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Abstract

A response approximation method for stochasti-
cally excited, nonlinear, dynamic systems is pre-
sented. Herein, the output of the nonlinear sys-
tem is approximated by a finite-order Volterra
series. The original nonlinear system is replaced
by a bilinear system in order to determine the
kernels of this Volterra series. The parame-
ters of the bilinear system are determined by
minimizing the difference between the original
system and the bilinear system in a statistical
sense. Application to a piece-wise linear sys-
tem illustrates the effectiveness of this approach
in approximating truly nonlinear, stochastic re-
sponse phenomena in both the statistical mo-
ments and the power spectral density of the re-
sponse of this system in case of a white noise
excitation.

1 Introduction

Stochastically excited nonlinear dynamic sys-
tems are often encountered in practice. Exam-
ples are nonlinear suspensions in vehicles on ran-
dom road surfaces, high-rise buildings forced by
wind or earthquakes and offshore structures ex-
cited by wave motions at sea.
The simulation of the stochastic response of

such systems [Kloeden and Platen, 1992] is,
in general, very time-consuming since accu-
rate estimates of the response statistics require
the simulation of long (or many) time-series.
Therefore, response approximation methods are
needed. For strongly nonlinear systems the
statistical linearization technique [Roberts and
Spanos, 1990] generally fails to provide accurate

results.

To overcome these problems, here a nonlin-
ear approximation method, called statistical bi-
linearization, is presented. Herein, the input-
output relation of the nonlinear system is de-
scribed as a Volterra series [Volterra, 1959]. Of
course, the computational efficiency using this
description should be significantly higher than
that of simulation of the response of the origi-
nal nonlinear system. Therefore, a finite-order
Volterra series will be used to describe the input-
output relation of the nonlinear system. Finite-
order Volterra systems are systems with polyno-
mial nonlinearities [Rugh, 1981]. Consequently,
a nonlinear approximation technique using poly-
nomial nonlinearities can be seen as a natural
extension of linearization. In order to determine
the Volterra kernels in the Volterra series, the
original, nonlinear system is replaced by a bilin-
ear system which has the same Volterra kernels
up to a certain order [Rugh, 1981]. The param-
eters of this bilinear system are determined to
ensure that it describes the original system op-
timally in a statistical sense. Besides the fact
that the replacement of the original system by
a finite-order Volterra model gives us the ad-
vantage of computational efficiency, the gradual
extension of the replacing models from linear to-
wards polynomial will enhance our understand-
ing of the nonlinear response phenomena of the
original system.

The method of statistical bilinearization is ap-
plied to a piece-wise linear system. The piece-
wise linear system can represent many systems
with one-sided stiffness phenomena. Practical
examples are elastic stops in vehicle suspensions,
snubbers on solar arrays connected to satellites
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[Van Campen et al., 1997], suspension bridges or
models used in the offshore industry [Thompson
and Stewart, 1986].
The basic ideas behind the use of an input-

output description for the nonlinear system
based on Volterra series are briefly described in
section 2. In section 3, a technique called bilin-
earization (or Carleman linearization) is used to
construct a finite-order Volterra model. In sec-
tion 4, the statistical bilinearization technique
is proposed and applied to the piece-wise linear
system. In section 5, some results of the appli-
cation of the statistical bilinearization technique
to the piece-wise linear system are discussed and
compared to those of simulation and statistical
linearization. Conclusions will be presented in
section 6.

2 Problem definition

Consider an affine, nonlinear system with the
following state equations:

ẋ(t) = a(t, x(t)) + b(t, x(t)) u(t)
y(t) = c(t) x(t), t ≥ 0, x(0) = 0,

(1)

where x(t) is an n-dimensional state column-
vector, while u(t) is a scalar input and y(t) a
scalar output. It is assumed that a, b and c are
analytic functions in x and continuous in t.
In Rugh [1981], it is stated that, when a solu-

tion of the state equation (1) exists for u(t) = 0
(t ∈ [0, T ]) and initial condition x(0) = x0, there
is a Volterra system representation [Volterra,
1959] for (1) (with initial condition x(0) = 0):

y(t) =

t∫
0

h1(t− τ1) u(τ1) dτ1 + . . .+

+

t∫
0

. . .

τk−1∫
0

hk(t− τ1, . . . , t− τk)

u(τ1) . . . u(τk) dτ1 . . . dτk + . . . ,

(2)

Herein, hk(t−τ1, t−τ2, . . . , t−τk), k = 1, 2, . . . ,
is called the kth-order Volterra kernel. The first
term in (2) corresponds to the well-known con-
volution representation of linear systems. The
subsequent terms in (2), for k = 2, 3, . . . , rep-
resent natural extensions of the linear system
using polynomial, nonlinear terms.
Since in general solving (1) for a given arbi-

trary input function u(t) is a difficult or even

impossible task, many people have tried some
kind of approximation technique to describe the
input-output behaviour of this system in an ap-
proximate way. In this perspective, we will aim
to determine a polynomial input-output expres-
sion for (1) up to order p by truncating the series
in (2):

y(t) =

t∫
0

h1(t− τ1) u(τ1) dτ1 +

p∑
k=2

t∫
0

. . .

τk−1∫
0

hk(t− τ1, . . . , t− τk)

u(τ1) . . . u(τk) dτ1 . . . dτk,

(3)

which approximates (1) sufficiently close at least
on a finite time interval and for small enough in-
puts. The main issue in the characterization of
such system is the determination of hk(t−τ1, t−
τ2, . . . , t−τk), k = 1, 2, . . . , p. Hereto, the bilin-
earization procedure, as described in section 3,
will be used.

3 Bilinearization

In this section, a method called bilinearization
or Carleman linearization [Rugh, 1981] is de-
scribed. The idea is that an affine, nonlinear
system with analytic nonlinearities, as in (1),
can be approximated by a system with bilinear
state equations of the form [Lesiak and Krener,
1978]:

ẋ(t) = A(t)x(t) + (D(t)x(t) + e(t))u(t)
y(t) = C(t)x(t), t ≥ 0, x(0) = 0,

(4)

where x(t) is an nb-dimensional (nb =
∑p

l=1 n
l)

column-vector with state variables, while u(t)
and y(t) are scalar inputs and outputs, respec-
tively. Moreover, it is important to note that
analytic expressions for the Volterra kernels of
such a bilinear system are available [Bruni et al.,
1971]. One can truncate the resulting Volterra
system at a specific order to obtain a finite-order
Volterra system description as in (3). This sys-
tem description can then be used to approxi-
mate the response statistics of the bilinear sys-
tem and, thus, of the original, nonlinear sys-
tem (1).
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3.1 The bilinearization technique

Here, the bilinearization technique will be de-
scribed briefly. We aim to determine a polyno-
mial input-output expression for (1) up to order
p, as in (3), which approximates (1) sufficiently
close. To do so, first, bilinear state equations, as
in (4), have to be constructed in such a way that
these can be represented by the same Volterra
kernels (up to order p) as the system in (1).
Next, the input-output relation for that bilinear
system can be determined. Then, an approx-
imation for the input-output relation of (1) is
available and can be used to approximate the
response statistics of this system.
In order to find an approximate description

of (1) in terms of a system with bilinear state
equations, the right-hand side of (1) can be re-
placed by a power series representation:

a(t, x(t)) =
∞∑

k=1

Ak(t) x
(k)(t)

b(t, x(t)) =
∞∑

k=0

Bk(t) x
(k)(t),

(5)

where the Kronecker product notation is used:
x(2)(t) = x(t) ⊗ x(t). Using (5), (1) can be
rewritten as

ẋ(t) =
p∑

k=1

Ak(t) x
(k)(t) +

+
p−1∑
k=0

Bk(t) x
(k)(t) u(t) + . . .

y(t) = c(t) x(t), x(k)(0) = 0, t ≥ 0.

(6)

In order to determine the first p kernels corre-
sponding to (6), differential equations are devel-
oped for x(j)(t) [Rugh, 1981]:

d

dt
[x(j)(t)] =

p−j+1∑
k=1

Aj,k(t) x
(k+j−1)(t)

+
p−j∑
k=0

Bj,k(t) x
(k+j−1)(t) + . . . ,

(7)

with x(j)(0) = 0 (for j = 1, . . . , p), A1,k = Ak

and, for j > 1,

Aj,k(t) =Ak(t)⊗ In ⊗ · · · ⊗ In

+In ⊗Ak(t)⊗ . . .⊗ In +
+ . . .+ In ⊗ . . .⊗ In ⊗Ak(t).

(8)

The notation for Bj,k(t) is likewise. Now, by
setting

x⊗(t) =
[
x(1)(t) x(2)(t) . . . x(p)(t)

]T
, (9)

(7) can be written as a bilinear state equa-
tion neglecting terms of order larger than p, i.e.
x(p+i)(t), i > 0:

d

dt
x⊗(t) =




A11 A12 . . . A1p

0 A21 . . . A2,p−1

0 0 . . . A3,p−1
...

...
...

...
0 0 . . . Ap1



x⊗(t)

+




B11 B12 . . . B1,p−1 0
B20 B21 . . . B2,p−2 0
0 B30 . . . B3,p−3 0
...

...
...

...
0 0 . . . Bp0 0



x⊗(t)u(t)

+
[
B10 0 0 . . . 0

]T
u(t),

y(t) =
[
c(t) 0 . . . 0

]
x⊗(t),

(10)

where x⊗(0) = 0 and x⊗(t) is an nb-dimensional
column-vector of state variables (nb =

∑p
l=1 n

l).
This equation is called a Carleman linearization
or bilinearization of the linear-analytic state
equation (1).

3.2 Input-output relation for bi-
linear state equations

Here, the Volterra representation of (10) will be
described. Since the Volterra representation of
(10) coincides with that of (1) up to order p, we
can now use (10) to evaluate the input-output
behaviour of (1). Note that (10) is a bilinear
system as in (4).
It can be derived that the input-output rela-

tion of the bilinear state equations (4) can be
written as [Rugh, 1981]:

y(t) =
∞∑

k=1

t∫
0

τ1∫
0

. . .

τk−1∫
0

C(t)Φ(t, τ1)D(τ1)

Φ(τ1, τ2)D(τ2) . . . D(τk−1)Φ(τk−1, τk)
e(τk) u(τ1) . . . u(τk) dτk . . . dτ1,

(11)

where Φ(t, τ) is the transition matrix of A(t)
defined by the Peano-Baker series [Rugh, 1981].
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We once more assume that x(0) = 0 in equa-
tion (11). For a stationary system A(t) is a con-
stant matrix and thus Φ(t1, t2) := Φ(t1 − t2) =
eA(t1−t2). Combining (11), (10), (4) and (3)
gives the Volterra kernels of the bilinear sys-
tem (10). The kernels up to order p also rep-
resent the kernels of (1).

4 Statistical bilinearization:
application to the piece-

wise linear system

In this section, the bilinearization technique will
be used within a technique that will be termed
statistical bilinearization. The statistical bilin-
earization technique will be applied to a piece-
wise linear system that can be described by the
following differential equation:

ẍ+ 2ζ ẋ+ x+ α ε(x) x = u, (12)

where

ε(x) =
{

0 if x ≥ 0
1 if x < 0 , (13)

ζ represents a dimensionless damping param-
eter, α is a nonlinearity parameter and u is
a stationary, random, Gaussian, zero-mean ex-
citation process. Hereto, this system will be
approximated using polynomial nonlinearities.
Here, only terms up to order two (p = 2) will be
used. The approximating system can, therefore,
be written as

ẍ+ 2ζ ẋ+ β1 xE

+ β2

(
x2

E − E{x2
E}

)
= u,

(14)

where xE = x − E{x}. Equivalent to the
procedure followed in statistical linearization
[Roberts and Spanos, 1990], in which the ap-
proximating system is described by (14) with
β2 = 0, an error has to be defined. This error
embodies the difference between the piece-wise
linear system and the quadratic system (14):

εbilin =(x+ α ε(x) x)− β1 xE

− β2

(
x2

E − E{x2
E}

)
,

(15)

for given β1 and β2. Subsequently, our goal is
to minimize E{ε2

bilin} with respect to β1 and β2.

This results in the following equations:

β1 =
E{xE(x+ α ε(x) x)}

σ2
x

,

β2 =
E{x2

E(x+ αε(x)x)}
E{x4

E} − σ4
x

− E{x+ αε(x)x}σ2
x

E{x4
E} − σ4

x

.

(16)

At this point we have four unknown quantities
(µx, σx, β1 and β2) and two equations. A third
equation can be found through the averaging of
equation (12):

E{x+ α ε(x) x} = 0. (17)

In order to find a necessary fourth equation to
solve for the unknowns the bilinearization pro-
cedure will be applied. This will yield an ex-
pression for σ2

x for given values of β1 and β2.
By choosing an approximating Volterra sys-

tem as in (14), the power series representation
of the original, nonlinear system as required
in (5) is readily defined. Consequently, the ma-
trices in equation (10) can be determined. Since
this equation is a bilinear state equation of the
form of (4), the matrices of (4) are also known.
Next, (11) can be used to compute the kernels of
this bilinear system. However, first Φ(t − τ) =
eA(t−τ) is computed. This can be done using the
relation eAt = L−1

{
(sIN −A)−1

}
, where L is

the Laplace operator and s ∈ C. The elements
of Φ(t− τ) will be denoted by Φjk(t− τ), j, k =
1, . . . , 6. Now, the Volterra kernels of the bilin-
ear system can be evaluated. Firstly, the sta-
tionary first-order (linear) kernel can be deter-
mined from (11):

h1(t− τ1) = cΦ(t− τ1)e = Φ12(t− τ1).
(18)

Secondly, the observation of (11) admits the de-
termination of the second-order kernel:

h2tri(t, τ1, τ2) = θ(t− τ1) θ(τ1 − τ2)
[Φ12(τ1 − τ2) (Φ14(t− τ1) + Φ15(t− τ1)) +

2 Φ16(t− τ1)Φ22(τ1 − τ2)] ,
(19)

where

θ(t) =
{

1 if t ≥ 0
0 if t < 0 . (20)

The presence of the θ terms in (19) implies
that t > τ1 > τ2, which means that h2tri is
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a triangular kernel, indicated by the subscript
tri. The fact that h2tri is a triangular ker-
nel follows from the integration limits in (11).
Since h2tri(t, τ1, τ2) = h2tri(t+∆t, τ1 +∆t, τ2 +
∆t), h2tri is a stationary kernel. In case of
stationarity, the kernel h2tri can be written
as h2tri(τ1, τ2) := h2tri(0,−τ1,−τ2). At this
point, we have information on the first-order
and second-order Volterra kernels of the bilin-
ear system.
This information can be used to compute the

variance of the output of the bilinear system
σ2

y(= σ2
x) using

σ2
y =

∞∫
−∞

Syy(ω) dω. (21)

For a second-order Volterra system, such
as (14), the power spectral density Syy(ω) obeys

Syy(ω) =| H1(iω) |2 Suu(ω)

+ 2

∞∫
−∞

H2symm(i(ω − γ), iγ)Suu(γ)

H2symm(i(−ω + γ),−iγ)Suu(ω − γ)dγ,
(22)

where H1(s), s ∈ C is the first-order trans-
fer function, which can be determined by tak-
ing the one-dimensional Laplace transform of
h1(t). Moreover, H2(s1, s2), with s1 ∈ C and
s2 ∈ C, is the second-order, symmetric trans-
fer function, which can be found by, firstly,
performing a two-dimensional Laplace trans-
form on h2tri(τ1, τ2) and, secondly, perform-
ing a symmetrizing operation on the result.
Now, using (22), the power spectral density of
the output can be computed. Consequently,
the variance of the output can be evaluated
through (21) for specific values of β1 and β2

and, thus, we have defined the fourth equation
needed in the statistical bilinearization tech-
nique.
Since σ2

y = σ2
x is now known, a new esti-

mate for the mean of the response of the piece-
wise linear system can be determined using (17).
New values for β1 and β2 can be computed by
solving the equations in (16). In order to be
able to evaluate the expected values in these
equations, a functional form for the probability
density function of the response has to be cho-
sen. Here, for the sake of efficiency, a Gaussian
probability density function is used. Of course,

the procedure, described here, has to be applied
recursively in an optimization loop.

5 Results

The statistical bilinearization technique is ap-
plied to the piece-wise linear system. Hereby,
we investigate the white-noise excited case with
Suu(ω) = 1

2π . Of course, cases involving non-
white excitations can be investigated as well.
In figure 1, the estimates for the standard de-

viation of the response of the piece-wise linear
system, obtained by application of the statistical
bilinearization technique, are displayed. In this
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Figure 1: Estimation of the standard deviation σx

for ζ = 0.01.

figure, these results are compared to the results
of the statistical linearization technique and
simulation for varying nonlinearity α and ζ =
0.01. It should be noted that the statistical lin-
earization technique is equivalent to the statisti-
cal bilinearization technique when the quadratic
terms in (14) are omitted. Clearly, the sta-
tistical bilinearization technique estimates the
standard deviation of the response very accu-
rately, in contradiction to the statistical lin-
earization technique. The source of this accu-
rate approximation can be found by observing
the frequency domain information, see figure 2.
This figure shows that two important nonlinear
frequency domain phenomena, namely, the mul-
tiple resonance peaks (two in this case) and the
high-energy, low-frequency spectral content, are
modeled very well by the bilinearization proce-
dure, whereas the statistical linearization tech-
nique fails to model these specifically nonlinear
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Figure 2: Estimation of the power spectral density
Sxx(ω) for α = 6 and ζ = 0.01.

response phenomena. These phenomena repre-
sent important contributions to the energy in
the response. As a consequence, the variance of
the response can only be estimated accurately
when these phenomena are modeled. Clearly,
only the second resonance frequency appears,
whereas higher resonances are absent in the out-
put of the Volterra model. This is a conse-
quence of the fact that we only incorporated
a second-order polynomial nonlinearity in our
nonlinear model. Higher resonances could be
approximated by including higher-order polyno-
mial terms in our Volterra model. It should be
noted that the high-energy, low-frequency, spec-
tral content of the response is due to the stiffness
asymmetry in the piece-wise linear system. The
presence of the (asymmetric) quadratic nonlin-
earity of the bilinear system ensures accurate
approximation of the phenomenon.
In this form, the statistical bilineariza-

tion technique is computationally very effi-
cient (computation times are comparable to
those of the statistical linearization technique).
Moreover, the bilinearization approach provides
much more accurate results than the statisti-
cal linearization technique (in the application
to the piece-wise linear system). This is a
consequence of the fact that in the statistical
bilinearization technique the most important,
nonlinear, frequency-domain response phenom-
ena are modeled. The statistical bilinearization
procedure is so efficient because it can provide
very accurate results using only a second-order
Volterra system. In this respect it distincts it-
self from the bilinearization procedure as pro-

posed in Lesiak and Krener [1978]. Namely, in
the bilinearization procedure a bilinear system
is pursued, whose output yb(t) converges to the
output of the original, nonlinear system y(t).
The system parameters of the bilinear system
are determined by minimizing the error on the
output through | yb(t) − y(t) | for all t in the
time interval of interest. In the statistical bilin-
earization procedure the parameters of the bi-
linear system are determined by minimizing an
error that represents a weighted closeness of the
original, nonlinear system and bilinear system;
namely, the parameters are determined by min-
imizing E{ε2

bilin} with εbilin given in (15). As
a consequence, accurate results can be obtained
using a low-order Volterra model.

6 Conclusions

In this paper, a method called statistical bilin-
earization was developed. The strength of the
method can be recognized in the combination of
two features. Firstly, the response statistics of
the bilinear model can be computed very effi-
ciently (as long as the order of the polynomial
model is low). Secondly, a truly nonlinear ap-
proximation approach is followed, which makes
it possible to accurately approximate typically
nonlinear phenomena in the original, nonlinear
system in accordance to (the nonlinear) reality.
The statistical bilinearization technique was

applied successfully to the piece-wise linear sys-
tem. This application resulted in very accurate
variance estimates for the response. Further-
more, typically nonlinear, frequency-domain re-
sponse phenomena, such as multiple resonance
peaks and high-energy, low-frequency spectral
content, are modeled accurately. Moreover, it
should be noted that the method is numerically
far more efficient than simulation and can even
compete with the statistical linearization tech-
nique in this respect, as long as the polynomial
model used in the bilinearization technique is of
a low order. Such a low-order Volterra model
can provide accurate results because its param-
eters are determined according to a statistical
criterion.
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