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Abstract*The response of strongly nonlinear dynamic systems to stochastic excitation exhibits many
interesting characteristics[ In this paper\ a strongly nonlinear beam!impact system under broad and small
banded\ Gaussian noise excitations is investigated[ The response of this system is investigated numerically
as well as experimentally[ The emphasis lies on frequency domain characteristics[ Phenomena like multiple
resonance frequencies and stochastic equivalents of harmonic and subharmonic solutions are found[
Improved understanding of these stochastic response characteristics is obtained by comparing them to
nonlinear periodic response features of the system[ It is shown that these stochastic response phenomena
can provide information on the periodic response characteristics of the system[ The observed stochastic
characteristics have more general value and meaning than mere application to this system suggests[ Þ 0887
Elsevier Science Ltd[ All rights reserved[

0[ INTRODUCTION

Nonlinear dynamic systems forced by random processes are often encountered in practice[ The
source of randomness can vary from surface randomness in vehicle motion\ environmental
changes\ such as earthquakes and wind exciting high rise buildings or wave motions at sea
exciting o}shore structures or ships\ to electric or acoustic noise exciting mechanical structures[

In this paper\ a base excited beam system with a nonlinear elastic stop is investigated[ Systems
with elastic stops "typical examples of local non!linearities# represent a wide range of practical
nonlinear dynamic systems[ Examples are gear rattle\ ships colliding against fenders and snubbers
in solar panels on satellites[ Although the nonlinearity is local\ the dynamic behaviour of the
entire system is in~uenced by it[ Nonlinear periodic response phenomena of these kind of systems
have been studied extensively\ see ð0Ð3Ł[

When stochastic excitations are applied to the nonlinear beam system\ it features many
interesting\ stochastic\ nonlinear response phenomena[ These phenomena are of speci_c interest
because they shed light on the common characteristics of periodic and stochastic dynamic
behaviour[ As a consequence\ the system|s behaviour can be understood more thoroughly[ The
stochastic nonlinear response phenomena will be studied numerically as well as experimentally[
The stochastic excitations will have a limited frequency band power spectral density[ Still\ these
excitations can be broad band or narrow band processes[ For strong\ discontinuous nonlinearities\
like an elastic stop\ and band limited noise excitations\ numerical integration is the only method
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that provides accurate response information[ Particularly\ the nonlinear phenomena in the power
spectral density of the response will be investigated extensively[

In the next section\ Section 1\ we introduce the nonlinear dynamic system and its model[ In
Section 2\ a brief survey of simulated periodic response characteristics will be given[ In Section
3\ the simulation approach will be discussed[ The simulation results will be presented in Section
4[ In Section 5\ we present the experimental set!up[ Furthermore\ in Section 6\ the results of the
experiments will be discussed and compared to simulation results\ using identical excitations[
Finally\ in Section 7\ we present some conclusions[

1[ THE NONLINEAR BEAM SYSTEM

1[0[ System description

The nonlinear dynamic system comprises a linear elastic beam\ which is clamped onto a rigid
frame\ and an elastic stop\ see Fig[ 0[ The elastic stop consists of two half spheres[ Moreover\
Fig[ 0 shows that the system is excited by a prescribed stochastic displacement y of the rigid
frame[ The response x is the vertical displacement of the beam at the point of contact[ Firstly\ in
subsection Section 1[1\ the elastic beam will be modeled[ Secondly\ in subsection Section 1[2\ a
model for the elastic stop will be presented[ For both model components the estimation of their
parameters is based on experiments and will be elucidated in these subsections[ Finally\ in
subsection Section 1[3\ a single!degree!of!freedom "SDOF# model of the above beam system will
be speci_ed[

1[1[ Modelin` the elastic beam

The elastic beam is a continuum with an in_nite number of degrees of freedom[ Only transverse
vibrations of the beam will be considered[ Approximate spatially discretized models for con!
tinuous systems can be derived using the RayleighÐRitz method[ The model used in this paper is
a SDOF model\ see Fig[ 1]

mx¾¾¦bx¾¦kx�F "0#

where x is the vertical displacement of the beam at the axial position L[ The parameters m\ b\
and k represent the mass\ damping\ and sti}ness of the SDOF model\ respectively[ These model
parameters are estimated by means of experiments carried out on the linear beam system[ The
parameters m and k are related to the lowest eigenfrequency of the linear beam[ The damping
parameter b was chosen to properly represent the damping in the _rst and higher eigenmodes[

Fig[ 0[ The nonlinear base excited beam system[
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Fig[ 1[ The linear\ stainless steel\ beam system "left# with Young|s modulus E�1[0 0900 N:mm1\ density r�6799 kg:m2\
cross!section A�48[5 mm1 and length L�148[3 mm and its equivalent SDOF discrete model "right# with model par!

ameters m�26[64 09−2 kg\ k�625[2 N:m and b�9[05 kg:s[

1[2[ Modelin` the elastic stop

The elastic stop is modeled using a Hertzian contact model ð4\ 5Ł[ Using the Hertzian model\
the following relationship holds between the contact force F and the relative displacement of the
two colliding spheres d�y−x]

F�
1
2
ErzRrd

0[4�KHertzd
0[4 for d−9 "1#

In eqn "1#\ the reduced Young|s modulus Er represents the material properties of both colliding
bodies[ Furthermore\ the reduced radius of curvature Rr represents the geometrical properties of
the colliding bodies[ These parameters are de_ned as]

Er�
1

0−y1
0

E0

¦
0−y1

1

E1

\ Rr�
R0R1

R0¦R1

"2#

where Ri is the principal radius of curvature of body i\ while Ei is the Young|s modulus of body
i and yi the Poisson|s ratio of body i[ Since the collision phenomenon is generally quite complex\
the following assumptions are made to validate eqn "1#]

, The contact area is small compared to the geometry of the colliding bodies[
, The contact areas are perfectly smooth\ so there is no friction between the colliding bodies[
, The material is isotropic and linearly elastic\ so no plastic deformation occurs[
, The contact time is long enough to establish a quasi!static state[

Furthermore\ it should be noted that eqn "1# still holds with signi_cant deviation from the
assumptions ð6Ł[ The parameter KHertz was determined experimentally "KHertz�1[0 097 N:m0[4#[

The contact model "1# can be re_ned by adding a hysteretic damping term ð7Ł\ accounting for
energy loss during collision[ The inclusion of hysteretic damping alters eqn "1# to]

F�KHertzd
0[400¦

m

KHertz

d¾1�KHertzd
0[4$0¦

2"0−e1#
3

d¾

d¾−% for d−9 "3#

in which e is the coe.cient of restitution\ a geometry and material dependent measure for energy
dissipation[ Moreover\ d¾− represents the velocity di}erence of the two colliding bodies at the
beginning of the collision[ The coe.cient of restitution e is also estimated by means of experiments
"e�9[4#[ The fact that e di}ers signi_cantly from 0 indicates that restitution should be added to
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Fig[ 2[ Measurement of several collisions to estimate KHertz and e[

the model[ Both KHertz as well as e were estimated by means of a single experiment[ In this
experiment several collisions were observed[ This resulted in information regarding the inden!
tation d\ the indentation velocity d¾\ and the contact force F[ The dependency of the contact force
F between the colliding half spheres on the indentation d is visualized in Fig[ 2[ The parameter
KHertz can be estimated by comparing the contact force F and the indentation d at maximum
indentation "d¾�9#\ assuming that the static contact force is proportional to d0[4\ see eqn "1#[ The
coe.cient of restitution e can be estimated by considering the amount of energy loss DT during
a collision[ DT is equal to the surface within the hysteresis loop]

DT�Fmd0[4d¾dd "4#

Therefore\ m can be estimated from]

m�
DT

Fd0[4d¾dd
"5#

The coe.cient of restitution can now be obtained from]

e�c0−

3
2
md¾−

KHertz

"6#

Both KHertz and e are least!squares estimates in which the information obtained from several
collisions is accounted for[

1[3[ The SDOF nonlinear dynamical model

In the previous two subsections "Section 1[2 and Section 1[1#\ the two components of the beam
system\ namely\ the beam and the elastic stop\ were discussed[ The assembled nonlinear model
is visualized in Fig[ 3 and its SDOF equation of motion becomes]
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Fig[ 3[ The SDOF model for the nonlinear beam system[

mx¾¾¦bx¾¦kx¦o"x−y#KHertz"x−y#0[4$0¦
2"0−e1#

3
d¾

d¾−%�by¾¦ky "7#

with]

o"x−y#�6
9 for x−y×9

0 for x−y¾9
"8#

This model can now be used to simulate "through numerical time integration# the nonlinear
response x for di}erent excitation forms y[ The fact that KHertz considerably exceeds k in some
sense indicates that the system is highly nonlinear[

2[ SURVEY OF SIMULATED RESPONSE TO PERIODIC EXCITATION

In order to enlarge the ability to interpret the stochastic response phenomena\ discussed later
on in this paper\ we present some periodic response phenomena of the nonlinear beam system[
Figure 4 elucidates the dependency of the maximum absolute displacements x occurring in the

Fig[ 4[ Maximum absolute displacements max=x= of periodic solutions of a 3!DOF model ð2Ł[
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simulated periodic solutions on the excitation frequency of the harmonic excitation\ see Van de
Vorst ð2Ł[ The system parameters used by Van de Vorst ð2Ł were slightly di}erent from those
used in the stochastic simulations that follow[ However\ the main response characteristics are
equivalent[ Furthermore\ the model used in the simulations by Van de Vorst ð2Ł was a 3!DOF
model[ Some very important nonlinear response characteristics can be extracted from Fig[ 4[
Firstly\ besides harmonic resonances\ indicated by 0\ subharmonic resonances appear\ indicated
by 0:1 and 0:2[ Furthermore\ a superharmonic resonance is indicated by 1[ Secondly\ a remarkable
feature can be found in the fact that the maximum absolute values of the subharmonic solutions
are higher than those of the harmonic solutions[ Finally\ all the resonance peaks are split into
two separate peaks[ This phenomenon can be related to the contribution of higher modes to the
nonlinear response\ and thus it will not appear using the SDOF model[

3[ SIMULATION APPROACH

3[0[ Generation excitation si`nals

As mentioned before\ the excitation form applied to the nonlinear beam system is Gaussian
band limited noise[ The form of the power spectral density of such an excitation process y"t# is
shown in Fig[ 5[ Obviously\ y"t# does not contain in_nitely high frequencies\ in contrast with
white noise excitations[ The energy contained by y"t# is concentrated within a frequency band
limited by fmin and fmax[ Therefore\ di}erential eqn "7# can be solved numerically using classical
"deterministic# integration techniques[

For a speci_c "desired# power spectral density function Pyy"f # of the excitation process\ one
can simulate realizations of that Gaussian random process by using a method developed by
Shinozuka ð8Ł and Yang ð09Ł[ The idea behind this method is that a one!dimensional Gaussian
random process y"t# with zero mean and a one!sided power spectral density Pyy"f # " frequency f #
can be represented by a sum of cosine functions with a uniformly distributed random phase F[
A realization y¹ "t# of y"t# can be simulated by]

y¹ "t#�zDfRe"F"t## "09#

in which Re"F"t## is the real part of F"t# and

Fig[ 5[ Desired form of the power spectral density Pyy"f# of excitation y"t#[
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F"t#� s
k�0

N

6z1Pyy" fk#eifk7 ei1pfkt "00#

is the _nite complex Fourier transform of

z1Pyy" f # eif "01#

where f are the realized values of F[

3[1[ Numerical time inte`ration

Numerical time integration is used to compute time series of the response x"t#[ The computed
realizations of the response can be used to estimate the invariant measures of the stationary
solutions\ such as statistical moments\ probability density function and power spectral density[
For non!stationary responses many computationally expensive simulations would have to be
executed in order to ensure an accurate estimate of the invariant measures at each point of time[
However\ the necessity of a large number of records can be eliminated when the response is
stationary\ as is the case here[ In this case ergodicity with respect to a particular statistical
moment can be assumed[ This assumption allows the determination of the speci_c ensemble
statistical moment by using its temporal counterpart[

The accuracy of the estimates of the stochastic invariants depends on the length "corresponding
to a statistical error# and the integration accuracy underlying the time series[ Therefore\ the
e.ciency of the integration technique is an important issue[ Variable step size schemes\ in which
stability checks and accuracy checks are performed each integration step\ are rather ine.cient
with respect to our purpose[ Therefore\ a constant step size\ second!order RungeÐKutta scheme
is used[ Higher!order schemes do not improve the order of convergence[ This is a consequence
of the fact that higher!order derivatives of the function f in the equations of motion in the state
space formulation
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do not exist in the entire state space for systems with stops[ Since explicit integration schemes
are only conditionally stable\ a minimum step size "that ensures stability# can be determined[
Due to the major di}erence in sti}ness between contact and non!contact situations\ the minimal
step sizes for these situations di}er enormously[ It would be very ine.cient to choose one single
constant step!size based on contact situations[ Therefore\ two di}erent stable step!sizes are used[
Of course\ the step!sizes are adjusted to match accuracy conditions[ Consequently\ the time of
impact has to be determined to avoid entering contact with the large integration time step[ For
this purpose the He�non method ð00Ł is implemented within the integration routine[

3[2[ The He�non method

The He�non method ð00Ł is a method to determine the time of impact[ Here\ the He�non method
means rearranging eqn "02# without the nonlinearities in such a way that x0−y becomes the
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independent variable whereas t becomes one of the dependent variables[ The nonlinear part is
super~uous\ because the last time interval before the impact is observed[ This results in]
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At the last time step before impact\ this equation is integrated until x0−y�9[ This integration
step results in the known variables tcontact\ x1 "tcontact# and x0"tcontact#�y"tcontact#[ Then a switch is
made to a small integration step!size\ for solving eqn "02#\ continuing at tcontact[

4[ SIMULATION RESULTS

4[0[ Broad band excitation

In this subsection\ the results of the simulations are presented[ The target spectrum is taken
uniformly distributed within a limited frequency band[

Firstly\ a 9Ð199Hz band excitation is applied to the system[ The 9Ð199Hz band excitation
represents a broad band excitation\ relatively to the response characteristics depicted in Fig[ 4[
In Fig[ 6\ the power spectral density of y"t# is shown[ The relative displacement of the two
spheres\ d�y−x\ will also be used as a response variable in the presentation of the results[ The
probability density function "PDF# of the excitation\ y"t#\ is shown in Fig[ 7[ The excitation is
Gaussian by the nature of its generation[ An important property of the nonlinear response to
Gaussian excitation is the fact that it is non!Gaussian[ To illustrate this nonlinear response
property\ in Fig[ 8\ the probability density function of the response variable d is shown[ The fact
that the response is non!Gaussian is also indicated by higher!order moments like skewness and
kurtosis[ The estimates for the skewness and kurtosis\ which are de_ned by

Fig[ 6[ Power spectral density of a 9Ð199 Hz band excitation y"t#[
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Fig[ 7[ Probability density function of the 9Ð199 Hz band excitation y"t#[

Fig[ 8[ Probability density function of d"t# for a 9Ð199 Hz band excitation[

g¼d�
S"di−d¹#2

"n−0#s¼2
d

and k¼ d�
S"di−d¹#3

"n−0#s¼3
d

"04#

are g¼d�−0[91 and k¼ d�2[85 and thus deviate considerably from the Gaussian values g�9 and
k�2[ As far as the skewness is concerned\ a deviation from zero points at an asymmetry of the
probability density function[ This asymmetry of the response is a nonlinear characteristic of the
system due to the elastic stop\ see Figs 09 and 00[ To give a decisive answer as to whether a time
series stems from a non!Gaussian process\ the signi_cance test of Shapiro and Wilk can be
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Fig[ 09[ Parts of time series] 199 Hz band excitation y"t# and response beam x"t#[

Fig[ 00[ Part of time!series d"t#�y"t#−x"t#[

performed[ This test was speci_cally designed to suit this purpose[ Of course\ a test on the
response variable d"t# con_rmed that it is de_nitely non!Gaussian[

In literature little attention has been paid to frequency domain characteristics of nonlinear
dynamic systems excited by stochastic processes[ Therefore\ we will particularly focus on the
observation and interpretation of these stochastic response phenomena[ One!sided power spectral
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Fig[ 01[ Power spectral density of d"t# for a 9Ð199 Hz band excitation[

densities will be considered throughout this paper[ The power spectral density of the response
variable d"t# is shown in Fig[ 01\ which admits two important observations]

0[ The power spectral density Pdd"f# exhibits multiple resonance peaks[
1[ The response signal contains a large amount of energy at low frequencies "9Ð04Hz#[

The second observation can be explained by the following reasoning[ Due to the nonlinearity
of the system\ the frequencies in the response {interact|[ It is well!known that when the excitation\
and therefore the response\ contains two frequencies f0 and f1\ the response can also contain the
frequency f1−f0 when the system is nonlinear[ This {di}erence|!frequency appears in the response
as a consequence of the asymmetry of the nonlinear solution[ Note that broad!band excitation
contains a large number of nearby frequencies[ Hence\ a lot of interaction can be expected in this
case[ When those excitation frequencies lie in a resonance peak of the system\ these {di}erence|!
frequencies will contain a signi_cant amount of energy[

4[1[ Narrow band excitation

In order to investigate which frequencies in the excitation are mainly responsible for the
response phenomena mentioned above\ four di}erent smaller band excitations are applied]

0[ A limited band excitation between fmin�12Hz and fmax�32Hz that covers the major part of
the harmonic resonance peak[

1[ A limited band excitation between fmin�32Hz and fmax�45Hz that lies in between the
harmonic resonance peak and the 0:1 subharmonic resonance peak[

2[ A limited band excitation between fmin�45Hz and fmax�65Hz that covers the major part of
the 0:1 subharmonic resonance peak[

3[ A limited band excitation between fmin�78Hz and fmax�098Hz that covers the major part of
the 0:2 subharmonic resonance peak[
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For these excitations the results regarding the power spectral density of the responses are
depicted in Fig[ 02\ Fig[ 03 and Fig[ 04[ Note that the {harmonic| solution of a nonlinear system
to harmonic excitation with frequency fe has a speci_c period time 0:fe but comprises multiple
frequencies "fe\ 1fe\ 2fe\[[[#[ Clearly\ this is also the case for stochastically excited systems\ see Fig[
02[ Furthermore\ a band limited excitation between fmin�32Hz and fmax�45Hz is applied[ The
power spectral density of the response to this excitation is also shown in Fig[ 02[ The power
spectral density of the response for an excitation frequency band of 12Hz¾fe¾32Hz shows a

Fig[ 02[ Power spectral density of d"t# to Gaussian band limited excitation with "a# fmin�12 Hz and fmax�32 Hz and "b#
fmin�32 Hz and fmax�45 Hz[

Fig[ 03[ Power spectral density of d"t# for a 45Ð65 Hz band excitation[
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Fig[ 04[ Power spectral density of d"t# for a 78Ð098 Hz band excitation[

convex {valley| in the frequency band of 32Hz¾f¾45Hz[ The power spectral density of the
response for an excitation frequency band of 32Hz¾fe¾45Hz does not completely _ll this
convex {valley|[ This explains the fact that the response to broad banded noise excitation exhibits
{extra| frequency peaks[ Moreover\ a remarkable stochastic nonlinear response characteristic is
revealed in Figs[ 03Ð04\ namely\ the occurrence of stochastic subharmonic e}ects[ These _gures
respectively show stochastic equivalents of 0:1 subharmonic and 0:2 subharmonic solutions[
These stochastic equivalents of subharmonic solutions also contribute to the {extra| frequency
peaks in Fig[ 01[ So\ there are three reasons for the extra frequency peaks in the power spectral
density of the response to broad band excitation[ Firstly\ each frequency band in the excitation\
within resonance peaks of the system\ results in more frequency bands in the response\ see Fig[
02[ Secondly\ also subharmonic e}ects are present[ To be more speci_c\ a 0:n subharmonic e}ect
is responsible for the fact that the excitation frequency band fmin¾fe¾fmax also results in an
important response in the frequency range fmin:n¾f¾ fmax:n \ see Figs 03Ð04[ Finally\ the inter!
action of multiple excitation frequencies will contribute energy to the multiple frequency peaks
in the response[

We can distinguish another interesting nonlinear response characteristic by investigating the
variance estimates s¼1

d of the response signals\ see Table 0[ It should be noted that the variance
estimates of the previously de_ned excitation signals are approximately equal[ It is clear that the
stochastic subharmonic resonances are stronger "in terms of energy# than the stochastic harmonic
resonance[ Furthermore\ the variance estimate of the stochastic 0:2 subharmonic solution is

Table 0[ Variance estimates of the response d to the di}erent
excitations

fminÐfmax 12Ð32 45Ð65 78Ð098
"Hz#
s¼1

d 9[26 9[77 0[76
"mm1#
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Fig[ 05[ The experimental set!up[

signi_cantly higher than the variance estimate of the stochastic 0:1 subharmonic solution[ These
characteristics perfectly match with their periodic equivalents\ see Fig[ 4[

5[ EXPERIMENTAL SET!UP

Several interesting stochastic nonlinear response characteristics were observed in the previous
simulation results[ In the next section\ Section 6\ simulation results will be validated by com!
parison to experimental results[ The experimental set!up is presented schematically in Fig[ 05[ A
uniformly distributed Gaussian band limited excitation signal is generated numerically using
Shinozuka|s method ð8Ł[ This signal is sent to a controller which controls a servo valve using
feedback information from an internal displacement transducer[ The servo valve provides the
input for the hydraulic actuator by controlling the oil ~ow of the hydraulic power supply[ A
hydraulic service manifold connects the hydraulic power supply and the servo valve[ This service
manifold reduces ~uctuations and snapping in the hydraulic lines during dynamic programs[ All
measurements are monitored using the data acquisition software package DIFA ð01Ł[

Figure 06 shows the measurement equipment mounted on the beam!impact system[ A Linear
Variable Di}erential Transformer "LVDT# measures the displacement of the rigid frame[ The
displacement and velocity of the beam\ at the point of contact\ are measured by a laser inter!
ferometer[ Furthermore\ the acceleration of the beam is measured by an accelerometer[ Moreover\
a force transducer is used to measure the force acting on the rigid frame[ The rigid frame
displacement measurements are used as input for the simulations described in the next section\
Section 6[ Consequently\ we can compare the results of these simulations to the experimental
results[

6[ EXPERIMENTAL RESULTS

Several experiments were performed in order to investigate the response phenomena\ observed
in the former simulation results[ Again\ a 199Hz "broad# band excitation was applied[ The
realized excitation spectrum is depicted in Fig[ 07[ In contrast with the signal o}ered to the
controller\ the power spectral density of the actual rigid frame displacement is clearly not
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Fig[ 06[ The measurement equipment[

Fig[ 07[ Power spectral density of the 199 Hz band excitation[

uniformly distributed within the speci_ed frequency range[ This is due to the fact that the
hydraulic actuator behaves like a _rst!order low!pass _lter[ Therefore\ it is necessary to perform
simulations with these rigid frame excitation spectra in order to be able to make appropriate
comparisons between simulations and experiments[

The estimates of the probability density functions of both the excitation y"t# and the response
d"t# are shown in Figs 08 and 19\ respectively[ In Fig[ 19\ the experimental results are compared
to the simulation results[ The experimental results clearly display the fact that the response is
non!Gaussian[ Both the simulated and measured power spectral densities of the response d"t#
are shown in Fig[ 10[ The most important response phenomena like multiple resonance peaks
and the presence of a large amount of low frequency energy are clearly visible in both experimental
and simulation results[ However\ the non!uniformity of Pyy"f# obstructs the observation of the
second characteristic[ Figures 19Ð10 show that the experimental and numerical results correspond
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Fig[ 08[ Probability density function of the measured 9Ð199 Hz band excitation y"t#[

Fig[ 19[ Probability density function of d"t# for a 9Ð199 Hz band excitation[

to a large extent[ The experimental resonance peak around 019Hz is due to the second harmonic
resonance of the beam system\ related to the second eigenfrequency$[ Of course\ this resonance
peak is absent in the simulation results as a consequence of SDOF modeling[

In the experiments two narrow!band excitations were considered]

0[ A limited band excitation between fmin�12Hz and fmax�32Hz that covers the major part of
the harmonic resonance peak\ see Fig[ 11[

1[ A limited band excitation between fmin�45Hz and fmax�65Hz that covers the major part of
the 0:1 subharmonic resonance peak\ see Fig[ 13[

$ In case of a nonlinear system\ one cannot speak of ei`enfrequencies of the system[ However\ here this terminology is
used for a frequency at which the system resonates[
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Fig[ 10[ Power spectral density of the response d"t# to the 199 Hz band excitation[

Fig[ 11[ Power spectral density of the measured 12Ð32 Hz band excitation y"t#[

The purpose is to _nd out whether the phenomena discussed in Section 2 also appear in the
experiments[ The spectra of the response signals d"t# are depicted in Figs 12 and 14[ Apart from
the presence of the second harmonic resonance in the experiments\ the simulation results match
the experimental results very well[ Figure 12 clearly con_rms the multiple frequency property of
the nonlinear response experimentally[ Furthermore\ a stochastic 0:1 subharmonic e}ect is also
found in the experiments\ see Fig[ 14[
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Fig[ 12[ Power spectral density of the response d"t# to the 45Ð65 Hz band excitation y"t#[

Fig[ 13[ Power spectral density of the measured 45Ð65 Hz band excitation y"t#[

7[ CONCLUSIONS

We have applied Gaussian band limited excitations to a strongly nonlinear impacting system[
The derived nonlinear model is SDOF[ Many interesting\ speci_cally nonlinear\ stochastic
response phenomena have been investigated both numerically as well as experimentally[ Both
broad! and narrow!band excitations are applied in order to discriminate the origin of certain
response characteristics in the frequency domain[ We have focussed on the investigation of
frequency domain characteristics\ because in literature little attention has been paid to this
subject[

Nonlinear stochastic phenomena like multiple resonance peaks and a high!energy low!fre!
quency response content are found applying broad!band excitations[ The origin of the multiple
resonance frequencies is illuminated by investigating the system|s response to narrow!band
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Fig[ 14[ Power spectral density of the response d"t# to the 12Ð32 Hz band excitation y"t#[

excitations covering harmonic and subharmonic resonance regions[ Stochastic equivalents of
harmonic and subharmonic solutions are found[ With respect to all these response characteristics\
the numerical and experimental results agree to large extent[ The observed phenomena can also
be found in systems with other one!sided nonlinearities ð02Ł[ Therefore\ these characteristics can
give insight in the nonlinear stochastic behaviour of a large class of nonlinear dynamic systems[

Future research will involve the extension of the model to include higher modes of the beam[
This extension will improve the response characteristics around the second harmonic resonance
frequency[ Moreover\ such a multi!degree!of!freedom model might also describe the system
better for lower frequencies\ because these higher modes a}ect the behaviour in the lower
frequency range for periodic excitations\ see Fig[ 4[
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