘 24 mbar s/L
𝑅𝑙𝑢𝑛𝑔 5 mbar s/L
𝑅𝑙𝑖𝑛 4.4 mbar s/L
𝐶𝑙𝑢𝑛𝑔 20 mL/mbar

delay exactly, i.e., 𝜏𝑠 = 𝜏𝑠 = 16 ms. The HC controllers are in the
estimation phase for approximately 5 breaths. Thereafter, estimation
is turned off and compensation is turned on with a constant hose-
resistance estimate 𝑅̂𝑙𝑖𝑛. The controller parameters for both controllers
are also presented in Table 1.

7.2. Simulation results

The results of the simulations are shown in Figs. 5 and 6. Fig. 5
shows the resulting airway pressure and the patient flow for the con-
sidered control strategies, and the estimated resistance 𝑅̂𝑙𝑖𝑛 is shown
in Fig. 6. The calibration phase is indicated by the gray background
in the figures and the compensation phase is indicated by the white
background.

First the control strategies are compared during the calibration
phase. The airway pressure for both HC controllers does not converge
to the target pressure because hose compensation is not active yet,
see Fig. 5. Fig. 6 shows convergence of both estimators during the
calibration phase. It is clearly observed that the timing mismatch in
the signals, i.e., 𝜏𝑠 = 0, causes oscillations in the estimate. The com-
pensation for these delays, i.e., 𝜏𝑠 = 𝜏𝑠, solves this problem and results
in exact convergence of the estimate, as supported by the analysis in
Section 5.3.1. Note that the worst-case switching time is considered for
the HC controller with 𝜏𝑠 = 0.

Next, performance of all three controllers is analyzed during the
compensation phase. Fig. 5 shows that the benchmark controller has
significant overshoot and undershoot in the airway pressure. Another
important limitation of the benchmark controller is the overshoot in
patient flow, as shown in Fig. 5. This overshoot in patient flow can
induce false triggering of breaths.

Both HC controllers show a significant improvement in tracking
performance. They have a small mismatch between the airway and
target pressure during the transient phases. This mismatch is caused
by the blower delay 𝜏𝑏, which causes the compensation to be slightly
too late. These mismatches are significantly smaller than the mismatch
of the benchmark controller. Fig. 5 shows that both HC controllers have
zero overshoot in the patient flow. Finally, it is observed that the HC
controller without delay compensation is slightly overcompensating,
see the first zoom plot in Fig. 5. This is caused by the fact that the
constant estimate 𝑅̂𝑙𝑖𝑛 is slightly too high.

Concluding, it is shown that delay compensation ensures con-
vergence of the resistance estimate to the true hose resistance and
improved tracking performance. Also the analytical results of Sec-
tion 5.3.2 are validated.

8. Experimental case study

In this section, an experimental case study is conducted to show that
explicitly accounting for the output delay and nonlinear nature of the
hose-resistance model in the control strategy can significantly improve
performance. In Section 8.1, the experimental setup and considered
case are presented. The results with the control strategy using a linear
hose-resistance model are analyzed in Section 8.2. Then, in Section 8.3,
experimental results of the controller with the quadratic hose-resistance
estimator with and without delay compensation are shown.
7

Fig. 5. Simulation results of the benchmark and both linear hose-compensation control
strategies. This figure shows the resulting airway pressure and patient flow for
all control strategies. It clearly shows that both hose-compensation strategies avoid
overshoot in both pressure and flow. Furthermore, it shows that the delay compensation
avoid a slight mismatch in pressure at the plateau values as shown in the first inset.

Fig. 6. Estimated hose resistance 𝑅̂𝑙𝑖𝑛 of both hose-compensation controllers, showing
that the delay compensation avoids oscillations and results in an exact estimation of
the hose resistance.

8.1. Experimental setup and case description

The main components of the experimental setup used in this case
study are depicted in Fig. 7. This figure shows a Macawi blower-driven
mechanical ventilation module (DEMCON Macawi respiratory systems,
Best, The Netherlands). The ventilator is attached to a dSPACE system
(dSPACE GmbH, Paderborn, Germany), where the controls are imple-
mented using MATLAB Simulink (MathWorks, Natick, MA) running at
a sampling frequency of 500 Hz. Furthermore, the ASL 5000™Breathing
Simulator (IngMar Medical, Pittsburgh, PA) is used to emulate the
patient.

The patient and controller parameters used in Section 8.2 are pre-
sented in Table 1. The control parameters of the quadratic HC con-
troller, used in Section 8.3, are given in Table 2.

8.2. Sequential estimation and compensation with a linear hose model

In this section, the control scheme as described in Sections 3, 4,
and 5 is implemented in the experimental setup. The resulting airway
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Fig. 7. Experimental setup with the most important parts, i.e., blower-driven ventilator,
ASL 5000 breathing simulator, and the hose.

Fig. 8. Experimental results of the benchmark and linear hose-compensation control
trategies with open-loop estimation. This figure shows the resulting airway pressure
nd patient flow. It clearly shows that both hose-compensation strategies reduce
vershoot in both pressure and flow. Furthermore, it shows that the delay compensation
educes the mismatch in pressure at the plateau values as shown in the first zoom plot.

able 2
ontrol parameters of the nonlinear hose-compensation controller.
Parameter Value Unit

𝛽 0.5 s−1

𝑃 (0)
[

5 × 10−8 0
0 1 × 10−14

] [

s mL−2 s2 mL−3

s2 mL−3 s3 mL−4

]

𝑅̂𝑙𝑖𝑛(0) 0 mbar s/L
𝑅̂𝑞𝑢𝑎𝑑 (0) 0 mbar s2/L2

pressure and patient flow are depicted in Fig. 8. Fig. 9 shows the linear
resistance estimate for both HC controllers. The gray area in these
figures represents the calibration phase of the HC controllers. The white
area represents the compensation phase of the HC control strategies.

The tracking performance of the different controllers in the com-
pensation phase is shown in Fig. 8. The benchmark controller shows
clear overshoot and undershoot in the airway pressure and the patient
flow. The HC control strategies show a strong reduction in pressure
overshoot. A slight overcompensation is observed in the plateau phases,
indicating an overestimation of the hose-resistance in these phases. Fur-
thermore, the HC controllers show almost no overshoot and undershoot
8

Fig. 9. Estimate 𝑅̂𝑙𝑖𝑛 of the hose-compensation controllers. Showing that the delay
ompensation results in slightly lower values and smaller oscillations. The figure shows
hat the delay compensation reduces oscillations in the resistance estimate slightly.

n patient flow. It is concluded that the HC control strategy improves
erformance significantly.

Fig. 9 shows a clear difference between the two HC control strate-
ies. It is observed that both resistance estimates are oscillating in the
alibration phase. This is caused by the nonlinear nature of the hose
esistance. The linear resistance estimate is oscillating with the flow
ecause it cannot capture the quadratic hose resistance. The dispersion
f the estimate with delay compensation is significantly smaller than
ithout delay compensation. Also, delay compensation results in a

ower estimate value. This is also observed in the performance of
he controller. Fig. 8 shows that the steady-state overcompensation is
lightly smaller when compensating for the delay. Note that the switch
imes represent the worst-case scenario.

From these experiments, it is concluded that the HC control strat-
gy significantly improves pressure tracking performance and delay
ompensation improves performance even further.

.3. Simultaneous estimation and compensation with a quadratic hose
odel

In this section, the control scheme as described in Sections 3 and
is analyzed in an experimental case study. Note that estimation and

ompensation are performed simultaneously in this section. A signif-
cant advantage of simultaneous estimation and compensation is that
erformance is improved immediately, and that the controller adapts
o changes immediately.

The results of the experiments with the nonlinear HC controllers are
hown in Figs. 10 and 11. The benchmark controller is exactly the same
s in the previous section; therefore, it is not addressed separately here.

The HC controller without delay compensation shows significant
ressure overshoot in Fig. 10. This is caused by the peak in the
ose-resistance estimate, see Fig. 11. This peak in the estimates is
result of the timing mismatch between the signals. This controller

hows overshoot comparable to the overshoot of the benchmark con-
roller; however, settling time is significantly shorter. Overshoot and
ndershoot in patient flow is significantly reduced compared to the
enchmark.

The HC controller with delay compensation, i.e., 𝜏𝑠 = 16 ms, shows
almost no overshoot in pressure and zero overshoot in patient flow.
Considering the hose-resistance estimate, see Fig. 11, it is observed that
the estimate is significantly lower and has a smaller dispersion than the
HC controller without delay compensation. Concluding, the nonlinear
HC controller with delay compensation out performs the other control
strategies presented in this paper in terms of steady state-tracking error,
pressure overshoot, and patient flow overshoot. This case study shows
that the pressure tracking performance depends on the accuracy of the
estimated delay 𝜏𝑠. However, for 𝜏𝑠 = 0, which is a very poor delay
estimate, the proposed control strategy still outperforms the benchmark
controller. This fact also underlines the robustness of the proposed
approach for a mismatch in the delay estimate.
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Fig. 10. Experimental results of the benchmark and the nonlinear hose compensation
ontrol strategies with online estimation. This figure shows the resulting airway
ressure and patient flow. The figure clearly shows that the hose-compensation control
trategies reduce overshoot in both flow and pressure significantly. Furthermore,
t shows that overshoot in pressure is reduced significantly by including delay
ompensation in the controller.

Fig. 11. Estimated 𝑅̂𝑙𝑖𝑛 and 𝑅̂𝑞𝑢𝑎𝑑 of the different hose-compensation controllers with a
quadratic hose-resistance model. The figure shows that the delay compensation reduces
oscillations in the resistance estimates significantly.

The estimated hose models and the actual hose model are displayed
in Fig. 12. It shows a hose-resistance curve obtained through a static
calibration, the dispersion of the two estimated models upon conver-
gence, and a hose-resistance curve measured during ventilation. Firstly,
a clear difference between the static calibration and the online curve is
observed. Because of the relatively low pressures during calibration, the
calibration resistance is significantly lower than the resistance during
ventilation. It is clearly observed that the estimated curve without
delay compensation resembles the hose-resistance curve of the static
calibration the best. The HC controller with delay compensation obtains
9

Fig. 12. Actual hose-resistance model and the dispersion of the estimated models. The
figure shows that the dispersion of the estimated model is smaller when compensating
for the sensor delay 𝜏𝑠. Furthermore, the estimated hose-model when compensating
for the sensor delay gives a better representation of the actual hose resistance during
ventilation.

an accurate estimate of the online hose-resistance curve. Also, the
dispersion of this estimate is much smaller than the dispersion of the
curve without delay compensation. Hence, online estimation with delay
compensation results in the best model of the hose resistance during
ventilation.

Concluding, explicitly taking into account the nonlinearity of the
hose and compensating for the measurements delays in the estimators
can significantly improve estimation and pressure tracking performance
in ventilation systems.

9. Conclusions and future work

It this paper, pressure tracking performance for mechanical ven-
tilation is significantly improved. This is achieved by addressing two
system properties of mechanical ventilation system, namely, delays in
the system dynamics and nonlinear characteristics of the hose resis-
tance. It is shown that using explicit knowledge about these system
properties in the controller improves pressure tracking performance
significantly.

A control strategy that estimates a hose-resistance model and uses
this estimated model to compensate the pressure drop over the hose is
presented. Then, a compensation of the output delay is included in the
estimator of this control strategy. Analytically it is proved that the es-
timated hose resistance with this delay compensation converges to the
true hose resistance and that the closed-loop system is Input-to-State
Stable (ISS). Furthermore, it is shown in simulations and experiments
that this delay compensation improves performance.

Thereafter, the linear hose-resistance model used in this control
strategy is extended to a quadratic resistance model. In an experimental
case study a significant increase in tracking performance compared to
the other control strategies is observed. Concluding, this paper shows
that explicitly taking into account output delays and the nonlinear hose
characteristics in the control strategy can improve pressure tracking
performance. Therewith, patient support and comfort is improved.

Experimental validation of the proposed control strategy on use-
cases with spontaneously breathing patients is left for future work.
The results in Reinders et al. (2020a) are promising regarding the
robustness of the proposed method in case of spontaneously breathing
patients. Also, analytical stability proofs of the controller with the
quadratic hose-resistance model is left for future work.
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Appendix. Proof of Theorem 2

The proof of Theorem 2 consists of three main steps:

• Lemma 3 shows that the unforced scalar NDDE, i.e., (27) with
𝑤(𝑡) = 0 ∀ 𝑡, is exponentially stable, i.e., converging to zero
exponentially fast.

• Lemma 4 shows that the system response of (27) for a bounded
input 𝑤(𝑡) and zero initial condition, i.e., 𝑒(𝑡) = 0, ∀ 𝑡 ∈ [−𝜏, 0], is
bounded.

• Theorem 2 is proved using the obtained properties of the unforced
and forced solution of (27), and the fact that the explicit solution
of (27) is the sum of the unforced and forced solution.

In Definition 2 the fundamental function 𝑘(𝑡) for the NDDE in (27)
without input is given.

Definition 2 (Scalar Version of the Fundamental Matrix Defined in Bell-
man & Cooke, 1963; Kharitonov, 2013). Let 𝑘(𝑡) be a solution of the
equation
𝑑
𝑑𝑡

[𝑘(𝑡) − 𝛾𝑘(𝑡 − 𝜏)] = 𝑎𝑘(𝑡) + 𝑏𝑘(𝑡 − 𝜏), 𝑡 ≥ 0, (A.1)

that satisfies the following conditions:

• initial condition, 𝑘(𝑡) = 0, for 𝑡 < 0, and 𝑘(0) = 1;
• sewing condition, 𝑘(𝑡) − 𝑘(𝑡 − 𝜏)𝛾 is continuous for 𝑡 ≥ 0.

Then 𝑘(𝑡) is known as the fundamental function of system (27) with
𝑤(𝑡) = 0 for all 𝑡 ≥ 0.

The definition of global exponential stability of a scalar NDDE is
given in Definition 3.

Definition 3 (Based on Definition 1.21 in Michiels & Niculescu, 2014).
The null solution of the scalar NDDE in (27) with zero input, i.e., 𝑤(𝑡) =
0 ∀ 𝑡, is globally exponentially stable if and only if there exist constants
𝐶 > 0 and 𝛾 > 0 such that

∀𝜑 ∈ 𝒞 ([−𝜏, 0],R), ‖𝑒𝑡(𝜑)‖ ≤ 𝐶𝑒−𝛾𝑡‖𝜑‖𝑠, (A.2)

where the function segment 𝜑 is the initial condition of (27).

In Proposition 1 properties of the NDDE without input that ensure
global exponential stability of its null solution are given.

Proposition 1 (Based on Proposition 1.22 in Michiels & Niculescu, 2014).
The null solution of the scalar NDDE in (27) with zero input, i.e., 𝑤(𝑡) =
0 ∀ 𝑡, is globally exponentially stable if and only if all characteristic roots are
located in the open left half plane and bounded away from the imaginary
axis.

The characteristic roots of an NDDE are defined in Michiels and
Niculescu (2014, p. 16). The characteristic roots are the values for 𝜆 for
which the characteristic equation holds. The characteristic equation of
the scalar NDDE (27) with zero input 𝑤(𝑡) = 0 ∀ 𝑡 is
det(𝛥𝑁 (𝜆)) = 0 (A.3)
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with

𝛥𝑁 (𝜆) ∶= 𝜆(1 − 𝛾𝑒−𝜆𝜏 ) − 𝑎 − 𝑏𝑒−𝜆𝜏 . (A.4)

Next, Lemma 3 proves that the unforced scalar NDDE, i.e., (27)
with 𝑤(𝑡) = 0 ∀ 𝑡, is globally exponentially stable, i.e., its solutions are
converging to zero exponentially. First it is shown that the real parts of
the roots of its characteristic equations are strictly negative. Thereafter
it is shown that the spectral abscissa, i.e., the asymptote to which the
infinite sequence of poles of the NDDE converge, is strictly negative.
This ensures that the infinite sequence of poles is negative and does not
converge towards the imaginary axis. Finally, Proposition 1 is invoked
to ensure exponential stability.

Lemma 3. The scalar NDDE (27) with zero input 𝑤(𝑡) = 0 ∀ 𝑡 is globally
exponentially stable if 0 ≤ 𝛾 < 1, 𝑎 < 0, 𝑏 ≥ 0, and |𝑎| > |𝑏|.

roof. From (A.3), the characteristic roots of (27) are given by

= 𝑎 + 𝑏𝑒−𝜆𝜏

1 − 𝛾𝑒−𝜆𝜏
. (A.5)

Using the definition of products of exponentials, Euler’s formula, 𝑐 ∶=
cos(−𝐼𝑚(𝜆)𝜏), and 𝑠 ∶= sin(−𝐼𝑚(𝜆)𝜏) gives

𝑒−𝜆𝜏 = 𝑒−𝑅𝑒(𝜆)𝜏𝑒−𝑗𝐼𝑚(𝜆)𝜏

= 𝑒−𝑅𝑒(𝜆)𝜏 (cos(−𝐼𝑚(𝜆)𝜏) + 𝑗 sin(−𝐼𝑚(𝜆)𝜏))

= 𝑒−𝑅𝑒(𝜆)𝜏 (𝑐 + 𝑗𝑠),

(A.6)

here 𝑗 is the imaginary unit. Substitution of (A.6) in (A.5) gives

=

𝜆𝐴
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑎 + 𝑏𝑒−𝑅𝑒(𝜆)𝜏𝑐 +

𝜆𝐵
⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑗𝑏𝑒−𝑅𝑒(𝜆)𝜏𝑠

1 − 𝛾𝑒−𝑅𝑒(𝜆)𝜏𝑐
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

𝜆𝐶

+−𝑗𝛾𝑒−𝑅𝑒(𝜆)𝜏𝑠
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

𝜆𝐷

=
𝜆𝐴 + 𝜆𝐵
𝜆𝐶 + 𝜆𝐷

, (A.7)

where 𝜆𝐴 and 𝜆𝐶 are real numbers and 𝜆𝐵 and 𝜆𝐷 are pure imaginary
numbers. Next, this equation is rewritten by multiplying the numerator
and denominator by the complex conjugate of the denominator:

𝜆 =
𝜆𝐴 + 𝜆𝐵
𝜆𝐶 + 𝜆𝐷

𝜆𝐶 − 𝜆𝐷
𝜆𝐶 − 𝜆𝐷

=
𝜆𝐴𝜆𝐶 − 𝜆𝐴𝜆𝐷 + 𝜆𝐵𝜆𝐶 − 𝜆𝐵𝜆𝐷

𝜆2𝐶 − 𝜆2𝐷
. (A.8)

Since 𝜆𝐴𝜆𝐶 , 𝜆𝐵𝜆𝐷, 𝜆2𝐶 , and 𝜆2𝐷 are real numbers and 𝜆𝐴𝜆𝐷 and 𝜆𝐵𝜆𝐶
are pure imaginary numbers, the real part and imaginary parts of this
equation are separated, resulting in an equation for the real parts of the
characteristic roots:

𝑅𝑒(𝜆) =
𝜆𝐴𝜆𝐶 − 𝜆𝐵𝜆𝐷

𝜆2𝐶 − 𝜆2𝐷
. (A.9)

or 𝜆 to be an eigenvalue, it must satisfy this equation. Next, it is
shown that for non-negative real parts of lambda, i.e., 𝑅𝑒(𝜆) ≥ 0, this
equation cannot be satisfied given the bounds on the parameters 𝑎, 𝑏,
nd 𝛾. It is shown that for 𝑅𝑒(𝜆) ≥ 0 the denominator of (A.9) is strictly

positive and its numerator is strictly negative, i.e., the right-hand side
is strictly negative. Therewith, it is shown that (A.9) cannot be satisfied
for 𝑅𝑒(𝜆) ≥ 0, hence, there exist no non-negative eigenvalues.

It is shown that for 𝑅𝑒(𝜆) ≥ 0 the denominator of (A.9) is strictly
positive, i.e.,

1 + 𝛾2𝑒−2𝑅𝑒(𝜆)𝜏 − 2𝛾𝑒−𝑅𝑒(𝜆)𝜏𝑐 > 0. (A.10)

For 𝑅𝑒(𝜆) ≥ 0 it holds that 𝑒−𝑅𝑒(𝜆)𝜏 ∈ [0, 1], hence 2𝛾𝑒−𝑅𝑒(𝜆)𝜏 ≥ 0. Using
this, the left-hand side of (A.10) is lower bounded for 𝑐 = 1 using
𝑐 ∶= cos(−𝐼𝑚(𝜆)𝜏) ∈ [−1, 1]. This gives an inequality that is more strict
than (A.10)

1 + 𝛾2𝑒−2𝑅𝑒(𝜆)𝜏 − 2𝛾𝑒−𝑅𝑒(𝜆)𝜏 = (1 − 𝛾𝑒−𝑅𝑒(𝜆)𝜏 )2 > 0. (A.11)

This inequality holds because 0 ≤ 𝛾 < 1 and 𝑒−𝑅𝑒(𝜆)𝜏 ∈ [0, 1], hence,
0 ≤ 𝛾𝑒−𝑅𝑒(𝜆)𝜏 < 1. Therefore, it is proved that the denominator of (A.9)
is strictly positive for 𝑅𝑒(𝜆) ≥ 0.
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Next, it is shown that the numerator of (A.9) is strictly negative for
𝑅𝑒(𝜆) ≥ 0, i.e.,

𝑎 + 𝑏𝑒−𝑅𝑒(𝜆)𝜏𝑐 − 𝑎𝛾𝑒−𝑅𝑒(𝜆)𝜏𝑐 − 𝑏𝛾𝑒−2𝑅𝑒(𝜆)𝜏 < 0. (A.12)

Because 𝑏 ≥ 0, −𝑎𝛾 ≥ 0, and 𝑒−𝑅𝑒(𝜆)𝜏 ∈ [0, 1], it is known that 𝑐 = 1 gives
an upper bound for (A.12). Therefore, showing that (A.12) with 𝑐 = 1
is strictly negative is sufficient. This gives

(𝑎 + 𝑏𝑒−𝑅𝑒(𝜆)𝜏 ) − (𝑎 + 𝑏𝑒−𝑅𝑒(𝜆)𝜏 )𝛾𝑒−𝑅𝑒(𝜆)𝜏

= (𝑎 + 𝑏𝑒−𝑅𝑒(𝜆)𝜏 )(1 − 𝛾𝑒−𝑅𝑒(𝜆)𝜏 ) < 0.
(A.13)

Using the parameter bounds and 𝑅𝑒(𝜆) ≥ 0, the first part between
brackets is strictly negative, and the second part between brackets is
strictly positive. Therefore, it is ensured that the numerator of (A.9) is
strictly negative for 𝑅𝑒(𝜆) ≥ 0. Hence, the characteristic roots of (27)
with the given parameter bounds are strictly negative.

It remains to proof that the spectral abscissa 𝑐𝐷 are in the open
left-half plane. The spectral abscissa 𝑐𝐷 is, according to Michiels and
Niculescu (2014, p. 19), defined as

𝑐𝐷 ∶= sup{𝑅𝑒(𝜆) ∶ det 𝛥𝐷(𝜆) = 0} (A.14)

with 𝛥𝐷(𝜆) = 1−𝛾𝑒−𝜆𝜏 . The spectral abscissa is the supremum of the real
part of the solution of (using the definition of products of exponentials
and Euler’s formula):

1 − 𝛾𝑒−𝑅𝑒(𝜆)𝜏 (𝑐 − 𝑗𝑠) = 0. (A.15)

Considering the real part only gives

1 − 𝛾𝑒−𝑅𝑒(𝜆)𝜏𝑐 = 0. (A.16)

This gives

𝑅𝑒(𝜆) = −1
𝜏
ln
(

1
𝛾𝑐

)

. (A.17)

For 𝑐 < 0, the right-hand side is imaginary, hence, it has no solutions.
The supremum for this equation is given by 𝑐 = 1, which gives spectral
abscissa 𝑐𝐷 = − 1

𝜏 ln
(

1
𝛾

)

. Since 0 ≤ 𝛾 < 1, it is concluded that 𝑐𝐷 < 0,
i.e., the spectral abscissa is strictly smaller than zero.

Invoking Proposition 1 ensures exponential stability of the scalar
NDDE in (27) with zero input, given the bounds on the parameters.
Therewith, the proof of this lemma is completed. □

In Lemma 4 it is proved that the states of the scalar NDDE in (27)
ith input 𝑤(𝑡) and zero initial condition, i.e., 𝑒(𝑡) = 0, ∀ 𝑡 ∈ [−𝜏, 0],

remain bounded if the parameters satisfy 0 ≤ 𝛾 < 1, 𝑎 < 0, 𝑏 ≥ 0, and
|𝑎| > |𝑏|. In the proof of Lemma 4 an explicit solution of (27) with zero
initial condition is derived. Thereafter, it is shown that this expression
is bounded, i.e., 𝑒(𝑡) is bounded, for bounded inputs 𝑤(𝑡).

Lemma 4. The scalar NDDE in (27) with input 𝑤(𝑡) and zero initial
condition, i.e., 𝑒(𝑡) = 0, ∀ 𝑡 ∈ [−𝜏, 0], remains bounded if the parameters
atisfy 0 ≤ 𝛾 < 1, 𝑎 < 0, 𝑏 ≥ 0, and |𝑎| > |𝑏| and the input 𝑤(𝑡) is bounded.

Proof. To obtain the explicit solution of (27) for zero initial condition,
the proof of Theorem 6.1 in Kharitonov (2013) is followed. Let 𝑡 > 0
and 𝜉 ∈ (0, 𝑡). Using (A.1), the following partial derivative is computed

𝐽 ∶= 𝜕
𝜕𝜉

([𝑘(𝑡 − 𝜉) − 𝛾𝑘(𝑡 − 𝜉 − 𝜏)] 𝑒(𝜉, 𝜑))

= − [𝑎𝑘(𝑡 − 𝜉) + 𝑏𝑘(𝑡 − 𝜉 − 𝜏)] 𝑒(𝜉, 𝜑) (A.18)
+ [𝑘(𝑡 − 𝜉) − 𝛾𝑘(𝑡 − 𝜉 − 𝜏)] 𝑒̇(𝜉, 𝜑)

The last line in the previous equation is rewritten using the fact that
𝑒(𝜉, 𝜑) is a solution of (27). This results in

𝐽1 ∶= [𝑘(𝑡 − 𝜉) − 𝛾𝑘(𝑡 − 𝜉 − 𝜏)] 𝑒̇(𝜉, 𝜑)

=𝑘(𝑡 − 𝜉) [𝑎𝑒(𝜉, 𝜑) + 𝑏𝑒(𝜉 − 𝜏, 𝜑)

+𝛾𝑒̇(𝜉 − 𝜏, 𝜑) +𝑤(𝑡)]
(A.19)
− 𝛾𝑘(𝑡 − 𝜉 − 𝜏)𝑒̇(𝜉, 𝜑).

11
Now, (A.19) is substituted in (A.18) and terms are canceled out, result-
ing in the following equality:

𝐽 ∶= 𝜕
𝜕𝜉

([𝑘(𝑡 − 𝜉) − 𝑘(𝑡 − 𝜉 − 𝜏)] 𝑒(𝜉, 𝜑))

=𝑘(𝑡 − 𝜉)𝛾𝑒̇(𝜉 − 𝜏, 𝜑) − 𝑘(𝑡 − 𝜉 − 𝜏)𝛾𝑒̇(𝜉, 𝜑)

+ 𝑘(𝑡 − 𝜉)𝑏𝑒(𝜉 − 𝜏, 𝜑) − 𝑏𝑘(𝑡 − 𝜉 − 𝜏)𝑒(𝜉, 𝜑)

+ 𝑘(𝑡 − 𝜉)𝑤(𝑡).

(A.20)

ntegrating this equality by 𝜉 from 0 to 𝑡 results in:

[𝑘(0) − 𝛾𝑘(−𝜏)] 𝑒(𝑡, 𝜑) − [𝑘(𝑡) − 𝛾𝑘(𝑡 − 𝜏)] 𝑒(0, 𝜑)

=∫

𝑡

0
𝛾𝑘(𝑡 − 𝜉)𝑒̇(𝜉 − 𝜏, 𝜑)𝑑𝜉 − ∫

𝑡

0
𝛾𝑘(𝑡 − 𝜉 − 𝜏)𝑒̇(𝜉, 𝜑)𝑑𝜉

+∫

𝑡

0
𝑏𝑘(𝑡 − 𝜉)𝑒(𝜉 − 𝜏, 𝜑)𝑑𝜉 − ∫

𝑡

0
𝑏𝑘(𝑡 − 𝜉 − 𝜏)𝑒(𝜉, 𝜑)𝑑𝜉

+∫

𝑡

0
𝑘(𝑡 − 𝜉)𝑤(𝑡)𝑑𝜉.

(A.21)

Now, filling in the initial condition property for 𝑘(𝑡), i.e., 𝑘(0) = 1 and
𝑘(−𝜏) = 0, and some rewriting (by shifting the integration interval)
gives the explicit solution of (27):

𝑒(𝑡, 𝜑) = [𝑘(𝑡) − 𝛾𝑘(𝑡 − 𝜏)] 𝑒(0, 𝜑)

+ ∫

0

−𝜏
𝑏𝑘(𝑡 − 𝜉 − 𝜏)𝑒(𝜉)𝑑𝜉

+ ∫

0

−𝜏
𝛾𝑘(𝑡 − 𝜉 − 𝜏)𝑒̇(𝜉)𝑑𝜉

+ ∫

𝑡

0
𝑘(𝑡 − 𝜉)𝑤(𝑡)𝑑𝜉.

(A.22)

Next, the zero-initial condition values are filled in, i.e., 𝑒(0, 𝜑) = 0
and 𝑒(𝜉) = 𝑒̇(𝜉) = 0, ∀𝜉 ∈ [−𝜏, 0]. Filling in gives the explicit solution of
(27) with zero initial condition:

𝑒(𝑡, 𝜑) = ∫

𝑡

0
𝑘(𝑡 − 𝜉)𝑤(𝜉)𝑑𝜉, 𝑡 ≥ 0. (A.23)

From Definition 2, it is known that the fundamental function 𝑘(𝑡)
satisfies the same NDDE as the considered system (27) with zero input,
i.e., 𝑤(𝑡) = 0. Therefore, invoking Lemma 3 shows that 𝑘(𝑡) is exponen-
tially stable, i.e., ‖𝑘(𝑡)‖ ≤ 𝐶𝑒−𝛾𝑡 for some positive constants 𝐶 and 𝛾,
see Definition 3. Using this property of 𝑘(𝑡) and (A.23), the following
result is obtained for the scalar NDDE with zero initial condition:

|𝑒(𝑡, 𝜑)| ≤ ∫

𝑡

0
|𝐶𝑒−𝛾(𝑡−𝜉)|𝑑𝜉 sup

𝑠≥0
|𝑤(𝑠)|

= 𝐶
𝛾
sup
𝑠≥0

|𝑤(𝑠)|[𝑒−𝛾(𝑡−𝜉)]𝑡0

= 𝐶
𝛾
sup
𝑠≥0

|𝑤(𝑠)|
(

1 − 𝑒−𝛾𝑡
)

≤ 𝐶
𝛾
sup
𝑠≥0

|𝑤(𝑠)|.

(A.24)

his results ensures that the state of the NDDE in (27) is bounded if it
as a bounded input and starts with zero initial condition, i.e., 𝑒(𝑡) = 0
or 𝑡 ≤ 0. □

Finally, in the proof of Theorem 2, the results of Lemmas 3 and 4
re used to show that the NDDE in (27) is ISS.

roof of Theorem 2. The explicit expression for 𝑒(𝑡, 𝜑) in (A.22) shows
hat the explicit solution of (27) is the sum of the solution with non-
ero initial condition and zero input, and the solution with zero initial
ondition and non-zero input. This ensures that the following bound on
(𝑡, 𝜑) exists (using Lemmas 3 and 4, and Proposition 1):

|𝑒(𝑡, 𝜑)| ≤ 𝐶1𝑒
−𝛾1𝑡 +

𝐶2
𝛾2

sup
𝑠≥0

|𝑤(𝑠)| (A.25)

ith 𝐶1, 𝐶2, 𝛾1, and 𝛾2 all positive scalar values. Therewith, the ISS
roof of a scalar NDDE (27) with parameters that satisfy 0 ≤ 𝛾 < 1,

𝑎 < 0, 𝑏 ≥ 0, and |𝑎| > |𝑏| is complete. □
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