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Friction Compensation in a Controlled One-Link
Robot Using a Reduced-Order Observer
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Abstract—In this paper, friction compensation in a controlled
one-link robot is studied. Since friction is generally velocity depen-
dent and controlled mechanical systems are often equipped with
position sensors only, friction compensation requires some form
of velocity estimation. Here, the velocity estimate is provided by
a reduced-order observer. The friction is modeled by a set-valued
velocity map including an exponential Stribeck curve. For the re-
sulting discontinuous closed-loop dynamics, both the case of exact
friction compensation and nonexact friction compensation are in-
vestigated. For the case of exact friction compensation, design rules
in terms of controller and observer parameter settings, guaran-
teeing global exponential stability of the set-point are proposed. If
the proposed design rules are not fulfilled, the system can exhibit a
nonzero steady-state error and limit cycling. Moreover, in the case
of nonexact friction compensation, it is shown that undercompen-
sation leads to the existence of an equilibrium set and overcom-
pensation leads to limit cycling. These results are obtained both
numerically and experimentally.

Index Terms—Asymptotic stability, compensation, discontinu-
ities, friction, limit cycles, observers, switching systems.

1. INTRODUCTION

HE presence of dry friction in controlled mechanical

systems concerning a positioning task, can give rise
to undesired effects, such as large steady-state errors, large
settling times, and stick-slip behavior [1]-[4]. A common
approach to attain high performance for such systems is to
apply model-based friction compensation. Indeed, already,
many friction compensation approaches are available (see, for
example, [1]-[3], [6], [7], and [9]-[11]). In these references,
friction compensation is investigated in both a feedforward
manner (the friction compensation is based on the desired
variables) and a feedback manner (the friction compensation is
based on the actual variables). For a more complete overview
of possible variants of friction beating strategies and their
merits, we refer to the references [1], [2], [9]. Here, we will
apply a feedback model based friction compensation strategy
to a one-link robot in order to enhance its positioning accuracy.
The model-based friction compensation approach, as discussed
in this paper, distinguishes itself from other already available
model-based friction compensation techniques by the fact that
it includes an observer to estimate the actual velocity from
position measurements (no velocity sensors are needed), the in-
corporated discontinuous model of the friction captures known
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friction phenomena like stiction and an exponentially Stribeck
curve, and it is supported by design rules in closed form which
guarantee global exponential stability (GES) of the resulting
closed-loop system.

In general, a proportional-derivative (PD) controller with
an additional integral action (I) on the position error is used
for steady-state positioning control of mechanical systems
with friction. However, the integral action in the controller
in combination with descending slope of the friction around
zero velocity can cause instability (also known as hunting
[2], [3]). Since we want to focus only to possible instabilities
caused by the additional observer dynamics in model-based
friction compensation and to keep the analysis as simple as
possible, only a linear PD position controller is considered in
this paper. However, some results can easily be extended for
other controllers, for example PI or PID controllers. Based on
experiments, a model of the friction depending on velocity is
adopted here. The model is a set-valued friction law including
the Stribeck effect. Clearly, such a model does not capture
dynamical friction phenomena [7], [8], essential for certain
control tasks with friction compensation, for example, tracking
with velocity reversals at very slow velocities [15]. However,
depending on the application, the dynamical friction effects
may be neglected by applying friction compensation based on
relatively simple friction models which require less parameters
to identify and are easier to incorporate in a real-time environ-
ment.

Since only position measurements are available for the one-
link robot (and for controlled mechanical systems in general),
some form of velocity estimation is required. To this end, an
observer can be used (see, for example, [12], [13], [15]). The
combination of dry friction, friction compensation, and the ob-
server dynamics can give rise to undesired phenomena, such as
steady-state positioning errors and limit cycling [13]. In [13], a
friction compensation strategy combined with a PD controller,
based on a full-order observer and a static friction model, is
studied, and it is shown that such limit cycling can be avoided
for certain parameter settings of the controller and the observer.
However, the origin of the limit cycling behavior is still not
fully understood and design rules regarding the controller and
observer parameters, to avoid undesired equilibrium sets and
limit cycling are not provided. In this paper, friction compen-
sation based on a reduced-order observer (formerly known as
a reduced dimension observer [14]) is studied. In contrast to
a full-order observer, a reduced-order observer estimates only
those states which are not directly measured.

The application of a reduced-order observer for the estima-
tion of the velocity of the one-link robot, using the position
measurements, implies first-order observer dynamics with only
a single design parameter. In [15], friction compensation based
on a dynamical friction model and a reduced-order observer is
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applied successfully for a tracking control problem. However, a
rigorous stability analysis of the resulting closed-loop system is
not performed and design rules are not provided.

For the combination of controller and observer as studied in
this paper, a rigorous stability analysis is performed for the case
of exact friction compensation. This stability analysis results in
design rules for the parameters of the controller and observer,
such that GES of the set point is guaranteed. Clearly, these de-
sign rules guarantee that nonzero steady-state errors and limit
cycling are avoided. This analysis is performed by separating the
(nonlinear) observer error dynamics and the system dynamics,
analogous to the separation principle as known for linear sys-
tems [18]. The systematic approach proposed here can be ap-
plied for other controllers and may be extended for multi-de-
gree-of-freedom systems with both full-order and reduced-order
observers.

In practice, small friction modeling errors can not be avoided.
These friction modeling errors may induce some level of over-
compensation or undercompensation of the friction. In [10] and
[17], limit cycling due to overcompensation of the friction based
on sensed velocity is reported. For a tracking control problem,
friction modeling errors are related in [16] to observed oscil-
latory responses (especially at velocity reversals) in the case of
feedforward friction compensation and to zero velocity intervals
in the case of disturbance-observer based compensation due to
delays in the response of the applied disturbance observer. In
[15], it is shown in simulation that neglecting dynamical friction
effects in model based friction compensation based on sensed
velocity may lead to undesirable oscillations at velocity rever-
sals. To our knowledge, no results are present on the effect of
small friction modeling errors for observer-based friction com-
pensation strategies incorporated in a steady-state positioning
task controller. In this paper, we study the effect of small friction
modeling errors on the proposed observer-based friction com-
pensation strategy by numerical means and the results are vali-
dated with experiments.

The paper is organized as follows. First, the modeling and
identification of the one-link robot, based on experiments, will
be discussed in Section II. Next, in Section III, the controller
design, observer design and the adopted friction compensation
strategy are discussed. Section IV concerns the analysis of the
dynamic behavior of the system in the case of exact friction
compensation. This analysis results in design rules for the con-
troller and observer such that GES of the set point is guaranteed.
The consequences of (small) friction modeling errors on the dy-
namic behavior of the system are investigated in Section V and
the results are validated with experiments in Section VI. Finally,
in Section VII, conclusions are presented.

II. EXPERIMENTAL SETUP, MODELLING, AND IDENTIFICATION

The system under consideration is a controlled one-link robot.
From previous research [3], it is known that the positioning be-
havior of this setup suffers largely from the presence of dry
friction. This one-link robot is, therefore, a good carrier for the
research on the proposed friction compensation strategy to en-
sure accurate positioning. The robot is modeled as a single in-
ertia J (modeling the inertia of both the driveline and the link)
subjected to a viscous friction torque —bq, a dry friction torque

e
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v

Fig. 1. Schematical representation of the one-link robot.
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Fig. 2. (Dots) Friction measurements versus (solid line) friction model and

identified parameters.

—F, and a motor torque u (see Fig. 1). These assumptions lead
to the following model for the one-link robot:

JG=u—bq— Fs(q). e))

Using a frequency-domain identification technique, the total in-
ertia of the system is identified to be J = 0.026 kgm2 /rad[3].In
order to measure the friction-velocity map, break-away exper-
iments are performed to measure the static friction torque and
constant velocity experiments are performed to measure the fric-
tion-velocity map at nonzero (constant) velocities. In these mea-
surements, the Stribeck effect is evident and must be included
in the dry friction model, see Fig. 2. The dry friction model is
expressed as a set-valued force law by the following algebraic
inclusion:

gt (v), ifv>0
Fr(v) € § —g~(v), ifv<0 2)
[_Fs_7Fs+]7 ifv=20

with g7 (v) and g~ (v) the Stribeck curve for positive and nega-
tive velocity, respectively. The set-valued nature of (2) atv =0
allows to model the stiction phenomena. The Stribeck curve is
defined by the exponential curve (here, for v > 0, indicated by
the superscript “+)

st

(L)
g () =Ff +6F%e () 3)

where FF is the Coulomb friction torque, F" is the static
friction torque, F is the difference between the static and
Coulomb friction torque (§ F ™ = F;F — F.F), v} is the Stribeck
velocity, and 37 is the Stribeck shape parameter; for v < 0,
these parameters are indicated by the superscript “—.” The
friction model (2) allows for an asymmetric friction curve to
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ensure an accurate fit of the measured friction characteristics,
see Fig. 2. The values of the friction parameters are obtained
by fitting the Stribeck curve (3) with the viscous friction term
—bg to the friction measurement data for both positive and
negative velocities separately. The fit and the estimates of the
friction parameters are also depicted in Fig. 2. The asymmetry
in the dry friction is significant and is taken into account.
However, since we want to consider only a (smooth) linear
reduced-order observer, the asymmetry for the viscous friction
is not taken into account in the observer design, see Section II.
For that purpose only, the viscous friction coefficient is set to
the average value (b™ + b7)/2 = 0.0809 [Nms/rad].

III. CLOSED-LOOP SYSTEM DESIGN

The combination of the PD controller and friction compensa-
tion, incorporating a reduced-order observer, as applied to the
one-link robot is depicted schematically in Fig. 3. The total
motor torque u = u. + uy. is composed by a feedback con-
troller torque u. and the friction compensation torque us.. The
controller torque is defined by

Ue = n1(qr — q) — Mg 4)

where n1,n2 > 0 are the proportional gain and the derivative
gain, respectively, and q the velocity estimate provided by the
observer. Without loss of generality, the desired position g, will
be assumed to equal zero. Furthermore, the following set-valued
friction compensation law, analogous to (2), is adopted:

uge = rFs(q) ®)

with  a scaling factor of the friction compensation and F(-)
defined by (2). Clearly, uy. reflects a feedback compensation
strategy based on an estimated velocity provided by an observer.
When r» = 1, exact friction compensation is attained, when
r # 1 nonexact friction compensation is attained. The adopted
friction compensation law (5) is set valued for & = 0. Of course
in practice one can only implement a specific compensation
torque at ¢=0.In Appendix [, it is shown that under the pro-
posed design rules, uniqueness of solutions is guaranteed for the
closed-loop system as depicted in Fig. 3. Consequently, in prac-
tice, any single-valued compensation torque taken from the set
r[—F;, F] suffices to compensate the friction for ¢ = 0.

The linear reduced-order observer reads as

i= it et L - ) ©
where & is the observer state (the velocity estimate) and L >
0 the observer gain. In (6), a model-based part (—(b/.J)q +
(1/.J)u.) and a linear injection term (L(§ — ¢)) can be rec-
ognized. To avoid the difficulty that (6) still depends on the
unmeasured velocity ¢, a new observer state [18] is defined:
z = (} — Lgq. In terms of this new state, the reduced-order ob-
server (6) reads as 2 = —((b+ LJ)/J)(z + Lq) + (1/J)uc,
in which only the measured angular position ¢q appears. The re-
duced-order observer in the latter form is only provided for im-
plementation purposes, the analysis in this paper will use the for-
mulation of as in (6). The observer error is defined as e = ¢ — &,
and its dynamics obey the following scalar differential inclu-
sion:

A b+ LJ

Fi(q) — Fyr(§
b—ibeo rFy(q) - F(4)

7 e T
which can clearly be influenced by the observer gain L for e #
0. Adopting the state coordinates x = [q ¢ €] = [x1 22 23]7T,
the dynamics of the closed-loop system, as depicted in Fig. 3,
can be formulated by the following differential inclusion:

(N

T1 =To + T3

b
Ty = —n—;m— —i:] 229 + L
b+ LJ 1

T3 € — $3+3(7’Ff($2)—Ff(1172+1173)). (8)
The differential inclusion (8) is of Filippov-type, and Filippov’s
solution concept [20] can be adopted. Consequently, the exis-
tence of solutions for (8) is guaranteed. However, uniqueness of
solutions is not automatically guaranteed. In the Appendix I, it
is shown that uniqueness of solutions of (8) can only be guaran-
teed if » < 1 and
ny 1
L+—>—=(=A-b 9

S (e ©
where A = mingep j03[(dg (x)/0z), (09~ (x)/0x)] is the
maximum rate of decay of the friction model (2), defined by

To6Ft —6F~
A = min <_77 T 7_77 — > (10)
Vs Vs
and
1, if ¢ =
i ) _B8-1
n = (,87'—1)8‘ B* , lfﬁl >1- (11)
g [ izt

3t

Under this condition, the solution of (8) is not influenced by
which exact value of the friction compensation torque is taken
for ¢ = 0 from the set 7[—F~, F:}]. This property is beneficial
for implementation purposes.

IV. EXACT FRICTION COMPENSATION

In this section, the behavior of the closed-loop system (8) is
investigated for the case of exact friction compensation (r = 1).
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First, the existence of an equilibrium set, and its dependence
on the design variables, is discussed. Next, the stability of the
set-point (the origin) is investigated.

A. Equilibrium Set

It is important to study the equilibria of (8) and their depen-
dencies on the design variables. After all the closed-loop system
concerns, a positioning task and equilibria other than the origin
represent a state of nonzero steady-state error. Equilibria of (8),
denoted by x*, must satisfy the following equations and inclu-
sion:

Ty = — 4 (12)
b+LJ

= — wx; (13)
n1

G (a3) € [-F7, F] (14)

where G(z) = (b + LJ)z + F¢(z). Clearly, the origin is al-
ways an equilibrium, as desired. However, depending on the
observer gain L, an equilibrium set exists. In Fig. 4, the equi-
libria of the system with exact compensation are compared to
those of the system with no compensation. In Fig. 4, the effect
of the existence of the equilibrium set on the steady-state po-
sition error x; is depicted for ny = 0.4, no = 0.02 and for
varying L. The use of friction compensation ensures a signifi-
cant decrease in the size of the equilibrium set. Moreover, in the
case of exact friction compensation, the equilibrium set shrinks
to an isolated equilibrium point for increasing observer gain at
some critical value for the observer gain. In order to derive the
condition for L such that a single equilibrium point exists, we
note that lim, o G(z) = F. and lim,1o G(z) = —F . Taking
into account the strictly decreasing nature of Fy(z) forz # 0, a
sufficient and necessary condition, under which no equilibrium
set can exist, is that G(z) is strictly increasing for all z # 0 [see
inclusion (14)]. This is attained if (9/902)G(z) > OVx # 0 and,
consequently, if

1
L>=(=A=b=1L
>J()\ b) c

15)
with A\ defined by (10). For the (asymmetric) parameters of
the model of the one-link robot, the critical observer gain for
negative velocity is L, = 55.07 and for positive velocity is
L} = 94.4. Consequently, the critical observer gain follows in
this case from the parameters for positive velocity: L. = 94.4.
Note that the observer gain values at which the positive and the
negative side of the equilibrium set in Fig. 4 disappears cor-
respond to the values for L and L}, respectively. The rela-
tion between the controller gains and the size of the equilibrium
set (and the corresponding maximum steady-state positioning
error) follows from (13); if n; is increased, the size of the equi-
librium set decreases, and if nq is increased, the size of the equi-
librium set increases.

B. Stability of the Closed-Loop System

Conditions for the combination of controller and observer
gain(s) for which GES of the origin of (8) is guaranteed are of
great importance. Namely, if GES of the origin can be attained,
the absence of undesired steady-state errors and limit cycling
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1 I
1 ]
1.5} \ .
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Fig. 4. Bounds for steady-state position error depending on L for n; = 0.4
and n, = 0.02.

3 = Ajrs + Bjw > );(12 = AH)_(12 + Bryzs

Fy(xg + x3) — Fy(wg) <

Fig. 5. Cascade representation of the closed-loop system.

is guaranteed. In order to investigate the stability of the origin
of (8), we note that the system can be studied in the form of a
cascade of two subsystems Sy and Sy, as depicted in Fig. 5.
In this figure, x12 = [z1 22]7, and the system and input ma-
trices of these subsystems are given by Ay = —(b+ LJ)/J,
By =1/J and

0 1 1
A = [ n b+no:|7 B = [ }
e L

J

In order to prove the GES of the origin of (8), we adopt the
following reasoning if the following three conditions are ful-
filled:

a) the subsystem Sy is input-to-state stable (ISS) [21];
b) xi2 = 0 is a globally exponential stable equilibrium of
the subsystem Sy for zero input x3;
c¢) zz = 0 is a globally exponentially stable equilibrium
point of the subsystem S for all z5.
Then, x = 0 is a globally exponentially stable equilibrium point
of (8).! Let us now check when these conditions are fulfilled.
First, conditions a) and b) are satisfied since system Sjy is a
LTI-system with a Hurwitz system matrix A;; and a bounded
input matrix By (A is Hurwitz given the fact that b, ny, no >

Note that the application of a other type of controller, such as a PI or PID
controller, only affects the subsystem S;;. The extension of the proposed ap-
proach for other type of controllers is, therefore, straightforward.



378

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 14, NO. 2, MARCH 2006

( . : :
Fi :
i : — a1 [rad]
-1.5H - . A
\ ; - - - a9 +ux3[rad/s]
_2 1 1 1 1 1 T T T T
0 2 4 6 8 10 12 14 16 18 20
0.6 :
0.4 |
0.2} :
0 :
—0.2+ P T e — a3 [rad/s] i
: : : : : —_— ro +
vl fo b Fywy +xg) [Nm] |
A ; . | -7~ FyGp) [Nm]
0 2 4 6 8 10 12 14 16 18 20

Fig. 6. Limit cycle forn; = 0.4, n, = 0.02, L = 40 < L., and r = 1 (simulation).

0). Before we check condition c), it is emphasized that Sy de-
scribes the observer error dynamics (7). Consequently, condi-
tion c) requires the stability of the observer error e. In order to
investigate the stability of the observer error, we use a candi-
date Lyapunov function V' = (1/2)x2 (see [20] and [22] for de-
tails on Lyapunov analysis for differential inclusions). Its time
derivative V = T3T3 obeys

b+ LJ 1
— x5 + i (Ff(w2) — Fy(w2 + w3)) 73.

In the second term of V/, the discontinuities of both the dry fric-
tion torque and the friction compensation law are present. Here,
we will estimate this term by realizing that the function F'f(-)
satisfies the following incremental sector condition:

Ve

(16)

ey < (Fy(wa + w3) — Fy(20)) 23V 12,23 (17

with \ defined by (10). Using (17) in (16) yields V < —(b/L +
J+X/J)x% = —=2(b/L+ J+ \/J)V. Clearly, for an observer
gain satisfying L > L. with the critical observer gain L. given
by (15), the observer error is globally exponentially stable (in-
dependent of z2) and condition c) is fulfilled.

Summarizing, we can conclude that for . > L., x = 0is a
globally exponentially stable equilibrium point of (8) for all ny,
no > 0. Note that for L > L., (9) is also fulfilled and solutions
are, therefore, also guaranteed to be unique for L > L.

If L < L., undesired behavior in the form of a steady-state
error (see Fig. 4) or limit cycling (see Fig. 6) can occur.
The latter figure indicates that e = 0 is not stable for this
observer gain value, which causes a nonzero observer error.
The nonzero observer error induces overcompensation of the
friction (F(x2) > F¢(x2 + x3) for some time intervals), and,
as a result, the system exhibits limit cycling around the desired
state. The cause for this limit cycle is, therefore, directly related
to the instability of the observer error. Note that for the numer-
ical integration of the differential inclusion (8), we replaced

both the friction model (2) and the friction compensation rule
(5) with a switch model (see [19] for more details on this
technique). Furthermore, for the applied parameter settings, (9)
is not fulfilled and the solution in Fig. 6 is not guaranteed to be
unique (see Appendix I).

V. NONEXACT FRICTION COMPENSATION

In practice, small friction modeling errors can not be avoided.
Obviously, this also holds for the friction modeling of the one-
link robot. The plausible effects of such inevitable modeling er-
rors on the proposed friction compensation strategy are investi-
gated in this section. This is done by introducing a scaled friction
compensation law, as incorporated in (8) for 7 # 1. Obviously,
in practice, modeling errors will not be of this form, but this
type of scaling of the compensation law allows to investigate
the effects of both overcompensation and undercompensation
in a relatively straightforward manner.

The equilibria of (8) for » # 1 satisfy the same equa-
tions as for the case of exact friction compensation [see (12)
and (13) and the inclusion Gp.(z3) € [-F;,F}], where
Gre(z) = (b4 LJ)x + rFy(z). Similarly to the case of exact
friction compensation, the origin is always an equilibrium point
(as desired). For the case of nonexact compensation, it holds
that lim, g Gpe(z) = rF} and limgyo Gre(z) = —rF; .
Consequently, an equilibrium set will exist for the case of
undercompensation (r < 1), irrespectively of the value for
L. As illustrated in Fig. 7, the value of L does influence the
magnitude of the maximum steady-state positioning error for
this case. This figure also indicates that friction compensation
(even in the case of undercompensation) ensures a smaller
steady-state positioning error than exists without compensation
(see Fig. 4). Moreover, the controller parameters can be used to
decrease the maximum steady-state position error even further
in a similar manner as for the case of exact friction compen-
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undercompensation (r = 0.95), projected onto the plane 3 = 0, for

n; = 0.4,n, = 0.02,and L = 95.

sation (see Section IV-A). For the case of overcompensation
(r > 1), an equilibrium set only exists for r very close to one;
the equilibrium set rapidly shrinks to an isolated equilibrium
point for increasing 7.

The dynamics of (8) for  # 1 are numerically examined in
more details. In Fig. 8, the result of this approach is depicted for
the case of undercompensation (r = 0.95). All solutions tend
to the equilibrium set and no other type of solutions, such as
for example limit cycles, are observed in this case. A solution
for the case of overcompensation (r = 1.01), with an initial
condition taken very close to the origin, is depicted in Fig. 9. The
latter figure indicates that, for the case of overcompensation, the
origin of (8) is not stable anymore and the system exhibits limit
cycling.

The branch of limit cycles for a varying value of r is traced
using pseudo arclength continuation [23] in combination with
the shooting method. The local stability of the limit cycles is de-
termined by inspection of the Floquet multipliers. The resulting

0.15

R .

-0.25

0.02 0.04 0.06 0.08 0.1
1 [rad]

L

-0.3 :
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Fig. 9. Numerical solution for the case of overcompensation (r = 1.01),
projected onto the plane 3 = 0, with x(0) = 1-107°[0,1,0], ny = 0.4,
ny = 0.02,and L = 95.
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Fig. 10. Bifurcation diagram with bifurcation parameter » with n; = 0.4,
ne = 0.02, L = 95 [(I) (stable) branch of limit cycles, (II) (stable) equilibrium
set and (III) (unstable) equilibrium point].

bifurcation diagram is shown in Fig. 10 for an observer gain
L =95 > L.. A limit cycle is characterized in this figure by
plotting the value of max(|z1]|) of the limit cycle. Clearly, the
closed-loop system already exhibits stable limit cycling if the
friction is only slightly overcompensated. For the case of under-
compensation, a zero steady-state error is no longer guaranteed
due to the existence of an equilibrium set. However, the system
does not exhibit limit cycling in this case.

For the positioning task, the system must come at rest as close
as possible to the desired position. Consequently, the possibility
of limit cycling must be excluded. The case of undercompen-
sation should, therefore, always be preferred over the case of
overcompensation. To cope with small modeling errors, a rela-
tively simple strategy is, therefore, to scale down the compen-
sation rule until no more limit cycling behavior occurs. The de-
pendency of the maximum steady-state error on the controller
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Fig. 11. Experimentally found bifurcation diagram with bifurcation parameter
randn; = 0.4, n, = 0.02, L = 95.

and observer gain(s) is similar to those in the case of exact fric-
tion compensation. Consequently, the resulting steady-state po-
sitioning error for this case, can be reduced by increasing the ob-
server gain and the proportional controller gain or by decreasing
the derivative gain (see Section IV-A). Namely, the equilibrium
set becomes smaller by taking these measures.

VI. EXPERIMENTAL VALIDATION

In this section, the result of the previous sections are vali-
dated with experiments. For the experimental implementation,
the modeling and identification of dry friction will never be
exact. In Section V, the effects of small friction modeling er-
rors for the reduced-order observer-based friction compensation
is studied by simply scaling the friction compensation rule. For
the experimental implementation, the error in the estimated fric-
tion is due to both identification errors and friction modeling er-
rors and is, therefore, far more complicated than accounted for
by simply scale the compensation model. Possibly, the effect
of more complicated friction modeling errors (for example due
to neglecting dynamical friction effects) may give different re-
sults. Therefore, the effectiveness of the scaling-down-approach
of the friction compensation to avoid possible limit-cycling be-
havior will also be tested at the experimental implementation.
Furthermore, the experimental results will be compared with the
numerical results for the closed-loop system (8) with r # 1.
At the experimental setup, the link of the robot is driven by an
induction motor, which is powered by pulse width modulation
(PWM). The real-time control of the setup is handled by a PC
with a dSPACE [24] controller board. The angular displacement
of the link is measured at the experimental setup with a resolu-
tion of 2 - 10* increments per revolution of the motor shaft. Due
to the gear ratio of the transmission of 8.192 [—], the effective
resolution for the position of the link is 3.835 - 10~ rad.

A bifurcation diagram, with the scaling constant 7 as bifur-
cation parameter, involving experimental results is shown in
Fig. 11. Herein, the stars (*) indicate equilibria and the cir-
cles (o) indicate limit cycles. Comparison of Figs. 10 and 11
reveals a clear qualitative correspondence. The bifurcation point
in Fig. 11 is, of course, not located exactly at = 1 since not

— eX};. 7‘=i
num. 7 = 1.057

202k e NG
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L0 T ]
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Fig. 12.  Comparison of numerically obtained limit cycle for » = 1.05 with
experimental results forr = 1, n; = 0.4,n, = 0.02,L =35 < L..
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Fig. 13. Comparison of numerically obtained limit cycle for 7 = 1.05 with
experimental results for r = 1, ny = 0.4,n, = 0.02,L = 100 > L..

only the friction compensation law is scaled but the real fric-
tion deviates from the friction model as well (for example due
to dynamical friction effect). Moreover, the difference between
the real friction and the friction model (the modeling error) is
not of the form of a mere scaling. Nevertheless, the theoret-
ical and experimental results agree to the extent that undercom-
pensation leads to the existence of an equilibrium set (resulting
in nonzero steady-state errors) and overcompensation leads to
limit cycling. These observations are found for wide range of
initial conditions.

Fig. 12 shows experimental results for L < L. and r = 1.
Clearly, the system exhibits limit cycling around the desired po-
sition. In Fig. 12, a numerically obtained limit cycle for (8) with
r = 1.05 is also shown. From the comparison, it can be noted
that, although the projections do posses shape similarities, the
experimental result does not exactly agree with the simulation
result. However, the results do show qualitative similar behavior.
In Fig. 13, similar results are depicted for L > L.. For this
higher observer gain value, the measured limit cycle has be-
come more noisy, probably due the combination of unmodeled
dynamics and the higher observer gain. Again, the results show
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Fig. 15. Measured equilibrium set for n; = 0.4, n, = 0.02, L = 95, and
r = 0 (no compensation).

a qualitative correspondence. For » = 0.8, the experimentally
obtained equilibrium set is depicted in Fig. 14 and similarly for
7 = 0 (no compensation) in Fig. 15. Clearly, the use of proposed
friction compensation, with undercompensation of the friction,
does not guarantee a zero steady-state error. However, the use
of the friction compensation strategy ensures, also for the ex-
perimental implementation, a large decrease in the size of the
maximum steady-state error (i.e. max |z7|,—o = 0.87 rad and
max |z%|,=0.s = 0.15 rad). Moreover, the experimental setup
does not exhibit limit cycling if the friction is undercompen-
sated. Consequently, assuring that the friction is not overcom-
pensated, the use of the reduced-order, observer-based friction
compensation at the experimental setup provides an increase in
positioning performance without the existence of limit cycling
behavior.

VII. CONCLUSION

A friction compensation strategy for a PD controlled one-link
robot using a reduced-order observer is proposed. Based on ex-

periments, a set-valued friction model is identified to support
a model-based friction compensation approach. Since only po-
sition measurements are available and the friction depends on
velocity, a reduced-order observer is used to provide velocity
estimates. Both the cases of exact friction compensation and
nonexact friction compensation are studied. In the case of exact
friction compensation, it is shown that the observer gain is crit-
ical for the stability of the equilibrium point coinciding with the
set-point. An analytical expression for the critical observer gain
is derived. If the observer gain is taken larger than this critical
value, it is shown that the set-point is a globally exponentially
stable equilibrium point for arbitrary positive controller gains.
Clearly, the mild condition on the controller gains in combina-
tion with the derived critical observer gain can be considered
as a design rule for the closed-loop system. Moreover, for an
observer gain taken lower than this critical value, an equilib-
rium set exists and limit cycling can occur (both undesired phe-
nomena for the position performance). In the case of nonexact
friction compensation, it is shown that undercompensation of
the friction leads to a significant increase in positioning perfor-
mance. However, a zero steady-state error can not be guaranteed
in this case, due to the existence of an equilibrium set. If the
friction is overcompensated the system exhibits limit cycling.
These results are obtained both in simulation and experiments.
Consequently, it is advised to choose for a small level of un-
dercompensation instead of a small level of overcompensation
when exact friction compensation is not possible.

The stability analysis of the closed-loop system is performed
by studying the closed-loop system in a cascade structure or
to be more precise by separating the (nonlinear) observer error
dynamics and the system dynamics. This approach can easily
be extended for controllers other that the PD controller as con-
sidered in this paper, and may be applied to other observer-
based friction compensated systems. However, for the case of
nonexact friction compensation, an additional integral interac-
tion in the controller may provide robustness against steady-
state errors but may also lead to additional instabilities. This
matter and extension of the results toward friction compensated
multi-degree-of-freedom systems with both full-order and re-
duced-order observers are topics for further research.

APPENDIX 1
UNIQUENESS OF SOLUTIONS

In this appendix, uniqueness of solutions for (8) is exam-
ined. With the friction model (2) and the compensation rule (5)
incorporated in (8), two surfaces of discontinuity (commonly
termed as switch surfaces) exist in the state-space of (8). For
the study on the uniqueness of solutions of (8), the dynamics
close to these two switch surfaces will be investigated. The
switch surface in the state space of (8) related to the disconti-
nuity in the friction model is denoted by ¥; and is indicated by
hi(x) = 9 + x3 = 0. The switch plane related to the disconti-
nuity in the friction compensation rule is denoted by X2 and is
indicated by hs(x) = 22 = 0. The dynamics close to a switch
plane X; are studied by examining the projections of the vector
field on the corresponding normal, evaluated infinitely close to
>;. The vector field evaluated infinitely close to 3; in the sub-



382 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 14, NO. 2, MARCH 2006

space where h;(x) < 0 is denoted by £~ (x) and similarly for
hi(x) > 0 by f1(x).

First, the dynamics near 3, with corresponding normal n; =
[0,1,1]T, are examined. The projections of the vector field on
ny, evaluated infinitely close to X1 are n? £~ (x) = (1/J)(u.+
rEy(as) + F7) and nf £+(x) = (1/J)(uc + 1y (w2) — F),
where u, is the controller torque as defined in (4). A solution
will intersect 31 transversally if (n?f~(x))(nff+(x)) > 0
and, consequently, if u. + rFy(z2) < F, or u. + rF¢(z2) >
F. Attracting sliding modes appear if nff=(x) > 0 and
n?f*(x) < 0 and, consequently, if —F, < u. + rF(z2) <
F. Moreover, repulsive sliding modes appear if n? £~ (x) < 0
and n{ £ (x) > 0. Since this would require u. + rF¢(z2) +
F; < 0and u. + rF¢(z2) — F} > 0, no repulsive sliding
modes along X1 can occur.

Next, the dynamics near 5 are examined. Since only the
second component of the normal vector to X5 is nonzero: no =
[0,1,0]%, and only the third component of the right-hand side
of (8) is discontinuous, the projection of the vector field on ns,
evaluated infinitely close to the switch surface X5 is continuous
and equals nJ f~(x) = nIf*(x) = La3 — (ny/J)z;. Solu-
tions are, therefore, always transversal to the switch plane o,
except on the line

r= {1:622|L:1:3— M :0}. (18)

J

Namely, on the line defined by (18), the situation occurs that
nl'f~(x) = nifT(x) = 0, since the vector field is locally
parallel to X5 at this line. The point z3 = 0 on I reflects the
origin in the state-space of (8) and is an equilibrium point of (8)
(see Sections IV and V). Therefore, the discontinuity related to
the friction model is not taken into account in the following. In
order to understand the dynamics of (8) on I', one should realize
that on I' the vector field is set valued. The vector field is locally
parallel to 3o at I' and solutions may slide along I". However,
sliding along I' is only possible if the direction of I' lays in
the convex hull of the set-valued vector field apr € f(x)|xer,
where o € R and

(19)

as illustrated in Fig. 16. Since solutions which slide along I" are
also allowed to leave I' (and, consequently, Y5), by choosing
any other direction from the convex hull of the set-valued vector
field, this type of solution is not unique. Consequently, to guar-
antee uniqueness of solutions of (8), sliding along I" must be
avoided. In order to study possible sliding modes along I", we
introduce a vector np = [—(n1/JL) 0 1]7 in the plane ¥
which is normal to pr. A condition such that sliding along T’
is impossible is (nLf(x(t)))(nZf(x(t))) > 0V x € T, since
this assures that apr ¢ f(x)|xer. Consequently, sliding along
T is not possible if (1/J%)(K (z3) — r[-F7, FF]) (K (z3) —
r[—F;, F])> 0,where K(z) = (b+LJ+(n1/L))z+Fg(x).
Since it hold that lim, o K (z3) = F; and lim, 10 K (z3) =
F, a sufficient condition such that no sliding modes along I"

s

sliding possible

np

sliding not possible

Fig. 16. Possible sliding mode due to the set-valued vector field.

can occur for 7 < 1 is that the function K (z3) is strictly in-
creasing for all z3 # 0. This is attained if (0/9z3)K (z3) >
0V z3 # 0 and, consequently, if

1
L+ s —(-a—b)

i 7 (20)

where ) is defined by (10). Clearly, solutions of (8) are not
automatically guaranteed to be unique. However, for the case
r < 1, a sufficient condition is derived such that uniqueness
of solutions of (8) is guaranteed. It is noted that L > L. (see
Section 1V), is sufficient to satisfy (20) for arbitrary ny > 0.
The presented sufficient condition for the uniqueness of solu-
tions for (8) ensures that no sliding modes along 3> [(the switch
plane related to the discontinuity in the compensation rule (5)]
can exist. Consequently, the solution of (8) is not influenced by
which exact value of the friction compensation torque is taken
from the set r[— F~, F.;"]. This property is beneficial for imple-
mentation purposes.
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