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Experimental Frequency-Domain Analysis of
Nonlinear Controlled Optical Storage Drives

Marcel Heertjes, Erik Pastink, Nathan van de Wouw, and Henk Nijmeijer, Fellow, IEEE

Abstract—For nonlinear controlled optical storage drives, a
frequency-domain measurement approach is shown to be ef-
fective in demonstrating both stability and performance. In an
experimental setting based on an industrial optical playback
(CD drive) device, the motivation for applying such an approach
is illuminated. It is shown that performance can efficiently be
assessed using a describing function approach on a model level
and using swept-sine measurements on an experimental level. The
validity and effectiveness of the approach is extensively shown via
closed-loop measurements.

Index Terms—Asymptotic stability, circle criterion, describing
functions, feedback control, nonlinear systems, optical recording.

I. INTRODUCTION

ROM the early introduction of CD applications in the

1980s to today’s DVD applications, the servo control
design of optical storage drives is mainly driven by linear
control theory [12], [13]. For portable or automotive applica-
tions, this generally implies the following tradeoff: improved
low-frequency disturbance rejection is obtained under de-
creased stability margins. Related to this fact, improved
(low-frequency) shock suppression in view of road excitation
or engine vibrations is balanced by the performance decrease
under (high-frequency) disc defect disturbances like scratches,
fingerprints, or dirt spots. In the broader sense of fundamental
design limitations [4], this tradeoff is considered in the philos-
ophy to apply nonlinear control for linear systems as a means
to enhance performance beyond such limitations.

Nonlinear control, or more specifically, nonlinear propor-
tional-integral-derivative (PID) control (see also the work of
Armstrong et al. [1], Jiang and Gao [9], and Fromion and
Scorletti [5]) combines the possibility of having increased per-
formance in terms of shock attenuation without unnecessarily
deteriorating the time response under disc defect disturbances.
For this purpose, the integrator part of a nominal PID controller
is given a variable gain wherein large levels of disturbance
typically induce a more than proportional increase in the con-
trol action. As a result, large shocks and vibrations are more
effectively handled than small shocks and vibrations.
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Contrary to previous experimental work [7] that merely
considered nonlinear performance in terms of time-domain
responses, this paper deals with an experimental performance
analysis based on frequency-domain measurements. To this end,
a combined describing function and swept-sine measurement
approach is shown to offer both an efficient and sufficiently accu-
rate tool for studying global qualitative nonlinear behavior. This
is demonstrated on an industrial optical playback (CD drive)
device. Not only does the approach efficiently reveal both the
amplitude and frequency dependency under different levels of
shocks and vibrations, but it also provides measured amplitude
and phase characteristics. The latter, which is generally unavail-
able in nonlinear analysis, is of special interest, because of its
relation with time-domain properties like damping that largely
affect the system response under disc defect disturbances. In this
respect, an efficient experimental analysis tool enhances the
applicability of the nonlinear control design, which, by itself,
provides a strong driver for its application.

This paper is organized as follows. In Section II, the nonlinear
control design based on a simplified objective lens model is pre-
sented. This includes stability analysis in terms of absolute sta-
bility theory. In Section III, model validation is conducted using
the proposed describing function and swept-sine frequency-do-
main measurement approach. In Section IV, this approach is
used to assess nonlinear system performance. In Section V, the
main conclusions regarding this paper are summarized.

II. DYNAMICS, MEASUREMENT, AND CONTROL OF OPTICAL
STORAGE DRIVES

The application of a nonlinear PID control strategy is exper-
imentally studied on an optical playback (CD drive) device. To
this end, first, the CD drive test setup is presented; second, the
principles of optical storage are briefly discussed; third, a model
is given for the nonlinearly controlled objective lens dynamics
in so-called radial direction; and fourth, the stability of the non-
linear controlled objective lens dynamics is assessed from an
absolute stability standpoint.

The experimental setup is depicted in Fig. 1. It consists of an
interface to flash source code into a microcontroller, an inter-
face to adapt the controller parameters once flashed and to des-
ignate desired servo signals, an I0-board for monitoring these
signals and providing the means to inject noise in the servo loop,
a Sigl.ab/MatLab combination for signal processing and gener-
ation, and naturally a CD drive mechanism. The microcontroller
is freely programmable and supports a discrete representation of
a user-defined controller given a sampling frequency of 90 kHz.
For the purpose of system identification and measurement, sev-
eral servo signals can be measured whereas an injection point is

1063-6536/$20.00 © 2006 IEEE
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available for applying an additional voltage level over the servo
motor coils, i.e., the actuators needed for position control.

The CD drive contains several actuators (motors) for control,
not only to regulate the disc rotation speed needed to obtain a
constant data rate along the disc radius but also to control an ob-
jective lens in following a desired disc track. The latter is done
to enable reading information from the disc. Information on the
disc is stored via a sequence of nonreflective pits separated by
reflective lands; see Fig. 2. For a CD, pits typically have dimen-
sions varying between 0.9 and 3.3 pm in length. The pit width
equals 0.6 um. To obtain data from the disc, the objective lens
is controlled in two directions: the focus direction, i.e., perpen-
dicular to the disc plane, and the radial direction, i.e., in the disc
plane but perpendicular to the disc tracks. Herein the radial di-
rection is of particular interest because of its sensitivity to ex-
ternal shocks and vibrations. This direction is studied under the
assumption that the nonlinear control strategy could also be ap-
plied in the focus direction, hence the direction needed to focus
a light spot on the disc information layer.

The closed-loop objective lens dynamics in the radial di-
rection are depicted in Fig. 3 in block-diagram representation.
Herein the radial position of the objective lens is represented
by the output signal y,, whereas the radial disc track position
is represented by the reference signal . The radial error signal
is given by e, = r — y, and represents the only radial position
signal readily available from measurement. For the purpose of
measurement, an injection point is added for applying an injec-
tion signal ¢ whereas two additional signals can be monitored:
the controller output signal o. and the process input signal o;.

The objective lens is modeled by a series connection of
a second-order mass-spring-damper system, a first-order
low-pass filter, and a two-sample time delay. This is given in
transfer function notation by

Yr 1 Wip,1
P(s) = Z(s) = : -, 1
(#) 0 (5) ms?2+bs+k s+wp LXP( ,—ads) %
— N———  time delay

mass—spring system lowpass

with s € C the Laplace variable. The first part of the model
contains the lens unit mass m = 1.5 x 10~% kg together with
the mechanical properties of the objective lens support, i.e.,
damping and stiffness properties b = 2.2 x 102 Ns - m™* and
k = 21.3 N-m™", respectively. The second part of the model
represents a first-order low-pass filter with a cutoff frequency of
wip1 = 6.2 x 10* rad s™*. This part is related to the actuator
inductance in the transfer from voltage to current; see Bittanti
et al. [2] for a similar physical model description. Based on a
sampling frequency of f; = 90 kHz, a two-sample time delay
with Ty = 2/{; is needed to take digital implementation issues
into account.

For radial tracking, nominal servo control is based on a se-
ries connection of a PID-controller and a second-order low-pass
filter. Its Laplace representation is given by the transfer function

kp (5% 4 (wd + Wiag)s + (1 +7)waWiag)

Ci(s) =
1(#) wa(s + Wiag)
pid
.. Wip,2 )
52 4 2Bwyp 25 + w12p72
low‘;ass

with k, = 2.7 x 10> N - m~! the radial loop gain,
v = 20 a dimensionless gain corresponding to a lag filter,

Wlag = 8.4 X 10! rads™! the lag filter cutoff frequency,
wa = 1.9 x 103 rads™! the cutoff frequency of a lead
filter, wip » = 4.4 X 104 rad s™! the cutoff frequency of the
second-order low-pass filter, and § = 1.1 its dimensionless
damping coefficient. To improve the (low-frequency) dis-
turbance rejection but not deteriorate the (high-frequency)
response to noise, an additional control contribution is consid-
ered, which consists of the following series connection of a
notch filter, a PI filter, and a second-order low-pass filter

2 2 2
_8 +2ﬁ1wn3+wn kp7wlag wlp,2
$24200wn s+ w2 St+Wiag s2+2ﬂw1p,23+w12p,2
| ~

-~

Ca(s) 3

notch pi lowpass

with w, = 1.8 x 103 rad s™! the cutoff frequency of the notch
filter and #; = 0.2, B2 = 4.1 corresponding dimensionless
damping coefficients. The overall controller can now be given
by the transfer function

Oc
C(s) = e—(s) = Ci(s) + ¢Ca(s) “)

where ¢ > 0 determines the contribution of Cs.
The choice for ¢ comprises a performance tradeoff. In-
creasing its value induces improved (low-frequency) shock
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Fig. 4. Graphical representation of the nonlinear gain ¢(e, ). —0.2 0 { Cy (jw) P (jw) } 1
1+ Cy (jw) P (jw)
CoP
1+ C.P Fig. 6. Graphical interpretation of (8).
+
e N\t 1 r Stability of the nonlinear feedback connection can now be
90) L/ 1+CP studied using absolute stability theory; see Brockett [3] for an
introduction of formerly unknown Russian literature. For the
P i considered class of systems, and given the considered system
1+C,P properties, finite gain £, stability is guaranteed if the following
frequency-domain inequality is satisfied:
Fig. 5. Nonlinear closed-loop dynamics in absolute stability representation.

suppression, but with less phase margin. Subsequently, less
phase margin negatively influences the step response under disc
defect disturbances. To surpass this tradeoff, ¢ is given an input
dependency defined (in time domain) by

ae(ey) — &, ifle] > 6
)= By 5
oler) {0, if e < 6 ©)
with
1, ifle] >0
e(er) = {0./ if |e] < 6 ©

where @ > 0 is a gain limit value and 6 > 0 is a dead-
zone length; see Fig. 4 for a graphical representation. For this
choice of nonlinearity, the overall nonlinear PID control design
is shown in Fig. 5 in so-called absolute stability representa-
tion, that is, a linear time-invariant system Cs /(1 + C1P) in the
feedback connection with a sector-bounded nonlinearity ¢(e,).
Sector-boundedness immediately follows from

0 < dler)er < el (7

with ¢ (e, ) being a positive semidefinite function; see also Fig. 4.

&t{ Ca(jw)P(jw)

1
1+cl<jw>r><jw>}>‘&’ weRko®

Moreover for zero input, the origin e, = 0 can be made glob-
ally asymptotically stable. This is an application of the circle
criterion; see [10] for a more detailed description regarding the
conditions imposing stability. Equation (8) allows for a graph-
ical interpretation as shown in Fig. 6. It follows that stability is
guaranteed if the Nyquist curve remains to the right of a ver-
tical line through the point (—1/,0). Both in measurements
(solid) and simulations (dashed), it can be seen that the curve
satisfies this condition for o < 26. It is important to realize that
the choice of the notch filter parameters in (3) significantly con-
tributes to the enlargement of the stability range; see Heertjes
and Sperling [6].

III. NONLINEAR MODEL VALIDATION BY
FREQUENCY-DOMAIN MEASUREMENTS

The efficient and accurate access to linear model validation
and estimation via frequency-domain measurements provides
the main motivation for adopting a similar approach to perform
a nonlinear systems analysis through such measurements. For
the system at hand, a combined describing function and swept-
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sine frequency-domain approach is proposed. First, however, a
time-domain validation is performed based on the closed-loop
nonlinear model. Second, the describing function is introduced
along with the necessary validation steps. Third, the combined
describing function and swept-sine measurement approach is
used to assess in frequency domain both the nonlinear controller
and open-loop characteristics under different vibration levels.

A time-domain validation of the nonlinear responses is shown
in Fig. 7 by considering both simulations (dashed) and mea-
surements (solid). For a fixed level of harmonic force excitation
i = isin(wt) withz = 12.1 x 103 N, an excitation frequency
of 40 Hz, and four values of the scaled deadzone length A = §/ zA',
it can be seen that a good agreement is obtained between forward
time integration simulations and discrete-time experimental im-
plementation. Note that the signal-to-noise ratio deteriorates for
smaller values of A duetoincreased (low-frequency) disturbance
rejection properties. Note, moreover, the clear presence of the
fundamental frequency contribution (at 40 Hz) in the nonlinear
system response. This fact, together with the computational effi-
ciency, hence avoiding long integration times, provides the main
motivation for the application of the describing function analysis
to effectively approximate such responses on a model level.

Nonlinear PID controlled objective lens dynamics with describing function D.

In the describing function analysis, the nonlinear gain ¢(e, ),
see (9), is replaced by an approximation D(e, ) that satisfies the
following relation:

es = D(e;)er. )

That is, it imposes a linear relation between a harmonic input
e; = é; sin(wt) and a harmonic output e, = €, sin(wt) via the
describing function D(e, ), with

2 o
D(e,)=R e g — arcsin <T

™ €r

(10)

This is standard describing function theory applied to a dead-
zone nonlinearity; see [11]. It is important to realize that D(e, )
depends implicitly on the frequency of excitation w. This is due
to the dependency of D(e,) on the dimensionless ratio 6/é,
where €, implicitly depends on w. In block-diagram representa-
tion, the nonlinear PID controlled dynamics with the describing
function approximation are represented in Fig. 8. In comparing



HEERTIES et al.: FREQUENCY-DOMAIN ANALYSIS OF NONLINEAR CONTROLLED OPTICAL STORAGE DRIVES 393

0 0.025

0 o 0.025
time in seconds

x10° A=1910"5

3

o 0.025

0 ] _ 0.025
time in seconds

Fig.9. Simulated time-series under 40-Hz force excitation at different values of A = &/ #; nonlinear response (solid) versus describing function response (dashed).

this figure with Fig. 8, it can be seen that the nonlinear gain ¢ is
replaced by the describing function D(-).

Under the previously considered harmonic force input at
40 Hz with fixed amplitude of excitation E, the responses
approximated by the describing function can now be compared
with the responses obtained from the full nonlinear equations
of motion. Such a comparison is shown in Fig. 9 for varying
values of the deadzone length A = § /3. It can be seen that the
describing function responses very accurately describe the re-
sponses corresponding to the linear limit values of the nonlinear
control design, i.e., A = 0 and A = oo. For the remaining
nonlinear responses, it can be seen that both the amplitude and
the phase of the nonlinear responses are approximated quite
well. The former property is important because of its relation
with performance in optical storage drives. Hence the radial
error amplitude is mainly limited by the level e, 2 = 0.4 pym,
i.e., a quarter of the track pitch.

By comparison of Fig. 9 with Fig. 7, it is concluded that
the measured nonlinear amplitudes can be accurately approx-
imated by describing function analysis based on a single har-
monic contribution. This not only justifies the application of a
numerical frequency-domain performance approach based on
describing function analysis but also forms the basis for the
effective use of swept-sine measurements to assess the perfor-
mance in experiments. That is, a quasi-steady-state analysis is
obtained from (slowly) step-wise increasing the frequency of
excitation. Herein user-defined frequency points are stored in a
sequence of monotonically increasing values. Each sequence is
evaluated for a fixed setting of the system parameters and given
a fixed level of excitation. For each frequency point, the time
needed for frequency response measurement is chosen suffi-
ciently large to ensure quasi-steady-state behavior. Under quasi-
steady-state conditions, the frequency response between sinu-
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Fig. 10. Bode diagrams of the nonlinear controller frequency response

functions C(jw); measured response (solid) versus simulated response
(dashed).

soidal input and sinusoidal output is determined at each of the
frequency points sequentially.

In a combined frequency-domain approach, the outcome of
the swept-sine measurement analysis is compared with the nu-
merical results obtained from the describing function analysis.
The effectiveness of such approach is demonstrated by assessing
the nonlinear controller contributions under different levels of
excitation. Herein the controller transfer function is given by

C(s) = “%(s) = Ci(s) + D(-)Ca(s)

€r

Y

(see also Fig. 8). Its frequency-domain behavior is depicted in
Fig. 10 in Bode representation.
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Fig. 11. Bode diagrams of the open-loop frequency response functions OL
(jw); both measured (solid) and simulated (dashed).

For the limit cases D = 0 and D = 10, corresponding to
¢ = 0 and ¢ = 10, respectively, it can be seen that a good cor-
respondence is obtained between discrete-time measurements
(solid) and simulations (dashed); note that D = 10 implies
¢ = a = 10. The difference between D = 0, hence o = oo,
and D = 10 is mainly expressed in the low-frequency range.
For D = 10, the controller induces approximately 21 dB of ad-
ditional control effort, i.e., 20log(a+1). Apart from these linear
limit cases, the characteristics for three different levels of dis-
turbance '2/3, %, and 37 are depicted with i = 2.6 x 1073 N;
the deadzone length equals & = 1.0 10~7 x m. These curves
clearly demonstrate the shock dependency of the controller de-
sign: large shocks and vibrations induce additional control ef-
fort. For the curve labeled with 3’2, the deviation between mea-
surements and simulations below 20 Hz is caused by the poor
signal-to-noise ratio that results from the closed-loop distur-
bance rejection properties. As a consequence, noise triggers the
nonlinear gain contribution. This induces more controller ef-
fort than can be expected from the simulations in the absence
of noise, hence the measured curve bends to the curve corre-
sponding to the high-gain linear controller limit labeled with
D = 10.

Apart from the controller characteristics, the combined nu-
merical/experimental frequency-domain approach is also used
to assess the nonlinear open-loop characteristics OL, which are
given in transfer function notation by

OL(s) = —25(s) = (C1(s) + D(-)Cs(5)) P(s)-

Oi

(12)

In Bode representation, the corresponding frequency response
functions are depicted in Fig. 11. For D = 0 and D = 10, a
good correspondence is obtained between measurements (solid)
and simulations (dashed), which, by itself, provides part of the
model validation of the process P. Below 150 Hz, the measure-
ments become of poor quality; this is because all measurements
are done under closed-loop conditions, hence at low frequen-
cies the disturbance rejection properties induce a difference of
at least 60 dB between input and output amplitudes. It can be
seen that the open-loop characteristics show an almost common

TABLE 1
OPEN-LOOP STABILITY MARGINS

e 0 5 10 15 20 25
phase margin in degrees 34.5 29.2 232 16.5 9.8 3.4
gain margin in dB 74 72 72 -69 -6.6 -5.7

bandwidth of 1.4 kHz. However, the phase margin drops from
35°incase D = 0to23°incase D = 10. This process continues
at further increasing of the gain limit value «, which is shown in
Table I by numerical computation. In contrast, the gain margin
roughly remains the same. For the nonlinear case with a nominal
level of disturbance 7 = 2.6 x 103 N, the phase characteristics
show the behavior such as expected from the describing func-
tion analysis. It is concluded that increasing the nonlinear gain
limit value « induces additional (low-frequency) control effort
but at the cost of deteriorated stability margins. Such stability
margin deterioration is strongly related to the nonlinear perfor-
mance especially under disc defect disturbance.

IV. NONLINEAR FREQUENCY-DOMAIN
PERFORMANCE ASSESSMENT

For the considered nonlinear controlled objective lens dy-
namics, it is demonstrated that the proposed describing func-
tion and swept-sine frequency-domain approach provides the
means to effectively assess nonlinear system performance on
model level and experimental level, respectively. Under shocks
and vibrations, this is shown, first, by nonlinear process sen-
sitivity analysis and, second, by dropout level measurements.
Third, it is shown via the relation between reduced phase margin
in nonlinear Nyquist representation and the step response be-
havior under black-dot disturbances.

To quantify nonlinear performance under shocks and vibra-
tions, the radial error response e, is studied under force input
1 = %sin(wt). This is represented by the process sensitivity
function, or

S CE !
P T TG POGE) )

(see the block diagram of Fig. 8).

For the limit cases D = 0 and D = 10, Fig. 12 shows in Bode
representation the results corresponding to the describing func-
tion approximation (dashed) together with the results of swept-
sine measurements (solid). A good correspondence is shown
both in amplitude and in phase between measurements and sim-
ulations. Differences like the high-gain mismatch near 1 kHz
leave room for model improvement. For two different levels of
excitation, i and 37 withi = 2.6 x 10—3N, the amplitude charac-
teristics under nonlinear control (with a = 10) clearly illustrate
the shock-dependent behavior of the nonlinear control design.
Herein the amplitude and phase characteristics demonstrate the
transition from the low-gain (D = 0) toward the high-gain limit
(D = 10). In terms of shock suppression, up to 21 dB of addi-
tional (low-frequency) improvement is demonstrated. It should
be noted that the measurements are optimized for large inputs.
That is, the excitation force amplitude is chosen as large as pos-
sible to improve the signal-to-noise ratio; herein the deadzone

13)
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Fig. 12. Nonlinear process sensitivity frequency response functions S, (jw);
measurements (solid) and simulations (dashed) with o« = 10.
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Fig. 13. Dropout level analysis; time-domain measurements (solid) versus
frequency-domain simulations (dashed) with o« = 10.

length is scaled accordingly as to maintain comparable ampli-
tude dependency.

Apart from process sensitivity analysis, industry often con-
siders time-domain dropout level measurements as a means to
quantify shock performance. Herein the dropout level refers
to the maximum amplitude of sinusoidal disturbance at which
the system at a single frequency of excitation drops out of op-
eration. For the considered CD drive, the results of such an
analysis are depicted in Fig. 13. In the upper part, the dropout
level is shown under four fixed levels of the deadzone length
6 €{0,1.6 x 1077,3.2 x 10™7, 00} in meters. Below the level
of —25 dB, it can be seen that a good correspondence is obtained
between frequency-domain simulations (dashed) and time-do-
main measurements (solid). Herein the simulation results repre-
sent the magnitudes obtained from the frequency response func-
tion based on the describing function approximation

€r,max (1 + (Cl(jw> + D(er,maX)CQ(jw)) P(Jw>>
—P(jw) '

(14)

10— T T

<o Erma-- -

e, at drop-out in m
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o at drop-out in N

32107

L -
10° 10" 102 10 10
frequency in Hz

Fig. 14. Dropout level performance limitations in the radial error level €, max
(upper part) or the controller output level 0 max (lower part); time-domain
measurements (solid) versus frequency-domain simulations (dashed) with
a = 10.

0.5

0.5

R{OL (jw)}

Fig. 15. Nonlinear Nyquist analysis of the open-loop frequency response
function; measurements (solid) and simulations (dashed) with « = 10.

Apart from the constant e, max, this is the reciprocal process
sensitivity function evaluated at the maximum allowable radial
error level e, max = 0.4 pm; see also Fig. 2 to see that this
equals a quarter of the track pitch. Beyond the level of —25 dB,
the controller output o, saturates, giving limited shock suppres-
sion improvement. This can be seen in the lower part of Fig. 13,
where the ratio of improvement relative to the low-gain linear
limit (6 = oo or D = 0) is depicted for the levels of § €
{0,1.6 x 1077,3.2 x 10~7} in meters. Due to saturation, the
expected low-frequency improvement of 11 times the level cor-
responding to the nominal linear control design is restricted to
a maximum of six times obtained near 50 Hz.

For the application at hand, performance in terms of dropout
is constrained by two saturation levels: 1) the radial error level
er,max and 2) the controller output level 0. 1ax. For the radial
error, this is shown in the upper part of Fig. 14 by depicting the
measured radial error amplitudes near dropout. Beyond 50 Hz,
it can be seen that the radial error amplitudes do not exceed a
quarter of the track pitch length, or e, max. Below 50 Hz, these
amplitudes become significantly smaller than e, ., at least
for the levels of & € {0,1.6 x 10~ 7} in meters. Hence, the
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Fig. 16. Time responses under black-dot disturbances.

radial error levels are no longer solely responsible for dropout,
which is now also due to saturation in the controller output o.;
saturation in the controller output induces higher harmonics for
which the controlled system at the given level of excitation is
too sensitive. This is clearly shown in the lower part of Fig. 14,
where the measured time-domain controller output amplitudes
near dropout are depicted together with the controller frequency
response functions evaluated at the constant radial error level

€r,max, O

€r,max (Cl(jw) + D(er,max)CZ(jw)) . (15)

It can be seen that below 50 Hz, the amplitudes are restricted
by the level 0c max = 70 mN. At this level, o. equals 1.6 V,
which represents the maximum attainable voltage at which the
integrated controller circuits operate.

In addition to shocks and vibrations, performance under disc
defect disturbance, which is related to reduced phase margins,
can be studied using the Nyquist representation of Fig. 15. Here
the open-loop frequency response functions related to (12) are
depicted at three different levels of excitation, i.e., the nominal
level © = 2.6 x 1072 N, 7/2, and 7/3. Additionally, the limit
cases D = 0 and D = 10 are shown. The Nyquist represen-
tation emphasizes the differences between measurements and
simulations by considering both mismatches in phase as well
as in the amplitude characteristics. Nevertheless, the transition
from the low-gain (D = 0) toward the high-gain (D = 10) limit
is clearly shown in terms of reduced phase margins. It should
be noted that the curves correspond to sufficiently large levels
of excitation, the kind of excitation that normally would induce
significant additional controller effort, hence (low-frequency)
shock suppression. For the given nonlinear control design, it can
be seen that the gain margins remain largely unaffected; see also
Table 1.

In terms of performance, deteriorated phase margins cause
deteriorated time responses under disc defect disturbance.
This is demonstrated in experiments in Fig. 16 for an 800 pym
black-dot disturbance; see Helvoirt et al. [8] for other types
of disc defect disturbance and their characteristics. Along the
black dot, light is no longer reflected from the disc surface such
that the radial error signal equals zero. As a consequence, a
step response can be observed beyond the black dot crossing
where the radial error signal is fully restored. For D = 0 and
D = 10, it can be seen that differences occur in terms of
damped natural frequency and damping ratio. This is related to

x10”

the most significant closed-loop poles —7.7 X 103 £ 1.1 x 10%j
(for the case that D = 0) and —1.4 x 10° £4.0 x 103j (for the
case that D = 10), respectively, which are obtained from the
objective lens model and which are represented in Fig. 16 by the
corresponding exponential envelopes. The time response under
nonlinear control, which is also depicted in Fig. 16, shows the
combined effect of these linear time-domain characteristics.
For the considered value § = 3.2 x 10~7 m, it can be seen that
the response tends to the low-gain limit response corresponding
to D = 0 except for large values of the radial error signal. For
6 =1.6x 107 m, the response tends more to the D = 10 case
for large errors (right after the black-dot crossing). As soon as
the radial error signal becomes small enough, a transition is
shown toward the low-gain limit response.

In summary, the combined numerical/experimental analysis
such as considered in this section is shown to be both accu-
rate and efficient in quantifying nonlinear system performance.
Based on a clear interpretation in terms of frequency response
functions, it provides a necessary means to quantify the shock
dependency of the nonlinear control design in the frequency do-
main. It also contributes to the understanding of the time-do-
main behavior under disc defect disturbances and allows for a
clear physical interpretation of the nonlinear controller’s pos-
sibilities and requirements for implementation. This supports
the choice of nonlinearity in addressing both shock suppres-
sion and noise sensitivity along with its ability to enhance per-
formance beyond the design limitations otherwise encountered
under linear control.

V. CONCLUSIONS

For the purpose of model validation, estimation, and per-
formance assessment of the considered class of nonlinear con-
trolled systems, an efficient and accurate frequency-domain ap-
proach is presented. The approach consists of a numerical de-
scribing function method in combination with swept-sine mea-
surements and is applied to a nonlinear controlled optical play-
back (CD drive) device.

The validity of the describing function approximation in as-
sessing nonlinear system behavior is studied in the time domain.
For the system at hand, a good correspondence is obtained be-
tween time-domain measurements obtained from an industrial
setup and the nonlinear responses obtained from numerically
solving the full nonlinear equations of motion. This clearly illus-
trates the validity of the simplified objective lens model. In terms
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of amplitudes and phases, the simulated nonlinear responses
subsequently show a good correspondence with the approxima-
tive harmonic responses obtained from the describing function
analysis.

In the frequency domain, nonlinear controller and open-loop
frequency response functions together with nonlinear process
sensitivities are measured under different levels of excitation
and compared with describing function-based simulations. The
results show a good correspondence between measurements and
simulations, which, subsequently, indicates a proper controller
implementation. The shock dependency of the control design
is demonstrated along with the corresponding deterioration of
phase margins and its relation to deteriorated time responses
under black-dot disturbances. The results indicate up to 21 dB of
potentially improved (low-frequency) shock suppression which
is balanced by a phase margin reduction from 35° to 23°.

The effectiveness of the considered frequency-domain ap-
proach is given by the possibility to access both amplitude and
phase characteristics under different nonlinear settings in a
time-efficient manner. This allows for both analysis and finger-
printing of the nonlinear system behavior. In case of dropout
level measurement analysis, this leads to the conclusion that
performance is limited either by a maximum radial error level
of a quarter of the track pitch, hence a physical limitation, or
by saturation in the controller output level, hence a limitation
in the current controller implementation.
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