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Switching Control in Vibration Isolation Systems
Marcel F. Heertjes, Ismail Hakki Sahin, Nathan van de Wouw, and W. P. Maurice H. Heemels

Abstract—In this paper, a switching control approach for active
vibration isolation systems is proposed. The switching involves two
regimes. In the first regime, no feedback control is applied thereby
giving a low sensitivity to noise. In the second regime, active con-
trol induces improved disturbance rejection properties, but at the
cost of increased noise sensitivity. Conditions for the stability of the
switching closed-loop system are formulated whereas the stability
analysis provides design rules for tuning the switching controller.
Given this novel active vibration isolation approach, improved iso-
lation performance is obtained with substantially less control au-
thority in comparison to the case of linear (or non-switching) feed-
back control. Performance analysis is based on multi-resolution
time-frequency analysis using measurements taken from a com-
mercial vibration isolation system.

Index Terms—Absolute stability, discontinuous variable gains,
input-to-state stability, switching systems, vibration isolation,
wavelet analysis.

I. INTRODUCTION

I N HIGH-PRECISION motion systems, vibration isolation
is used to isolate (sub-)systems from environmental distur-

bances such as floor vibrations and acoustic excitations. Exam-
ples include electron microscopes for nano-scale imaging and
wafer scanners for the manufacturing of integrated circuits [5].
In these systems, vibration isolation performance is obtained
both passively and actively. Typically, active vibration isola-
tion involves both feedforward and feedback control [15], [19],
[24]. In terms of feedback control, the discrimination between
low-frequency disturbances for which the isolated system is
sensitive and high-frequency disturbances for which it is not is
crucial in achieving isolation performance [13], [14]. The addi-
tional discrimination between small-amplitude steady-state re-
sponses and large-amplitude transients provides the motivation
to improve this performance even further, in particular, using a
switching control approach [9], [20].
Envisioning such improvements starts with the observation

that passive isolation typically relates to steady-state operation,
i.e., the kind of isolation for which the isolator is designed to
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achieve performance. Only in the incident of having large-am-
plitude transient responses (and corresponding disturbances) ac-
tive control is actually needed to improve upon the error re-
sponse. In fact, the injection of additional (measurement) noise
resulting from closing the loop is highly undesirable and can be
avoided by adopting the following switching control strategy.
Feedback control is switched on only when the error response
exceeds a pre-defined threshold, thereby suppressing any further
increase in transient response. Below this threshold, feedback
control is switched off. This keeps the steady-state response lim-
ited in amplitude while the high-frequency isolation properties
corresponding to the passive isolator design remain valid. In this
way, the control authority is kept small and so is the injection of
noise by closing the loop.
A comparable strategy is known to improve upon the distur-

bance rejection properties of optical storage drives [1], [11]. The
approach in this paper is different because of the discontinuous
nature of the switching. As it is known that favorable proper-
ties of the subsystems between which the closed-loop system
switches (e.g., stability in the face of perturbations) are not al-
ways maintained, this strategy requires careful analysis and de-
sign of the resulting closed-loop system. For the vibration isola-
tion problem, it will be shown that favorable stability properties
of both the passive and the active isolation system remain in ef-
fect under the switching control approach; see [8] and [25] for
different approaches but in the same context. Hereto the con-
cept of input-to-state stability [21] is used along with exten-
sions of absolute stability theory [23], [18]. The stability anal-
ysis provides design rules for the switching controller in view
of isolation performance. The effectiveness of the approach in
achieving improved servo performance is demonstrated using
wavelet analysis [4], [7] applied to experimental data. Via a
multi-resolution time-frequency approach the advantage of the
switching becomes much clearer especially from the perspec-
tive of non-stationary servo performance.
This paper has the following five main contributions.
1) The design is presented of a switching feedback controller
for vibration isolation systems with the aim to effectively
combine favorable steady-state noise properties of the pas-
sive isolation system with improved disturbance rejection
properties of transients under feedback control.

2) Conditions are formulated under which the switching
closed-loop system is stable in the face of perturbations.

3) Design rules are presented for the switching controller en-
suring that favorable passive noise sensitivity properties
are preserved in steady-state.

4) The multi-resolution time-frequency analysis tool is em-
ployed as an effective means to illustrate improved isola-
tion performance.

5) The main ideas such as developed in this paper are demon-
strated using real experiments on a commercial vibration
isolation system.

1063-6536/$31.00 © 2012 IEEE
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Fig. 1. Vibration isolation system from IDE.

In presenting the work, the following organization is adopted.
In Section II, the vibration isolation system under study is dis-
cussed and the vibration isolation problem is formulated. In
Section III, the switching control strategy is introduced as a
means to improve upon isolator performance by active (sky-
hook) damping. In Section IV, the stability properties of the
switched closed-loop system in the face of perturbations are
studied. Section V addresses the performance-based tuning of
the switching controller whereas experimental results are pre-
sented in Section VI. Section VII contains the main conclu-
sions. The wavelet analysis tool used throughout the paper is
addressed in the Appendix.

Notation

denotes real numbers and denotes all non-negative real
numbers. The maximum and minimum eigenvalues of a sym-
metric matrix are denoted by and
respectively. A symmetric matrix is called positive
definite if for all , . This condition
will be denoted by . For positive semi-definite matrix
operators ( ) is replaced by ( ). Furthermore denotes the
Euclidian vector norm and denotes
the norm of a signal on the interval .

II. VIBRATION ISOLATION

Vibration isolation is used (for example) in the wafer scanner
industry to isolate a metrology frame from environmental dis-
turbances [12]. An example of a metrology frame is depicted
in Fig. 1. It shows a payload mass of 289.3 kg, which is sup-
ported by pneumatic isolators. The natural frequency of the pas-
sive system in vertical direction is 3.24 Hz. The behavior of the
isolation system is shown in Fig. 2. Through multi-resolution
time-frequency analysis, the figure shows the scaled magnitude
of the velocity response ( ) of the payload in vertical direction
both in the time- and frequency-domain; see the Appendix re-
garding the conducted wavelet analysis. The magnitude is lin-
early scaled from white (small) to black (large). In the weakly-
damped response, large non-stationary oscillations near 3.24 Hz
are recognized. At certain time intervals the system clearly os-
cillates at this frequency, at other time intervals it does not. In the
high-frequency range the response merely shows small ampli-
tude behavior. So the passive isolator design suggests favorable
high-frequency isolation properties.

Fig. 2. Multi-resolution time-frequency analysis of the measured vertical ve-
locities of the passive system.

The problem considered in this paper is the following. Design
a switching controller to actively damp the low-frequency oscil-
lations still present in the passive isolation system, see Fig. 2,
while at the same time preserving the favorable high-frequency
isolation properties of this passive (and undamped) system [14].
More specifically, the aim is to avoid deterioration of high-fre-
quency transmissibility induced by passive damping [2], [26].
This deterioration generally follows from the transition of a 40
dB/dec sensitivity to floor disturbances for undamped mass-
spring systems to a 20 dB/dec sensitivity in the case of passive
damping.

III. ACTIVE DAMPING BY SWITCHING CONTROL

To improve the payload response, i.e., to reduce the os-
cillations around the resonance frequency of the passive
isolator, active (sky-hook) damping is applied [15]. Given
linear motors of the Lorentz-type and geophones for velocity
measurement [10] a simplified and single degree-of-freedom
(DOF) schematic representation of the considered control
configuration is shown in Fig. 3. Given a proper rigid-body
decoupling, the single-axis case can easily be extended to a
multi-axis case by considering for example the six individual
rigid-body directions of motion [12]. In the figure, is the
payload displacement, the corresponding velocity, is the
controller force, represent ground vibrations, is an ex-
ternal perturbation, and is measurement noise on the velocity
measurement . The plant represented by the transfer
function between input (force) and output (displacement)
is given by the following fourth-order model:

(1)

with 274.8 kg, 14.5 kg, 90 Nsm ,
Nm , and denoting the Laplace variable. Let

be a constant-valued gain with in the case of linear



628 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 21, NO. 3, MAY 2013

Fig. 3. Schematic of a controlled vibration isolator along with a mechanical
representation.

Fig. 4. Bode representation of the isolator characteristics with ( )
or without ( ) control.

control. The controller transfer from to is then chosen
as

(2)

with Nsm a gain, the crossover frequency of
a second-order high-pass filter, and the roll-off frequency of
a second-order low-pass filter. reflects a complex-valued
damper and is used to improve disturbance rejection near res-
onance without significantly deteriorating the passive isolation
properties; the latter being characterized by the isolator stiff-
ness Nm and the damping coefficient

Nsm in combination with . Sensor limitations
typically occur below 0.1 Hz and lead to the choice for

rad/s. Actuator limitations occur beyond 100 Hz, which
lead to the choice for rad/s.
The closed-loop characteristics given by the transfer from

to , or

(3)

are depicted in Fig. 4 (for and frequency ) either
with ( ) or without ( ) control. The Bode plots show
both numerical and experimental results. From the figure, it is
clear that isolator performance benefits from the given linear
control strategy. The sensitivity near the natural frequency is
much improved at the cost of seemingly small low- and high-
frequency deterioration.

Fig. 5. Time-frequency analysis of the measured and linear controlled veloci-
ties (scales adopted from Fig. 2).

Fig. 6. Time-frequency analysis of the measured control forces.

The validity of this observation is disclosed in more detail in
Fig. 5 using multi-resolution time-frequency analysis. In com-
parison with Fig. 2, it can be seen that the velocity response is
indeed significantly reduced in amplitude. In fact, the non-sta-
tionary oscillations dominated by the natural frequency of the
passive isolator around 3.24 Hz seem no longer present. How-
ever, high-frequency noise (between 10–20 Hz) tends to be am-
plified. This directly follows from Bode’s sensitivity integral in
which the peak of the sensitivity function is shifted from 3.24Hz
without ( ) control to 10.8 Hz with ( ) control. This
is seen more clearly in Fig. 6 by subjecting the corresponding
scaled control force to a similar analysis. It can be seen that
the linear controller induces a significant high-frequency con-
trol signal. This is undesirable as it potentially compromises
high-frequency passive vibration isolation.
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Fig. 7. Switching characteristic of .

These observations hint toward the application of switching
control. Sporadically switching the control on improves the
resonance-induced isolator response related to large-amplitude
transients. Switching the control off restores the passive isola-
tion properties, which are favorable in view of low-amplitude
(and high-frequency) measurement noise. The idea can be
formalized by selecting the switching gain function in Fig. 3
as

if
otherwise

(4)

with a threshold parameter. This switching gain func-
tion discriminates between control ( ) and no control
( ) on the basis of the magnitude of the input signal

. The characteristics of are depicted in
Fig. 7. With such a discontinuous element in the loop, analysis
of the switching closed-loop system becomes nontrivial and re-
quires a thorough study of its stability and performance proper-
ties to substantiate the intuitive benefit of the switching strategy
[6], [17].

IV. STABILITY OF THE SWITCHING CLOSED-LOOP SYSTEM

To study stability of the switching closed-loop system in the
face of perturbations, it is important to distinguish between tran-
sient and steady-state disturbances. Transient disturbances, re-
lated to the external disturbances and are assumed to
occur incidentally. When present, they often cause the system to
react heavily in terms of error response. Control then mainly im-
proves upon this response. Contrarily, steady-state disturbances
caused by measurement noise are typically of small ampli-
tude. In this case, it is preferred to switch the controller off in
order to eliminate the sensitivity to measurement noise entirely.
For the switching controller this is guaranteed if the steady-state
response under measurement noise satisfies
. Consequently, this requires that the given threshold value
should be designed such that it encapsulates the steady-state
response induced by the persistent measurement noise . In
turn, this restores the favorable passive isolation properties in
the absence of transient disturbances. From a stability point
of view, it is therefore sufficient to require that control, if ap-
plied, forces the system response toward the uncontrolled (pas-
sive) steady-state. To show this the concept of input-to-state sta-
bility (ISS) [21] will be used. In particular it is shown, first, that
the closed-loop system will exhibit bounded responses to any
bounded disturbance including both transient and steady-state
disturbances and, second, ISSwill be used to select the threshold
value such that passive isolation behavior will be retained in
the absence of these transient disturbances.

Fig. 8. Closed-loop plant with sector nonlinearity.

Input-to-state stability is studied using the following state-
space system representation of the closed-loop system:

(5)

see also Fig. 8.
The state vector is defined by

(6)

with the state variables and , respectively, related to a state-
space realization of the plant and controller given in (1) and (2).
The bounded disturbance vector is defined by combining all
disturbance sources in Fig. 3, including the ground velocity

(7)

The memoryless nonlinearity in (5) is related to the
switching gain function in (4) by

(8)

In (5), the constant matrices , ,
, , and are given by

(9)

with the plant-related matrices ,

and the controller-related matrices , ,
, and given by



630 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 21, NO. 3, MAY 2013

which corresponds to the state-space realization of (1) and (2),
combined with the control configuration given in Fig. 3.
System (5) is said to be input-to-state stable [21], if

(10)

holds for all solutions of (5) where is a so-called -function
and a -function (see [21] for the details). As such, functions
are sought of the form and , ,

, for , , and . Since the effect of initial
conditions through eventually fades away, refers to the ISS
gain.
To prove ISS for system (5), let be an ISS

Lyapunov function candidate with , for a positive defi-
nite matrix . Note that

for all (11)

where and are defined as

(12)

If there exist and such that along solutions of (5),
it holds for all that

(13)

then is an ISS Lyapunov function for (5). The requirement
on the time-derivative of in (13) can be written as

(14)

or, alternatively

(15)

which should hold for all , , and . Since
is the output to the sector-bounded nonlinearity [see (5)]
inequality (15) is only required to hold for , , and satisfying

, which corresponds to the sector for .
By using the expression for in (5), the sector condition can be
rewritten as

(16)

for , , and . To prove ISS of (5), in-
equality (15) needs to be satisfied while (16) holds. By applying

the -procedure [3], this results in the following linear matrix
inequalities (LMIs):

(17)
Hence, if , , , and are found
such that (17) holds, then ISS of (5) is proved.
Remark 1: Interestingly, the existence of in

(17) implies that the LMI

(18)

is feasible for sufficiently small , which is equivalent to the
following frequency domain condition

(19)
resulting from the Kalman-Yakubovich-Popov lemma [16],
where . Simplifying (19) gives

(20)

which is the circle criterion condition for the sector [23].
Feasibility of the circle criterion LMI in (18) implies feasibility
of the LMI in (17) for a sufficiently large value of . By
solving (18), it can therefore be shown that the system is ISS for
some , which enables the computation of an upper bound
on the ISS gain. But the smallest ISS gain based on a solution
of (18) is usually conservative, since it relates to the particular
choice of satisfying (18). Therefore, it is proposed to solve
(17) instead and minimize the variable , which then indirectly
leads to minimization of the ISS gain.
If there exists an ISS Lyapunov function ,

, satisfying (17) and , then the solution
trajectory is bounded according to

(21)

where and are defined as

(22)

(23)

Under condition (17) and it is therefore concluded
that (5) is ISS with respect to the disturbance vector . Observe
that (and , , ) influences the ISS gain . Furthermore,
note that the stability analysis refers to the single-axis isolator
model in Fig. 3. The possible extension to multi-axis isolators,
for example, by including horizontal and/or rotational axes next
to the considered vertical axis, mainly depends on the ability to
decouple the resulting MIMO plant dynamics. For a decoupled
plant, a diagonal controller structure allows for extension of the
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results. For a coupled plant, such an extension is generally non-
trivial.

V. PERFORMANCE-BASED DESIGN OF THE

SWITCHING CONTROLLER

Returning to the vibration isolation control problem, recall
that the bounded disturbances , , and typically have a
transient nature. Contrarily, the persistent measurement noise
relates to the steady-state behavior of the closed-loop system.

Since control is used to improve upon the transient response, the
threshold parameter should be designed such that in steady-
state, control is switched off and passive isolation is retained.
So should be designed as small as possible to attain the best
suppression of transient disturbances without substantially com-
promising measurement noise sensitivity. For this purpose, the
smallest ISS gain as in (23) is sought.
Minimizing the ISS gain is done through fixing and min-

imizing while putting a lower bound on . Using (21), the
minimum ultimate bound on the state with respect to mea-
surement noise becomes

(24)

Since the goal is to find the minimum ultimate bound on the
output , the ultimate bound on can be directly
computed as

(25)

where

(26)

In finding , the matrix is computed by
solving the LMIs given in (17). A small positive number for

is selected, since the goal is not to obtain large ex-
ponential decay rates, is fixed, and and
are left as free variables. Recall from the discussion near the
end of the previous section that the ISS gain is found indi-
rectly by solving (17) and minimize the variable . This gives

, , and as in (27). See equation (27)
at the bottom of the page. Furthermore, with (12) it follows

that and which combined with the
values for , , and according to (23) yield the ISS gain as

. Using a balanced realization of (5) with and
-matrix

(28)

an ultimate bound on the output follows from (25) with

(29)

But this bound is conservative since it employs
, see (26). Therefore, instead of using an ul-

timate bound on , the existence is utilized of a positively
invariant set to which all solutions converge. More specifically,
from ISS analysis it can be shown that defined in

(30)

is a positively invariant set where is defined as

(31)

Using the level set of , it therefore is possible to
find the maximum value that can take inside the set . In
so doing, subject to needs to be computed
where (due to symmetry) .
The Lagrangemultiplier method is employed in order to solve

such a maximization problem. First, the objective function and
constraints are defined as follows:

(32)

subject to (33)

Second, the Lagrangian function is defined as

(34)

(27)
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where is the Lagrange multiplier. By taking the partial deriva-
tives of with respect to both and the following sta-
tionary points are obtained:

(35)

(36)

From (35) it follows for the state evaluated at these points that

(37)

Now is computed by substituting (37) in (36) giving

(38)

Combining the result (38) with (37) gives that

(39)

Given and the smallest ultimate bound on
the measured output with respect to is found as

(40)

where

(41)

For (41) with in (27), and in (28), ,
, , and , it follows that

(42)

In comparison with (29), (42) gives a less conservative (hence
more realistic) bound. Using this bound in the controller design
implies that the threshold parameter should be 37.05 times
larger than the maximum amplitude of the measurement noise
in order to ensure that passive isolation properties are retained

in the absence of transient disturbances.
A reasonable estimate for the maximum amplitude of the

measurement noise is directly related to the sensor proper-
ties. For the experimental setup under study, assume that the
maximum measurement noise is less than 0.5% of the max-
imum magnitude of the measured velocity signals. Then can
be selected as 20% of the maximum magnitude of the mea-
sured signals which, given the gain band as in (42), guarantees
that the steady-state response to measurement noise is within
the threshold value and passive isolation in steady-state is pre-
served.

VI. EXPERIMENTAL PERFORMANCE ANALYSIS

In this section, performance of the switching control strategy
is studied using experimental analysis. This includes a compar-
ison to linear control and passive isolation.

Fig. 9. Multi-resolution time-frequency analysis of the measured and
switching controlled velocities (scales adopted from Figs. 2 and 5).

The experimental analysis is conducted using the setup in
Fig. 1 from integrated dynamics engineering (IDE). Signal com-
munication goes via a Quansar Q8 measurement and control
board with six analog inputs and eight analogue outputs. This
board has 14-bit analog-to-digital (A/D) converters, 12-bit dig-
ital-to-analog (D/A) converters, and samples its communication
channels up to 100 kHz. The inputs contain the sensor infor-
mation of six geophones amplified by voltage amplifiers. The
outputs represent the control signals which are fed to current
amplifiers. Through eight linear motors, this provides the con-
trol forces to the isolation system. Both actuators and sensors
are over-dimensioned such that actuator and sensor saturation
is strictly avoided. In the high-precision motion industry this is
seen often; see [22] for an approach in dealing with saturation in
the control design. The measurement and control board is con-
nected to a host computer via an RS-232 communications link.
The host computer is used to generate the control signals via
xPC Target in combination with a C-compiler and the control
design in MATLAB/Simulink.
The result of the switching control in terms of measured iso-

lator response is shown in Fig. 9. The choice for re-
lates to the numerical calculations given at the end of the pre-
vious section whereas the peak value of the measured velocity
signals is scaled to one; switching occurs at 20% of this peak
value. Similar to the linearly controlled isolator characteristics
of Fig. 5, the non-stationary oscillations related to the system’s
natural frequency at 3.24 Hz have almost disappeared. However
the amplification of high-frequency noises is no longer present,
that is, the high-frequency passive isolation properties are pre-
served. This is more clear when applying the multi-resolution
time-frequency analysis to the switching (and scaled) control
forces, which is shown in Fig. 10. As compared to the linear
control forces depicted in Fig. 6, it can be seen that control is
only applied in those time intervals where the error response
exceeds the threshold parameter . For the remaining intervals,
the control is switched off.
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Fig. 10. Multi-resolution time-frequency analysis of the measured switching
control forces (scales adopted from Fig. 6).

Fig. 11. Time-series measurement of the vertical velocities and control forces
in the case of no control, linear control, and switching control.

In the time-domain signals, Fig. 11 more clearly illustrates
the differences between the considered control strategies. For
the scaled payload velocity in the vertical direction, it can be
seen that no control yields the expression of large oscillations
(thin black curves) dictated by the weakly damped resonance
at 3.24 Hz. Under linear control these oscillations disappear
(grey curves) but the velocity response shows increased high-
frequency oscillatory behavior. Switching control provides an
effective means in dealing with the system’s resonance (thick
black curves) but also limits the presence of high-frequency
noise. This is due to the fact that control is only sporadically
switched on (see the lower part of the figure) which has a ben-
eficial effect on the control authority needed when compared to
the linear controller.
Similar observations are obtained from the cumulative

power spectral density (CPSD) analysis as can be found in
Fig. 12. From this figure, it can be concluded that both linear
and switching control yield comparable root-mean-square

Fig. 12. CPSD analysis of the measured vertical velocities and control forces
in the case of no control, linear control, and switching control.

Fig. 13. rms values of the measured vertical velocities and control forces under
variation of .

(rms) values of the scaled velocity signals. Each experiment
corresponds to a time interval of 100 s in which a sampling
frequency of 1 kHz is used. For switching control, the result is
obtained with significantly less control effort, see bottom part
in Fig. 12, thus giving limited transmission (and amplification)
of noise through control.
The relation between rms-performance and control effort

is addressed in Fig. 13. By considering several values for the
threshold parameter and depicting the resulting rms-values of
each corresponding experiment as a function of , it can be seen
that for small enough the switching control competes with the
linear control ( ) in terms of small rms-values. It comes,
however, with less control effort. Also, this experimental per-
formance analysis confirms that is a reasonable design
choice for guaranteeing a low velocity response under limited
control authority.

VII. CONCLUSION

A switching control design is proposed and demonstrated to
be effective in achieving improved active vibration isolation. A
multi-resolution time-frequency analysis aids much to the in-
terpretation of the results and the motivation for the switching.
Sporadically switching the control on effectively removes tran-
sient oscillations from the velocity response. The amplification
of steady-state noise by closing the loop is largely avoided by
switching the control off at small velocities. Consequently, the
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control effort is kept small while preserving the desired pas-
sive isolation properties. Stability of the switching closed-loop
system in the face of perturbations is studied using the concept
of input-to-state stability. The stability analysis also provides
design rules for the switching controller aiming at performance.
The benefit of the proposed control strategy is further evidenced
by an experimental study on a commercial vibration isolation
system.

APPENDIX

The multi-resolution time-frequency analysis used in this
paper is centered about the Morlet wavelet [4]

(43)

where and rad s . Because of the fast
decay of the first exponential function in (43), the outer parts
of the wavelet ( and ) are neglected.
The inner part is discretized with . The time-sam-
pled input signal ( data points with 1 ms sampling time)
is sequentially low-pass filtered and down-sampled [7]. Each
down-sampling reduces the time-resolution but increases the
frequency resolution. In decomposing , the wavelet transfor-
mation matrix is obtained by convolving the proper
and along the number of filter banks with a frequency
resolution parameter per filter bank of and a time res-
olution parameter of . The following script is used.
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