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Lp String Stability of Cascaded Systems: Application to Vehicle Platooning
Jeroen Ploeg, Nathan van de Wouw, and Henk Nijmeijer, Fellow, IEEE

Abstract— Nowadays, throughput has become a limiting factor
in road transport. An effective means to increase the road
throughput is to employ a small intervehicle time gap using
automatic vehicle-following control systems. String stability, i.e.,
the disturbance attenuation along the vehicle string, is considered
an essential requirement for the design of those systems. However,
the formal notion of string stability is not unambiguous in
literature, since both stability and performance interpretations
exist. Therefore, a novel definition for string stability of nonlinear
cascaded systems is proposed, using input–output properties.
This definition is shown to result in well-known string stability
conditions for linear cascaded systems. The theoretical results
are experimentally validated using a platoon of six passenger
vehicles equipped with cooperative adaptive cruise control.

Index Terms— Cascaded systems, cooperative adaptive cruise
control (CACC), input–output stability, string stability, vehicle
platoons.

I. INTRODUCTION

L IMITED highway capacity causes traffic jams, which
tend to increase over the years with respect to both the

number of traffic jams and their length. An effective means to
increase road capacity is to decrease the intervehicle distance.
As this would be unsafe in case of human drivers, longitudinal
automation will be required. To this end, cooperative adaptive
cruise control (CACC) can be employed as an automatic
vehicle-following system based on intervehicle data exchange
through wireless communications, in addition to the data
obtained by radar or lidar [1], [2]. CACC is known to allow
for time gaps significantly less than 1 s as the standardized
minimum value for currently available adaptive cruise control
(ACC) systems [3]. Thus, an increase in traffic throughput is
expected [4], [5]. In addition, the aerodynamic drag is reduced,
especially for heavy-duty vehicles, thereby decreasing fuel
consumption [2], [6].

A leading objective in the design of CACC systems is to
prevent disturbance amplification in upstream direction, for
instance induced by velocity variations of the lead vehicle,
which would compromise throughput and safety. The distur-
bance propagation along interconnected systems, such as a
vehicle platoon, is covered by the notion of string stability
of which a vast amount of literature is available. In [7]–[16],
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for instance, several types of string stability definitions are
given, focusing on various aspects of cascaded systems. In
addition, publications that focus on controller design tend to
interpret string stability as a performance criterion, rather than
a stability property [17]–[25]. As a result, the notion of string
stability has become rather ambiguous over the years. This
brief, therefore, first aims to formally define string stability,
providing a rigorous basis for often-used string stability crite-
ria for linear systems, thus including and generalizing existing
results. Second, using a test setup of six vehicles, it is shown
that, using these criteria, controller design for string stability
is not only theoretically, but also practically feasible.

This brief is organized as follows. Section II summarizes
existing string stability concepts. Section III derives a platoon
model that forms the basis for the definition of string stability
in Section IV and the analysis thereof for vehicle platoons
in Section V. Section VI presents experimental results of
a vehicle platoon specifically developed for this purpose.
Section VII summarizes the main conclusions.

II. STRING STABILITY REVIEW

As opposed to conventional stability notions for dynamical
systems, which are basically concerned with the evolution
of system states over time, string stability focuses on the
propagation of system responses along a cascade of systems.
Several approaches exist regarding string stability, as reviewed
below.

Probably the most formal approach is based on Lyapunov
stability, of which [7] provides an early description, compre-
hensively formalized in [8]. In this approach, the notion of
Lyapunov stability is employed, focusing on initial condition
perturbations. Consequently, string stability is interpreted as
asymptotic stability of interconnected systems [9]. Recently,
new results appeared in [10], regarding a one-vehicle look-
ahead topology in a homogeneous vehicle platoon. In this
brief, the response to an initial condition perturbation of a
single vehicle in the platoon is considered, thereby conserving
the disturbance-propagation idea behind string stability. The
drawback of this approach, however, is that only this spe-
cial case is regarded, ignoring the effect of initial condition
perturbations of other vehicles in the platoon, as well as the
effect of external disturbances to the interconnected system.
Consequently, the practical relevance of this approach is
limited, since external disturbances, such as velocity variations
of the first vehicle in a platoon, are of utmost importance in
practice.

The perspective of infinite-length strings of interconnected
systems [16] also gave rise to a notion of string stability,
described in [11] in the context of a centralized control scheme
and in [12] for a decentralized controller. Various applications
regarding interconnected systems are reported in [13] and [14],
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whereas [15] and [16] provide extensive analyzes of the
system properties. In this approach, the system model is
formulated in the state space and subsequently transformed
using the bilateral Z-transform. The Z-transform is executed
over the vehicle index instead of over (discrete) time, resulting
in a model formulated in the “discrete spatial frequency”
domain [15], related to the subsystem index, as well as in the
continuous-time domain. String stability can then be assessed
by inspecting the eigenvalues of the resulting state matrix as
a function of the spatial frequency. Unfortunately, the stability
properties of finite-length strings, being practically relevant,
might not converge to those of infinite-length strings as length
increases. This can be understood intuitively by recognizing
that in a finite-length platoon, there will always be a first and
a last vehicle, whose dynamics may significantly differ from
those of the other vehicles in the platoon, depending on the
controller topology. Consequently, the infinite-length platoon
model does not always serve as a useful paradigm for a finite-
length platoon as it becomes increasingly long [16].

Finally, a performance-oriented approach for string stability
is frequently adopted, since this appears to directly offer
tools for controller design for linear cascaded systems. This
approach is employed for the control of a vehicle platoon with
and without lead vehicle information in [17], whereas [18]
and [19] apply intervehicle communication to obtain infor-
mation of the preceding vehicle. In [20], a decentralized
optimal controller is designed by decoupling the intercon-
nected systems using the so-called inclusion principle, and
in [21], optimal decentralized control is pursued by means of
nonidentical controllers. Furthermore, [22] extensively inves-
tigated the limitations on performance, whereas in [23], a
controller design methodology was presented. Finally, in [24]
the performance-oriented approach is adopted to investigate a
warning system for preventing head-tail collisions in mixed
traffic. In the performance-oriented approach, string stability
is characterized by the amplification in upstream direction
of either distance error, velocity, or acceleration, the specific
choice depending on the design requirements at hand. Let the
signal of interest be denoted by yi for vehicle i , and let �i ( jω)
denote the frequency response function describing the relation
between the scalar output yi−1 of a preceding vehicle i − 1
and the scalar output yi of the follower vehicle i . Then the
interconnected system is considered string stable if

sup
ω

|�i ( jω)| ≤ 1, 2 ≤ i ≤ m (1)

where m is the string length; the supremum of |�i ( jω)|
equals the scalar version of the H∞ norm. Since the H∞
norm is induced by the L2 norms of the respective sig-
nals, this approach requires the L2 norm ‖yi (t)‖L2 to be
nonincreasing for increasing index i . Because of its conve-
nient mathematical properties, the L2 gain is mostly adopted;
nevertheless, approaches that employ the induced L∞ norm
are also reported [25]. Regardless of the specific norm
that is employed, the major limitation of the performance-
oriented approach is that only linear systems are consid-
ered, usually without considering the effect of nonzero initial
conditions.

Fig. 1. CACC-equipped vehicle platoon.

Summarizing, string stability appears to be defined in var-
ious ways, focusing on specific properties. Building on these
earlier results, a new generic definition of string stability is
proposed. To this end, the next section will first introduce a
model of a homogeneous vehicle platoon, which motivates the
formal definition of string stability as proposed in Section IV.

III. PLATOON DYNAMICS

Consider a platoon of m vehicles, schematically depicted in
Fig. 1, with di being the distance between vehicle i and its
preceding vehicle i − 1, and vi its velocity. The objective of
each vehicle is to follow the preceding vehicle at a desired
distance dr,i according to

dr,i (t) = ri + hvi (t), i ∈ Sm (2)

where h is referred to as the time headway, and ri is the
standstill distance. Sm = {i ∈ N | 1 ≤ i ≤ m} is the set of all
vehicles in a platoon of length m ∈ N. The spacing policy (2)
is known to improve string stability [18], [19] and safety [26].
A homogeneous platoon is assumed, so h is the same for all i .
The spacing error ei (t) is then defined as

ei (t) = di(t) − dr,i (t)

= (qi−1(t) − qi (t) − Li ) − (ri + hvi (t)) (3)

with qi being the rear-bumper position of vehicle i and
Li its length. The control problem now encompasses two
requirements: the vehicle-following objective limt→∞ ei (t) =
0 ∀ i ∈ Sm , and the string stability requirement.

As a basis for controller design, the following vehicle model
is adopted [27], omitting the time argument t for readability

⎛
⎝

ḋi

v̇i

ȧi

⎞
⎠ =

⎛
⎝

vi−1 − vi

ai

− 1
τ ai + 1

τ ui

⎞
⎠ , i ∈ Sm (4)

where ai is the acceleration of vehicle i , ui is the external
input (desired acceleration), and τ is a time constant represent-
ing driveline dynamics, the latter being vehicle-independent
because of the homogeneity assumption. With different types
of vehicles, as suggested by Fig. 1, homogeneity may be
obtained by low-level acceleration controllers so as to arrive
at identical vehicle behavior according to (4).

Next, the controller as described in [27] is adopted. This
controller defines a new input ξi such that

hu̇i = −ui + ξi (5)
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upon which the control law for ξi is chosen as

ξi = K

⎛
⎝

ei

ėi

ëi

⎞
⎠ + ui−1, i ∈ Sm (6)

with K = (kp kd kdd). The feedforward term ui−1 is obtained
through wireless communication with the preceding vehicle.

Since string stability is commonly evaluated by analyzing
the amplification in upstream direction of either distance error,
velocity, and/or acceleration, a platoon model is formulated in
terms of these state variables. Using (3)–(6), the following
homogeneous platoon model is thus obtained:

⎛
⎜⎜⎝

ėi

v̇i

ȧi

u̇i

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 −1 −h 0
0 0 1 0
0 0 − 1

τ
1
τ

kp
h − kd

h −kd − kdd (τ−h)
hτ − kdd h+τ

hτ

⎞
⎟⎟⎠

⎛
⎜⎜⎝

ei

vi

ai

ui

⎞
⎟⎟⎠

+

⎛
⎜⎜⎝

0 1 0 0
0 0 0 0
0 0 0 0
0 kd

h
kdd
h

1
h

⎞
⎟⎟⎠

⎛
⎜⎜⎝

ei−1
vi−1
ai−1
ui−1

⎞
⎟⎟⎠ (7)

or, in short
ẋi = A0xi + A1xi−1, i ∈ Sm (8)

with state vector xi = (
ei vi ai ui

)T, and the matrices A0 and
A1 defined accordingly.

The first vehicle in the platoon, not having a preceding vehi-
cle, will follow a so-called virtual reference vehicle (i = 0),
allowing the lead vehicle to employ the same controller as the
other platoon vehicles. Using the above state definition, the
virtual reference vehicle model may be formulated as

⎛
⎜⎜⎝

ė0
v̇0
ȧ0
u̇0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 0 0 0
0 0 1 0
0 0 − 1

τ
1
τ

0 0 0 − 1
h

⎞
⎟⎟⎠

⎛
⎜⎜⎝

e0
v0
a0
u0

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

0
0
0
1
h

⎞
⎟⎟⎠ ξ0 (9)

or, in short
ẋ0 = Ar x0 + Br ur (10)

with state vector x0 = (
e0 v0 a0 u0

)T, external platoon input
ur = ξ0, and the matrices Ar and Br defined accordingly.
Consequently, (9) represents a nonminimal realization, in
which e0(t) = e0(0) is a dummy state, having no further
influence since the first column of both Ar and A1 equals
zero. In the remainder of this brief, e0(0) = 0 is chosen.

The equilibrium state of (9) equals x̄0 = (
0 v̄0 0 0

)T for
ur = 0, where v̄0 is a constant velocity. This equilibrium
is only marginally stable since the virtual reference vehicle
is in fact an uncontrolled vehicle model. Returning to the
homogeneous platoon model (7), it can be easily established
that xi = x̄0, with i = 1, 2, . . . , m, is an equilibrium of the
vehicle platoon for x0 = x̄0 and ur = 0; in other words, the
platoon equilibrium is characterized by a constant velocity v̄0
of all vehicles. Applying the Routh-Hurwitz stability criterion,
it follows that this equilibrium is asymptotically stable for any
time headway h > 0, and with any choice for kp, kd > 0,
kdd > −1, such that (1 + kdd)kd > k pτ , thereby fulfilling
the vehicle following control objective. The second objective,
being string stability, will be addressed in the next section.

IV. STRING STABILITY

In this section, the platoon model is generalized to a non-
linear cascaded state-space system, upon which a new string
stability definition is proposed. This definition appears to serve
as a rigorous basis for L2 and L∞ string stability conditions
commonly used in the performance-oriented approach, and the
relation to the other string stability notions is shortly discussed.

A. Lp String Stability

The homogeneous platoon model (8), (10) is a special, linear
case of the following cascaded state-space system:

ẋ0 = fr (x0, ur ) (11a)

ẋi = fi (xi , xi−1), i ∈ Sm (11b)

yi = h(xi ), i ∈ Sm (11c)

representing a general, possibly nonlinear, heterogeneous
interconnected system with the same interconnection structure
as the model (8), (10). Here, ur ∈ Rq is the external input,
xi ∈ Rn , i ∈ {0, Sm}, is the state vector, and yi ∈ R�,
i ∈ Sm , is the output. Moreover, fr : Rn × Rq �→ Rn ,
fi : Rn × Rn �→ Rn , i ∈ Sm , and h : Rn �→ R�. In
the scope of vehicle platooning, the state is typically defined
as xi = (

ei vi ai . . .
)T

, i ∈ {0, Sm}, indicating a possible
extension with additional states, for instance due to controller
dynamics, as in Section III. Note that heterogenous strings
may arise due to nonidentical (decentralized) controllers [21].
Using the model (11), the following string stability definition
is now proposed.

Definition 1 (Lp string stability): Consider the intercon-
nected system (11). Let x = (

xT
0 xT

1 . . . xT
m

)T
be the lumped

state vector and let x̄ = (
x̄T

0 x̄T
0 . . . x̄T

0

)T
denote the constant

equilibrium solution of (11) for ur = 0. The system (11) is
Lp string stable if there exist class K functions1 α and β such
that, for any initial state x(0) ∈ R(m+1)n and any ur ∈ Lq

p

‖yi (t) − h(x̄0)‖Lp ≤ α(‖ur (t)‖Lp ) + β(‖x(0) − x̄‖),
∀ i ∈ Sm and ∀ m ∈ N.

If, in addition, with x(0) = x̄ it also holds that

‖yi (t) − h(x̄0)‖Lp ≤ ‖yi−1(t) − h(x̄0)‖Lp ,

∀ i ∈ Sm\{1} and ∀ m ∈ N\{1}
the system (11) is strictly Lp string stable with respect to its
input ur (t).

Remark 1: Without principal consequences for Defini-
tion 1, (11) could be further generalized with respect to the
interconnection structure (or “topology”), so as to include
multiple-vehicle look-ahead or bidirectional interconnections.

Clearly, Definition 1 considers the external disturbance
ur , imposed by the virtual reference vehicle, through the
class K function α(‖ur (t)‖Lp ), as well as initial condition
perturbations, through the class K function β(‖x(0) − x̄‖),
where ‖ · ‖Lp denotes the signal p-norm [28] and ‖ · ‖
denotes any vector norm. It should be mentioned that only

1A continuous function α : [0, a) �→ [0, ∞) is said to belong to class K if
it is strictly increasing and α(0) = 0.
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initial condition perturbations are considered for which the
norm ‖x(0) − x̄‖ exists, which limits the allowable class
of perturbations in view of the fact that x will be infinite-
dimensional for m → ∞. Furthermore, Definition 1 obviously
applies to both linear and nonlinear systems, and homogeneous
as well as heterogeneous strings are included, providing, for
instance, a rigorous basis for the string stability analysis of
heterogeneous strings pursued in [29].

It is important to note that Definition 1 closely resembles
the common input–output or Lp stability definition as far as
(nonstrict) Lp string stability is concerned, except for the fact
that the norm requirements must hold for all string lengths
m ≥ 1. This is essential to string stability, indicating that a
string-stable system is scalable [9].

The notion of strict Lp string stability, for which not
only the first but also the second inequality in Definition 1
must hold, has been introduced to accommodate the common
requirement of upstream disturbance attenuation. Note that
i = 1 has been excluded in the requirement for strict string
stability since the virtual reference system (11a) does not
have an output associated with it, which would be practically
irrelevant.

B. String Stability Conditions for Linear Systems

In order to derive string stability conditions for linear sys-
tems, the linear, homogeneous version of (11) is considered,
which, in lumped form, can be denoted by

⎛
⎜⎜⎜⎝

ẋ0
ẋ1
...

ẋm

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

Ar O
A1 A0

. . .
. . .

O A1 A0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

x0
x1
...

xm

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎝

Br

0
...
0

⎞
⎟⎟⎟⎠ ur (12)

or, in short
ẋ = Ax + Bur (13)

with x = (
xT

0 xT
1 . . . xT

m

)T
, and the matrices A and B defined

accordingly. The matrices A0, A1, Ar , and Br can, e.g., be
chosen identical to those used in (8) and (10). In addition,
consider linear output functions according to

yi = Ci x, i ∈ Sm (14)

with output matrices Ci . The model (13), (14) can then be
formulated in the Laplace domain as follows:

ŷi (s) = Pi (s)ûr (s) + Oi (s)x(0), i ∈ Sm (15)

with outputs yi (t) ∈ R� and exogenous input ur (t) ∈ R�,
whose Laplace transforms are denoted by ŷi (s) and ûr (s),
with s ∈ C, respectively. x(0) ∈ R(m+1)n denotes the initial
condition, whereas Pi (s) = Ci (s I − A)−1 B and Oi (s) =
Ci (s I − A)−1. In view of the upcoming analysis, Pi (s) is
thus assumed to be square, having � inputs and � outputs.
Also, without loss of generality, the equilibrium state x̄ =(
x̄T

0 x̄T
0 . . . x̄T

0

)T = 0 is chosen, hence h(x̄0) = Ci x̄ = 0.
Since (12) describes a controlled system, the matrix A0

is typically Hurwitz. However, this may not be the case for
the matrix Ar , related to the virtual reference vehicle in case
of vehicle following. As indicated by (9), for instance, Ar

has a marginally stable mode associated with v0 (besides the
mode associated with the dummy state e0). Hence, the system
matrix A in (13) is not Hurwitz. In the remainder of this
section, however, it is assumed that the pair (Ci , A) is such that
unstable (including marginally stable) modes are unobservable
by a specific choice of Ci . Consequently, it suffices to only
analyze the output response to the external input in view of
string stability (or, equivalently, to assume x(0) = x̄ = 0), in
accordance with the following remark.

Remark 2: Consider the system (11a) and (11b), but with a
single output vector yk = h(xk), 1 ≤ k ≤ m. Then this system
is Lp stable if

‖yk(t) − h(x̄0)‖Lp ≤ αk(‖ur (t)‖Lp ) + βk(‖x(0) − x̄‖)
with class K functions αk and βk . When (11a) and (11b)
represent a linear system, the existence of αk implies that βk

exists, provided that unstable and marginally stable modes are
unobservable [30]. Since this statement holds for any k ∈ Sm ,
it also applies to α and β in Definition 1.

Adopting the L2 signal norm for string stability, it follows
from (15), that, with x(0) = 0

‖yi (t)‖L2 ≤ ‖Pi ( jω)‖H∞‖ur (t)‖L2

≤ max
i∈Sm

‖Pi ( jω)‖H∞‖ur (t)‖L2 ∀ i ∈ Sm (16)

using the fact that the H∞ norm (or L2 gain) ‖Pi ( jω)‖H∞ is
induced by the L2 norm on inputs and outputs. It is important
to note that (16) is not conservative, in the sense that there
is always a subsystem i ∈ Sm and a specific signal ur (t) for
which the equality holds [28]. According to Definition 1, L2
string stability of the interconnected system (13), (14) thus
requires maxi∈Sm ‖Pi ( jω)‖H∞ to exist for all m ∈ N, being
a necessary and sufficient condition.

For further analysis, a specific type of interconnection topol-
ogy will be adopted, as mentioned in the following remark.

Remark 3: In the case of a look-ahead topology, such as
described by (12), the interconnection is unidirectional, from
which it directly follows that if the infinite-length string has
a bounded output response to a bounded input, then all finite-
length strings as a subset thereof have a bounded response as
well. Therefore, it suffices to only regard m → ∞ for string
stability assessment, implying that the sets i ∈ Sm , m ∈ N,
can be reduced to a single set i ∈ N.

As a result, the interconnected system (15) is L2 string
stable if and only if supi∈N ‖Pi ( jω)‖H∞ exists. The class K
function α in Definition 1 can then be chosen as

α(‖ur (t)‖L2) =
(

sup
i∈N

‖Pi ( jω)‖H∞

)
‖ur (t)‖L2 . (17)

Because of the linear form of α in (17), this type of string
stability may be referred to as finite-gain L2 string stability,
similar to the notion of finite-gain L2 stability.

The existence of the supremum of the L2 gain can be further
analyzed by factorization, leading to the theorem below. As a
preliminary to this theorem, the string stability complementary
sensitivity is introduced first. From (15), it directly follows that
(with x(0) = 0)

ŷi (s) = �i (s)ŷi−1(s) (18)
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with the string stability complementary sensitivity

�i (s) = Pi (s)P−1
i−1(s) (19)

assuming functional controllability of (15), i.e., P−1
i−1(s) exists.

The following theorem can now be stated.
Theorem 1: Let (13) and (14) represent a linear unidi-

rectionally interconnected system for which the input–output
behavior is described by (15). Assume that the pair (Ci , A) is
such that unstable and marginally stable modes are unobserv-
able and that Pi (s) is square and nonsingular, for all i ∈ N.
Then the system (13), (14) is L2 string stable if:

1) ‖P1( jω)‖H∞ exists;
2) ‖�i ( jω)‖H∞ ≤ 1 ∀ i ∈ N\{1};

with �i (s) as in (19). Moreover, the system is strictly L2 string
stable if and only if conditions 1 and 2 hold.

Proof: Using (15), (18), and (19), the input–output relation
for a specific subsystem i ≥ 2 can be formulated as

ŷi (s) = Pi (s)ûr (s) =
(

i∏
k=2

�k(s)

)
P1(s)ûr (s). (20)

Having factorized Pi (s) in this way, the submultiplicative
property dictates that

‖Pi ( jω)‖H∞ ≤
(

i∏
k=2

‖�k( jω)‖H∞

)
‖P1( jω)‖H∞ . (21)

Consequently, under the conditions 1 and 2 in Theorem 1,
supi∈N ‖Pi ( jω)‖H∞ exists. Because it is also assumed that
unstable and marginally stable modes are unobservable for all
i ∈ N, the linear system is L2 string stable, according to
Definition 1 and Remark 2, while using (17). Moreover, from
(18) and condition 2, it follows that

‖yi (t)‖L2 ≤ ‖yi−1(t)‖L2 ∀ i ∈ N\{1} (22)

which yields the interconnected system strictly L2 string
stable. The necessity of the conditions 1 and 2 for strict L2
string stability is immediate.

It is noted that condition 2 closely resembles the well-known
string stability criterion (1). As such, Definition 1 together with
Theorem 1 provide a rigorous basis for this criterion. The fact
that Theorem 1 only yields sufficient conditions for L2 string
stability is basically due to the submultiplicative property. In
specific cases, however, the conditions become also necessary,
as shown below.

Remark 4: When ur ∈ R and yi ∈ R, i ∈ N\{1}, and
�(s) = Pi (s)P−1

i−1(s), i ∈ N\{1}, is independent of i , then

‖Pi ( jω)‖H∞ = sup
ω

{
|�( jω)|i−1|P1( jω)|

}
(23)

due to (20). Consequently, ‖Pi ( jω)‖H∞ exists for all i ∈
N\{1}, if and only if |P1( jω)| < ∞ and |�( jω)| ≤ 1 for
all ω, rendering the interconnected system strictly L2 string
stable. Note that the necessity of these conditions only holds
in the absence of poles of P1(s) on the imaginary axis, being
canceled by zeros of �(s) since, in that case, supω |P1( jω)|
is unbounded whereas supω |�( jω)i−1 P1( jω)| may not be.

It thus follows that for linear unidirectionally coupled
homogeneous systems with scalar input and output, L2 string
stability and strict L2 string stability are equivalent.

Until now, only L2 string stability has been considered.
Physically, this can be motivated by the requirement of energy
dissipation along the string. Obviously, the induced L∞ norm
can be used instead. In the scope of vehicle following, the
motivation for using this norm would be traffic safety, since
the L∞ norm is directly related to maximum overshoot. The
conditions for L∞ string stability can be derived as follows.
Let pi (t) denote the impulse response matrix, corresponding
to the transfer function Pi (s). Then, from linear system theory

‖pi (t)‖L1 = max
ur 
=0

‖yi (t)‖L∞
‖ur (t)‖L∞

. (24)

Consequently, the interconnected system is L∞ string stable
if and only if supi∈N ‖pi (t)‖L1 exists. The class K function
α in Definition 1 can then be chosen as

α(‖ur (t)‖L∞) =
(

sup
i∈N

‖pi (t)‖L1

)
‖ur (t)‖L∞ . (25)

This leads to the following theorem.
Theorem 2: Let (13) and (14) represent a linear unidi-

rectionally interconnected system for which the input–output
behavior is described by (15). Assume that the pair (Ci , A) is
such that unstable and marginally stable modes are unobserv-
able and that Pi (s) is square and nonsingular, for all i ∈ N.
Then the system (13), (14) is L∞ string stable if:

1) ‖p1(t)‖L1 exists;
2) ‖γi (t)‖L1 ≤ 1 ∀ i ∈ N\{1};

where p1(t) and γi (t) are the impulse responses corresponding
to P1(s) and �i (s), respectively, with �i (s) according to (19).
Moreover, the system is strictly L∞ string stable if and only
if conditions 1 and 2 hold.

Proof: Applying Young’s inequality for convolutions, the
proof is similar to that of Theorem 1.

Again, Theorem 2 only provides sufficient conditions for
L∞ string stability. Note that, using a Lyapunov-stability
approach for linear systems, [31] discusses the relation
between L∞ and L2 string stability, the main results of which
can be extended to the new framework by defining the output
yi to contain all states xi (subject to the remark in the next
subsection), while focusing on initial condition perturbations.

C. Discussion

From the previous section, it is clear that the performance-
oriented approach to string stability [17]–[25] is captured
by Definition 1 as a special case for linear, unidirectionally
interconnected systems. In addition, the Lyapunov-stability
approach [7]–[10] is captured as well by the inclusion of
initial condition perturbations in the definition. An apparent
difference, however, is that the Lyapunov-stability approach
focuses on the system states, whereas Definition 1 regards
the outputs. Nevertheless, there is no essential limitation in
choosing the output so as to include all states, albeit that
the string stability complementary sensitivity can no longer
be computed using (19). In the framework of infinite-length
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Fig. 2. Block scheme of a controlled platoon vehicle i ≥ 1 and of the virtual
reference vehicle, indicated by the index 0.

interconnected systems [11]–[16], string stability requires the
states to (exponentially) decay both over time and system
index as a result of initial condition perturbations. As such,
it can be argued that such behavior corresponds to strict string
stability as in Definition 1. Summarizing, while the existing
definitions are adequate, Definition 1 encompasses those.

V. STRING STABILITY OF VEHICLE PLATOONS

In order to analyze L2 string stability of the platoon model
(7), (9), P1( jω) and �i ( jω) need to be determined. To this
end, the frequency-domain model of a controlled platoon
vehicle is formulated first by introducing the vehicle transfer
function G(s) = q̂i (s)/ûi (s), according to

G(s) = 1

s2(τ s + 1)
(26)

which follows from
...
q i = − 1

τ q̈i + 1
τ ui , see (4), the spacing

policy transfer function H (s) = ξ̂i (s)/ûi (s) derived from (5)

H (s) = hs + 1 (27)

and the feedback law K (s) with input êi (s), defined in (6)

K (s) = kp + kds + kdds2. (28)

A controlled vehicle i is then represented by the block scheme
as shown in Fig. 2. The occurrence of H (s) in the feedback
loop can be readily explained by considering q̃i as depicted
in the block scheme, which equals, using (27)

q̃i (t) = Li + ri + qi (t) + hvi (t). (29)

Consequently, q̃i can be interpreted as the “virtual control
point” of vehicle i that must converge to the actual position
qi−1 of the preceding vehicle i − 1. Furthermore, since the
frequency-domain approach allows for the inclusion of a
latency θ induced by the wireless communication network,
the block scheme also includes a time delay D(s) = e−θs .

The virtual reference vehicle (9) is now described by the
series connection of H −1(s) and G(s), indicated in Fig. 2
by “vehicle 0,” with ur (t) = ξ0(t) as external input. Conse-
quently, the vehicle platoon has a scalar input ur , upon which a
scalar output needs to be selected according to Theorem 1. To
this end, yi (t) = ai (t) is chosen since the acceleration is phys-
ically relevant on the one hand, and guarantees the existence of
‖P1( jω)‖H∞ on the other, as will be shown later. Moreover,
with this output, the marginally stable mode associated with
the reference vehicle appears to be unobservable. Using the

Fig. 3. L2 string stability properties: (a) string stability complementary
sensitivity |�( jω)| for communication delay (solid black) θ = 0 s, (dashed
black) θ = 0.15 s, (grey) θ = 0.3 s, and (b) maximum delay θmax as a
function of headway h.

block scheme in Fig. 2, the string stability complementary
sensitivity �i (s) = �(s) (independent of i ) now satisfies

�(s) = âi (s)/âi−1(s) = 1

H (s)

K (s)G(s) + D(s)

1 + K (s)G(s)
. (30)

Because of the specific choice for the virtual reference
vehicle model, �(s) also equals the transfer function from
â0(s) to â1(s). It therefore follows that, using (9)

â1(s) = �(s)â0(s)

= �(s)

H (s)

1

τ s + 1
ûr (s)

:= P1(s)ûr (s) (31)

from which it directly follows that ‖P1( jω)‖H∞ exists when
‖�( jω)‖H∞ exists, due to the submultiplicative property of
the H∞ norm and the fact that H −1(s)(τ s + 1)−1 is a
stable transfer function (provided that h ≥ 0). It follows
from (30) that without delay (D(s) = 1), ‖�( jω)‖H∞ exists,
since ‖�( jω)‖H∞ = supω |H −1( jω)| = 1. According to
Theorem 1, the system without delay is thus strictly L2 string
stable for any choice of controller gains and time headway.

Note that, if ur = 0 and the virtual reference vehicle
has a constant velocity v̄0, the states of all vehicles in
the platoon will asymptotically converge to the equilibrium
state x̄0 = (

0 v̄0 0 0
)T; see Section III. In other words,

limω→0
(
v̂i ( jω) − v̂i−1( jω)

) = 0. Hence

lim
ω→0

|�( jω)| = 1 ⇒ ‖�( jω)‖H∞ ≥ 1 (32)

which is why the strict Lp string stability inequality in Defini-
tion 1 includes the equality. As a consequence, however, string
stability robustness with respect to, e.g., model uncertainties,
may be poor if these uncertainties cause |�( jω)| to increase
in the lower frequency region.

As already mentioned, wireless communications exhibit
latency, which in general increases with increasing communi-
cation load. This time delay compromises string stability [32],
as illustrated in Fig. 3(a), showing the gain |�( jω)| for various
values of the time delay θ . Here, τ = 0.1 s, k p = 0.2,
kd = 0.7, kdd = 0, and h = 0.5 s, yielding asymptotic stability
of the platoon; see also Section VI.

Fig. 3(b) illustrates the influence of the time headway on
string stability in the presence of a communication delay,
showing the maximum communication delay θmax that yields
|�( jω)| ≤ 1, as a function of time headway h. This result is
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Fig. 4. L∞ string stability properties: (a) impulse response γ (t) for
communication delay (solid black) θ = 0 s, (dashed black) θ = 0.15 s,
(grey) θ = 0.3 s, and (b) maximum delay θmax as a function of headway h.

calculated by taking a fixed value for θ and then searching for
the smallest value of h such that ‖�( jω)‖H∞ = 1. The given
system falls into the category as mentioned in Remark 4, since,
first, yi , ur ∈ R ∀ i ∈ N, second, �( jω) does not depend
on the vehicle index i , and, third, it follows from (31) that
P1(s) does not have poles on the imaginary axis that might
be canceled by zeros in the product �(s)P1(s). Consequently,
‖P1( jω)‖H∞ < ∞ and |�( jω)| ≤ 1 together form necessary
and sufficient conditions for (strict) L2 string stability.

Regarding L∞ string stability, applying the inverse Laplace
transform to (31) to obtain the impulse response, and subse-
quently using Young’s inequality for convolutions, it can be
shown that ‖p1(t)‖L1 exists when ‖γ (t)‖L1 exists, similar to
the result obtained for the existence of ‖P1( jω)‖H∞ . Since
�(s) = H −1(s) without communication delay, the impulse
response equals γ (t) = h−1e−t/h . Hence ‖γ (t)‖L1 = 1,
rendering the system strictly L∞ string stable for all time
headways and controller parameters according to Theorem 2.

Again, communication delay compromises L∞ string sta-
bility. Using the same parameter values as before, Fig. 4(a)
shows the impulse response γ (t) for various values of the
delay θ , calculated using the inverse Fourier transform of
�( jω) from (30). It appears that ‖γ (t)‖L1 is an increasing
function of θ , the effect of which is illustrated in Fig. 4(b),
showing the maximum communication delay θmax that yields
‖γ (t)‖L1 ≤ 1, as a function of the time headway h.
Apparently, ‖γ (t)‖L1 ≤ 1 is a more stringent criterion
than ‖�( jω)‖H∞ ≤ 1, requiring a significantly larger time
headway. This could be expected since, from linear system
theory, ‖�( jω)‖H∞ ≤ ‖γ (t)‖L1 .

VI. EXPERIMENTAL VALIDATION

To validate the theoretical results and to demonstrate its
technical feasibility, CACC has been implemented in six
passenger vehicles [27], equipped with IEEE 802.11p-based
wireless communication, allowing for communication of the
desired vehicle acceleration at an update rate of 10 Hz.

The test vehicle model has been identified as [27]

G(s) = 1

s2(τ s + 1)
e−φs (33)

with τ = 0.1 s and φ = 0.2 s, the latter leading to an
adaptation of (26) so as to include this time delay. Considering
stability of the dynamics (7), speed of response, and comfort,
suitable controller gains were found to be kp = 0.2 and

Fig. 5. String stability complementary sensitivity magnitude |�( jω)|: (solid
black) CACC measured, (solid grey) CACC theoretical, (dashed black) ACC
measured, (dashed grey) ACC theoretical.

Fig. 6. Measured velocity response at startup (black–light grey: vehicle 1–6):
(a) ACC and (b) CACC.

kd = 0.7, with kdd = 0 to avoid feedback of the jerk, which
is in practice unfeasible. The communication delay appeared
to be θ ≈ 0.15 s. Using the analysis presented in Section V,
h = 0.7 s is chosen, just achieving strict L2 string stability.

Focusing on L2 string stability, a test is carried out
using a prescribed acceleration profile a0(t), as described
in [27], based on which the input ur (t) has been calcu-
lated through differentiation, employing the dynamic inverse
of (9). The measured response has subsequently been used to
determine |�( jω)|, employing Welch’s averaged periodogram
method [33]. The result is depicted in Fig. 5 for two cases: with
the communicated desired acceleration ui−1 of the preceding
vehicle and without (i.e., ui−1 = 0), referred to as CACC and
ACC, respectively. Also the theoretical gain (30) is shown.
The benefit of CACC in view of L2 string stability is clearly
illustrated, validating the theoretical analysis in Section IV.
Another important observation is that string stability may not
always be easy to assess in practice, since |�( jω)| will be
close to 1 for low frequencies, see (32), as a result of which
estimation inaccuracy may compromise the second string sta-
bility criterion from Theorem 1. In this experiment, estimation
errors also cause the impulse response function, computed
using the inverse Fourier transformation, to be inaccurate.
Therefore, L∞ string stability is not further investigated here.

In addition to the time responses shown in [27], Fig. 6 shows
the velocity response to a constant acceleration of the lead
vehicle for both ACC and CACC, which clearly illustrates
string stability in case of CACC and the lack thereof for ACC.
Noteworthy is the observation that with ACC, the last vehicle
starts to accelerate after 15.5 s, whereas with CACC, this is
already after 8.5 s, showing that CACC may also be effective
at traffic lights.
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VII. CONCLUSION

A novel string stability definition was proposed, on the basis
of the notion of Lp stability, which applies to both linear
and nonlinear systems, while accommodating initial condition
perturbations as well as external disturbances, independent
of the interconnection topology. The definition appeared to
provide a rigorous basis for well-known L2 and L∞ string-
stability conditions for linear, unidirectionally interconnected
systems.

Next, the string-stability properties of CACC for vehicle
platoons were analyzed, showing that time gaps well below
1 s were admissible. To assess string stability in practice and
to demonstrate the technical feasibility of CACC, experiments
were conducted using a test fleet of six passenger vehicles.
As a result, a time headway of 0.7 s appeared to yield strict
L2 string-stable behavior, in accordance with the theoretical
analysis, which also indicated that time gaps down to 0.3 s
were feasible when minimizing the latency of the wireless
link. Such small time headways, however, will require insight
into the string stability margins in the presence of uncertainties
or unknown disturbances, which will be the subject of further
research.
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overlapping control of a platoon of vehicles,” IEEE Trans. Control Syst.
Technol., vol. 8, no. 5, pp. 816–832, Sep. 2000.

[21] M. E. Khatir and E. J. Davison, “Decentralized control of a large platoon
of vehicles using non-identical controllers,” in Proc. Amer. Control
Conf., vol. 3. Jul. 2004, pp. 2769–2776.

[22] R. H. Middleton and J. H. Braslavsky, “String instability in classes
of linear time invariant formation control with limited communication
range,” IEEE Trans. Autom. Control, vol. 55, no. 7, pp. 1519–1530,
Jul. 2010.

[23] A. González-Villaseñor, A. C. Renfrew, and P. J. Brunn, “A controller
design methodology for close headway spacing strategies for automated
vehicles,” Int. J. Control, vol. 80, no. 2, pp. 179–189, Feb. 2007.

[24] A. Chakravarthy, K. Song, and E. Feron, “Preventing automotive pileup
crashes in mixed-communication environments,” IEEE Trans. Intell.
Transp. Syst., vol. 10, no. 2, pp. 211–225, Jun. 2009.

[25] J. Eyre, D. Yanakiev, and I. Kanellakopoulos, “A simplified framework
for string stability analysis of automated vehicles,” Veh. Syst. Dynamics,
vol. 30, no. 5, pp. 375–405, Nov. 1998.

[26] P. A. Ioannou and C. C. Chien, “Autonomous intelligent cruise control,”
IEEE Trans. Veh. Technol., vol. 42, no. 4, pp. 657–672, Nov. 1993.

[27] J. Ploeg, B. T. M. Scheepers, E. van Nunen, N. van de Wouw,
and H. Nijmeijer, “Design and experimental evaluation of cooperative
adaptive cruise control,” in Proc. 14th Int. IEEE Conf. Intell. Transp.
Syst., Oct. 2011, pp. 260–265.

[28] C. A. Desoer and M. Vidyasagar, Feedback Systems: Input-Output
Properties, R. E. O’Malley, Ed. Philadelphia, PA, USA: SIAM,
2009.

[29] E. Shaw and J. K. Hedrick, “String stability analysis for hetero-
geneous vehicle strings,” in Proc. Amer. Control Conf., Jul. 2007,
pp. 3118–3125.

[30] J. P. Hespanha, Linear Systems Theory. Princeton, NJ, USA: Princeton
Univ. Press, Sep. 2009.

[31] D. Swaroop, “A note about the stability of a string of LTI systems,”
ASME J. Dynamic Syst., Meas. Control, vol. 124, no. 3, pp. 472–475,
Jul. 2002.

[32] S. Öncü, N. van de Wouw, and H. Nijmeijer, “Cooperative adap-
tive cruise control: Tradeoffs between control and network specifica-
tions,” in Proc. 14th Int. IEEE Conf. Intell. Transp. Syst., Oct. 2011,
pp. 2051–2056.

[33] P. Stoica and R. L. Moses, Introduction to Spectral Analysis.
Upper Sadle River, NJ, USA: Prentice-Hall, 1997.


