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Model-Based Robust Control of
Directional Drilling Systems

Niek Antonius Henricus Kremers, Emmanuel Detournay, and Nathan van de Wouw

Abstract— To enable access to unconventional reservoirs of
oil and (shale-) gas, geothermal energy and minerals, complex
curved boreholes need to be drilled in the earth’s crust.
Directional drilling techniques, incorporating down-hole robotic
actuation systems called rotary steerable systems, are used to
generate these curved boreholes. In practice, however, boreholes
drilled with such systems often show instability-induced borehole
spiraling, which negatively affects the borehole quality and
increases drag losses while drilling. As a basis for controller
synthesis, we present a directional drilling model in terms
of delay differential equations. Next, the problem of curved
well-bore generation is formulated as a tracking problem and
a model-based robust control strategy is developed, solving
this tracking problem while guaranteeing the prevention of
borehole spiraling. The effectiveness of the proposed approach
is illustrated by representative case studies for the generation of
curved boreholes.

Index Terms— Delay differential equations (DDEs), directional
drilling, output feedback, robust control.

I. INTRODUCTION

ENHANCED access to underground energy resources
(such as oil and gas) requires drilling complex curved

boreholes. Drill rigs, as schematically shown in Fig. 1, are
employed to generate boreholes targeting resource locations in
the earth’s crust. As part of these so-called directional drilling
rigs, down-hole robotic systems, known as rotary steerable
systems (RSS), are used to drill such curved boreholes. This
paper focuses on a push-the-bit RSS, which steers the borehole
propagation by exerting a force on the borehole using extend-
able pads. The propagation direction of a borehole is typically
controlled using three control loops. The inner control loop
regulates the force delivered by the RSS actuator on the
borehole. The second control loop controls the propagation

Manuscript received August 11, 2014; revised February 23, 2015; accepted
April 14, 2015. Date of publication June 11, 2015; date of current version
December 21, 2015. Manuscript received in final form April 23, 2015.
Recommended by Associate Editor S. Tarbouriech.

N. A. H. Kremers is with the Department of Mechanical Engineering,
Eindhoven University of Technology, Eindhoven 5612 AZ, The Netherlands
(e-mail: nah.kremers@gmail.com).

E. Detournay is with the Department of Civil, Environmental and
Geo-Engineering, University of Minnesota, Minneapolis, MN 55455 USA
(e-mail: detou001@umn.edu).

N. van de Wouw is with the Department Mechanical Engineering,
Eindhoven University of Technology, Eindhoven, The Netherlands, the
Department of Civil, Environmental and Geo-Engineering, University of
Minnesota, Minneapolis, MN 55455 USA, and also with the Delft Cen-
ter for Systems and Control, Delft University of Technology, Delft,
The Netherlands (e-mail: n.v.d.wouw@tue.nl).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCST.2015.2427255

Fig. 1. Schematic of a directional drilling system [1].

Fig. 2. Down-hole measurements showing undesired spiraling in the
borehole wall [3].

direction of the borehole by giving force commands to
the RSS. Finally, the outer control loop often involves a human
operator in the loop that generates desired borehole trajectories
on the basis of complex data sets involving the target
destination, rock layer geometries and properties, and so
on. This paper focuses on the development of novel control
strategies for the second control loop.

Although RSSs are extensively used in drilling practice,
it is known from experimental evidence that their usage
can induce borehole oscillations (see [2]–[4]) and Fig. 2.
These oscillations in the borehole geometry are undesirable
as such oscillations: 1) endanger borehole stability; 2) induce
increased drag while drilling (thereby reducing drilling
efficiency); 3) reduce target accuracy; 4) make it more difficult
to insert the borehole casing to prepare for production; and
5) reduce the rate-of-penetration (i.e., the speed of the drilling
process). Current control techniques seem unable to prevent
this so-called borehole spiraling. In this paper, we aim to
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develop a model-based robust controller synthesis approach,
which enables the drilling of complex borehole geometries
while preventing borehole spiraling.

The entire drill string can be considered as an elastic rod,
constrained inside the borehole (see Fig. 1). Torque-and-drag
models exist that consider the entire drill string including the
complexity of all (unilateral) contacts of the string with the
borehole [5], [6]. However, such detailed modeling of the drill
string is not needed in the scope of describing the directional
propagation of the borehole and would make the resulting
model unnecessarily complex. For this reason, only the lower
part of the drill string, the bottom hole assembly (BHA), is
considered. The effect of the upper part of the drill string
is taken into account as a force boundary condition for the
lower part. To prevent buckling of the BHA and to influence
the directional tendencies of the borehole propagation, several
stabilizers are included in the BHA (see Fig. 1), which are
in constant contact with the borehole wall. Due to the fact
that the BHA (with stabilizers) has to fit inside the borehole
that has already been drilled, the existing borehole geometry
affects the directional tendencies of the borehole propagation
in a spatially delayed manner.

There exist many numerical directional drilling
models [7]–[14], in which a finite-element model of the
BHA is used to compute the forces and moments acting on
the drill bit. These forces and moments are then related to
the propagation of the bit into the rock, using a bit–rock
interaction law. In these models, the evolution of the borehole
is propagated in a stepwise fashion by assuming that the forces
and moments are constant during such a step. These models
do not lead to a closed-form dynamic model description
for borehole propagation in directional drilling. To design
a model-based controller for the directional drilling system,
a closed-form dynamic model is needed to predict the bit
trajectory given RSS actuation commands.

Such a closed-form model, which considers actuation based
on the eccentricity of an adjustable stabilizer, was first
developed by Neubert and Heisig [15], [16]. This model,
based on a linear beam description of the BHA, kinematics
of the bit, and bit/rock interface laws, leads to a set of
(nonlinear) delay differential equations (DDEs) governing the
borehole propagation. The next model development is due
to Downton [17], who formulated the borehole propagation
equations for a class of directional drilling systems (either
completely rigid or flexible with the addition of an equivalent
spring) and analyzed the stability of the resulting (linear)
DDE. The papers of Detournay and Perneder [1], [18]–[21]
and Downton and Ignova [22] treat the BHA as an Euler-
Bernoulli beam, similarly to [15], and consider a force actu-
ation of a push-the-bit RSS. Although these two models
describe the same physics, their formulation is different. The
PD model [1], [18]–[21] is based on an angular description of
the BHA and borehole tendencies and can thus naturally be
used for describing boreholes undergoing large rotations, while
the directional propagation of the borehole in the formulation
of Downton [17] and Downton and Ignova [22] is described
using the lateral displacement of the BHA with respect to an
initial configuration, which needs to be regularly updated.

Recently, it has been shown, using field data, that the
PD model can predict the effect of borehole spiraling [4],
which further motivates to adopt this type of modeling
approach as a basis for controller design in this paper.

Several works exist on the topic of the control of borehole
propagation using an RSS. In [23]–[25], controllers are
developed based on empirical models of the borehole
propagation process in which a direct link between the force
applied by the RSS and the curvature of the borehole is
assumed. This approach ignores (physically relevant) transient
behavior of the borehole propagation, which is essential in
preventing borehole spiraling. In [26], a state-space model for
borehole propagation is derived and on the basis of this model,
a controller is designed. However, the essential delay nature
of the borehole propagation dynamics is not captured in this
model. In [27], an L1 adaptive controller is designed, based
on the directional drilling model in [17]. In this approach, it
assumed that the inclination of the borehole at the bit can be
measured directly, which is generally not the case (as also
acknowledged in [22]). The same restrictive assumption is
made in most of the works above. This assumption is invalid
in practice, since an inclination sensor cannot be placed at
(close to) the bit. In addition, even if available in practice,
such an inclination sensor would measure the local inclination
of the deformed BHA at the bit, which is not necessarily equal
to the borehole inclination at the bit. Indeed, the bit is often
tilted with respect to the borehole due to sideways cutting by
the bit gauge.

The main contribution of this paper is the development of
a synthesis strategy for robust model-based output feedback
controllers for directional drilling systems. Underlying, more
detailed contributions are as follows. First, this synthesis
method is based on a closed-form model description of the
borehole propagation, unlike some of the works mentioned
above. In addition, this is the first controller synthesis strat-
egy based on the PD model, which captures the essential,
physically relevant, behavior of a directional drilling system.
Second, the resulting controllers can be used to drill complex
borehole geometries. Unlike existing control methods, the goal
of the controller synthesis method is to design a controller
that also reduces borehole spiraling and prevents oscillations
in the transient closed-loop response (both of which are
detrimental to borehole quality). Third, we assume that only
local inclination measurements of the deformed BHA are
available at discrete locations other than the bit. For this
reason, an observer-based output feedback control strategy is
developed. The observer is used to reconstruct the borehole
inclination at the bit based on the sensor measurements on
local BHA inclinations. Fourth, in existing works, the effect
of parametric uncertainties on the stability and performance of
the closed-loop drilling system is not investigated, [27] being
an exception. Here, the robustness of the proposed controller
for uncertainties in the weight-on-bit is verified explicitly as
this drilling parameter is subject to significant uncertainty
in practice. Finally, the influence of (quasi-)constant distur-
bances, such as the influence of gravitational effects, on the
accuracy of borehole propagation is reduced by dedicated
designs of both the controller and observer.
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Fig. 3. Three components of the model and their interaction [18].

The remainder of this paper is organized as follows.
Section II presents a state-space description of the directional
drilling model in terms of a DDE describing the borehole
propagation. In Section III, it is shown that (open-loop) control
techniques, still used in practice, are not suitable for drilling
complex boreholes, in particular due to the occurrence of
borehole spiraling, and the influence of parametric
model uncertainty and disturbances in directional drilling
performance. Next, the problem of accurate borehole
propagation while avoiding borehole spiraling is formulated as
a robust tracking control problem with transient performance
specifications. In Section IV, we propose an observer-
based control strategy which is able to solve this robust
tracking control problem. In addition, a robustness analysis
of the controller for parametric uncertainty is performed.
In Section V, simulation results illustrating the effectiveness
of the proposed control strategy for two case studies of
desired curved borehole geometries are shown. Finally, the
conclusion is given in Section VI.

II. DIRECTIONAL DRILLING MODEL

This paper only considers the directional propagation of the
borehole in a vertical plane, i.e., the borehole is assumed
to have a constant azimuth. Clearly, borehole spiraling is
a 3-D phenomenon; still, the results on the prevention of
borehole spiraling in the (2-D) inclination dynamics by means
of control, as proposed in this paper, serve as a stepping
stone to developing control strategies for the full-fledged
3-D problem. Moreover, these results also directly bear rel-
evance for the case of zero bit walk.

The directional drilling model used here is build upon the
work in [1] and [18]–[21] and generally consists of three
components, as shown in Fig. 3 and concisely discussed in
Section II-A: 1) a model for the deformation of the BHA
inside the borehole, 2) the bit–rock interface laws, and 3)
kinematics relating the bit motion to the propagation of the
borehole geometry.

A. Borehole Evolution Equations

To arrive at a closed-form dynamic model for borehole
propagation, four main modeling assumptions are adopted.

1) The bit–rock interface laws are rate independent [28].
For this reason, the borehole propagation is described
as a function of the scaled distance drilled ξ = (L/λ1),
where L is the length of the borehole and λ1 is
the distance between the bit and the first stabilizer
(see Fig. 4).

2) BHA vibrational effects are ignored as such vibrational
phenomena take place on a much faster time scale than

Fig. 4. Overview of BHA inside the borehole (after [18]).

the time scale relevant to borehole propagation. The
directional drilling model relies therefore on forces and
penetrations that are averaged over several revolutions
of the bit.

3) It is assumed that the stabilizers of the BHA are in
constant contact with the borehole wall.

4) The deformations of the BHA inside the borehole are
presumed to be small. Hence, the BHA can be modeled
statically as an Euler–Bernoulli beam.

The borehole is described by its inclination �̄(S) with
respect to the vertical for S ∈ [0, L], where S is a curvilinear
coordinate measured along the borehole (see Fig. 4). The
inclination of the deformed BHA, at a particular value of
the distance drilled L, is given as θ̄ (L, s) for s ∈ [0, LBHA],
where s is a curvilinear coordinate representing the distance
measured from the drill bit (with s = 0 at the bit) and LBHA is
the length of the BHA. We introduce the dimensionless length
drilled ξ = (L/λ1), which is the independent variable with
respect to which the dynamics of the borehole propagation
will be formulated. We also define �(ξ) := �̄(ξλ1) and
θ(ξ, s) := θ̄ (ξλ1, s) being, respectively, the inclination of the
borehole at the bit and the inclination of the BHA, depending
on the dimensionless drilled distance. Note that, in general,
the inclination of the borehole at the bit �̂ := �(ξ) is not
necessarily equal to the inclination of the BHA at the bit
θ̂ := θ(ξ, 0), due to lateral cutting of the bit.

1) BHA Modeling: The BHA is modeled as a linear beam
with a constant bending stiffness EI, which leads to the
following equation for the deflection of the BHA
EI(∂3θ/∂s3) = w sin〈�〉1, where w is the distributed
gravity force of the beam, assumed to have a constant
relative direction along the BHA. Herein, 〈�〉1 denotes the
average inclinations of the BHA between the bit and the
first stabilizer. Similarly, the average inclinations of the BHA
between the (i − 1)th and i th stabilizer are denoted by
〈�〉i , i = 2, . . . , n, where n is the number of stabilizers. The
stabilizers are modeled as hinges, which only apply a force on
the BHA perpendicular to its axis. Given first, the RSS force
Frss induced by the down-hole robotic RSS actuator, second,
the average inclinations of the BHA sections, and third,
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the inclination of the bit θ̂ , the deflection profile of the
BHA can be solved for by splitting up the BHA up into n + 1
linear beam sections, which are connected to each using
the appropriate constraints [1]. The inclination of the BHA
within these sections is given as

θ(ξ, s) = θi (ξ, s), for s ∈ [si−1, si ] for i ∈ [2, . . . , n]
θ(ξ, s) = θ1(ξ, s), for s ∈ [�λ1, s1]
θ(ξ, s) = θ0(ξ, s), for s ∈ [s0,�λ1], (1)

where �λ1 is the distance between the bit and the
RSS actuator, si := ∑i

j=1 λ j , i = 1, . . . , n, and λi ,
i = 2, . . . , n, is the distance between the (i − 1)th and
i th stabilizer. The functions θi (ξ, s), characterizing the
inclination within the i th BHA sections, are parameterized as

θi (ξ, s) = Ai3s3 + Ai2s2 + Ai1s + Ai0 (2)

where Ai0, Ai1, Ai2, and Ai3 are functions of the
RSS force Frss, the bit inclination θ̂ and the average
inclinations 〈�〉i and the BHA configuration (which
hence implicitly depend on ξ ). The bending moment on
the bit M̂ and the side force on the bit F̂2 are then given as:
M̂ = −EI(∂θ0/∂s)|s=0, F̂2 = −EI(∂2θ0/∂s2)|s=0. This results
in the following (scaled) expressions for the force and moment
acting on the bit:

F̂2

F∗
= Fb(θ̂ − 〈�〉1)+ Fwϒsin〈�〉1

+Fr	 +
n−1∑

i=1

Fi (〈�〉i − 〈�〉i+1) (3)

M̂

F∗λ1
= Mb(θ̂ − 〈�〉1)+ Mwϒsin〈�〉1

+Mr	 +
n−1∑

i=1

Mi (〈�〉i − 〈�〉i+1), (4)

where F∗ := (3EI/λ2
1), the scaled RSS force 	 := (Frss/F∗)

and the scaled measure of the BHA weight is given as
ϒ := (wλ1/F∗). The factors F and M in (3) and (4) (with
appropriate indices) denote the dimensionless coefficients of
influence, which only depend on the specific configuration
of the BHA. These coefficients are given for a two-stabilizer
BHA (also used in Section V) in Appendix A.

2) Kinematic Relationships Relating Bit Motion to Borehole
Geometry: The motion of the bit is described using three
penetration variables that reflect the penetration of the bit into
the rock per revolution of the bit: 1) the axial penetration d1;
2) the lateral penetration d2; and 3) the angular penetration ϕ.
Noting that the axial penetration is much larger than the lateral
penetration, the bit tilt ψ := θ̂ − �̂ can be expressed as

ψ = θ̂ − �̂ = atan

(

−d2

d1

)

≈ −d2

d1
. (5)

3) Bit/Rock Interface Laws: The link between the axial
force F̂1, lateral force F̂2 and moment M̂ acting on the bit
and the penetration variables d1, d2, and ϕ is defined by the
bit–rock interface laws. For a planar borehole, a general linear

form for the bit–rock interface laws exists, which is derived
from the bilinear law for a single cutter/rock interaction [29]:

F̂1 = −G1 − H1d1 (6)

F̂2 = −H2d2 (7)

M̂ = −H0ϕ, (8)

where the coefficients H1, H2, and H0 depend on the
properties of the bit and the strength of the rock. The
coefficient G1 represents a part of the axial force, which is
transmitted to the wearflats of the bit and does not contribute to
the penetration of the bit into the rock (i.e., does not contribute
to rock cutting). Let us now introduce the scaled active
weight-on-bit

� := − F̂1 + G1

F∗
. (9)

This parameter, which ultimately determines the rate-of-
penetration of the bit according to (6), is here assumed to
be constant. Equations (6)–(9) can be combined with the
kinematics of the bit (5) to yield expressions for the force
and moment acting on the bit:

F̂2

F∗
= η�(θ̂ − �̂) (10)

M̂

F∗λ1
= −χ�θ̂ ′

, (11)

where η and χ are, respectively, the lateral and angular steering
resistance defined as η := (H2/H1) and χ := (H3/H1λ

2
1).

These parameters indicate the relative difficulty of imposing
lateral or angular penetration of the bit with respect to axial
penetration. Typical values of η for a polycrystalline diamond
compact bit range from 5 for bits with a short active gauge to
100 for bits with a long passive gauge [30]. The angular steer-
ing resistance χ is generally one or two orders of magnitude
smaller than η.

From now on, for notational simplicity the hat character
will no longer be explicitly used, i.e., we write the inclination
of the borehole at the bit as �(ξ) (instead of as �̂(ξ)).
By combining (3), (4), (10), and (11), in addition to making
the assumption that the active weight-on-bit � is constant,
the following evolution equation for the borehole inclination
in terms of a single differential equation can be obtained:
χ��

′ = Mb (〈�〉1 −�)+ χ

η
Fb (�−�1)

+
n−1∑

i=1

(FbMi −FiMb−Miη�

η�

)

(〈�〉i −〈�〉i+1)

− χ

η

n−1∑

i=1

Fi

(
�i−1 −�i

�i
− �i −�i+1

�i+1

)

+ FbMw − FwMb − Mwη�

η�
ϒsin〈�〉1

− χ

η
Fwϒ(�−�1)cos〈�〉1

+ FbMr − FrMb − Mrη�

η�
	 − χ

η
Fr	

′
. (12)
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In (12), the inclination at the delayed location of the
i th stabilizer is given as �i := �(ξi ), with ξi := ξ−∑i

j=1 � j

for i = 1, 2, . . . , n and ξ0 := ξ . Herein, �i is the dimensionless
length of the i th BHA segment (�i := λi/λ1). The average
inclination of the i th BHA segment 〈�〉i is given as

〈�〉i := 1

�i

∫ ξi

ξi−1

�(σ)dσ, (13)

which induces terms with distributed delays in (12). The
model (12) contains two nonlinear (trigonometric) terms
related to the influence of gravity on the BHA. The first
term ((FbMw − FwMb − Mwη�)/(η�))ϒsin〈�〉1 depends
on the average inclination of the first section of the BHA. Since
the average inclinations only change slowly with the distance
drilled, this term can be seen as a quasi-constant disturbance
W := ϒsin〈�〉1. Moreover, it can be shown that the second
term is small with respect to the other terms in the DDE [1].

Remark 1: We care to stress that the composite parameter
η� is key in the stability of the system dynamics (12), see [4].
η� can be interpreted as a coefficient of proportionality
between the (scaled) lateral force on the bit F̂2/F∗ and
the bit tilt ψ (see (10)). This composite parameter depends
on both the active weight-on-bit � and the lateral steering
resistance η of the bit, both of which are subject to significant
levels of uncertainty in practice. The active weight-on-bit
� depends on the hookload (the axial force applied to the
drill string at the surface), which is generally well known.
However, � ultimately depends on the downward force on
the BHA on the interface with the drill-string above, which,
in turn, depends on the (uncertain) drag forces caused by
contacts between the drill-string and the borehole wall. This
interaction is particularly complex in highly curved boreholes
typical for directional drilling. Moreover, � depends on the
current wear-state of the bit (which is also unknown while
drilling), since a part of the axial force is transmitted by the
wearflats of the cutters on the bit. Also the lateral steering
resistance η is subject to uncertainty, for example, due to bit
wear. Therefore, we consider the composite parameter η� as
an essential, though uncertain, one in the remainder of
this paper.

B. State-Space Model Formulation

In this section, the DDE (12) with distributed delays is trans-
formed into the following first-order state-space formulation
with point-wise delays by considering the borehole inclination
at the bit � and the average inclinations 〈�〉i as states:

x ′(ξ) = A0x(ξ)+
n∑

i=1

Ai x(ξi )+ B0	+ B1	
′+ B2W (14)

where the state vector is given as x := [�, 〈�〉1, . . . , 〈�〉n ]T .
Note once more that W is a gravity related, quasi-constant
disturbance (to be treated as unknown in the remainder of
this paper). The expressions for the derivatives 〈�〉′

i in (14)
are obtained by differentiation of (13) with respect to ξ .
As a consequence, n additional poles at zero have been added
to (14). It can be shown that these poles are inconsequential
for the stability of the original DDE in (12), and hence can

be ignored in the stability analysis of (14) (and closed-loop
variants of (14) to be discussed in Section IV) [31].

Let us now introduce the following notational conventions.
Given a function x(ξ) : R → R

n+1 and ξ ∈ R, we define
xd(ξ)(·) such that xd(ξ)(σ ) := x(ξ +σ) for all σ ∈ [−�tot, 0]
with �tot = ∑n

i=1 �i . Therefore, xd(ξ) ∈ C([−�tot, 0],Rn+1),
where C is the Banach space of continuous functions mapping
the interval [−�tot, 0] to R

n+1.
Without loss of generality, from now on, a BHA model with

two stabilizers is considered. For this two-stabilizer BHA, the
system matrices of the model in (14) are given in Appendix A.

In practice, the states of the DDE model in (14)
cannot be measured. Only sensors measurements of the
local BHA inclination are available (not of the borehole
inclination). We consider a representative scenario in which
one inclination sensor at the RSS and another inclination
sensor at a location between the first and second stabilizer
is available. The (measured) output vector is then given by
ym = [θ0(ξ, λ1�), θ2(ξ, sm )]T , where sm ∈ [λ1, λ2] defines
the location of the second inclination sensor and the functions
θi (ξ, s) are given in (2). Since the coefficients Ai1,Ai2,Ai3,
and Ai4 of the functions θi (ξ, s) depend linearly on θ̂ , 	, 〈�〉1,
〈�〉2, and ϒ , the functions θi (ξ, s) in (2) can also be written as

θi (ξ, s) = Oi1(s)θ̂ + Oi2(s)	 + Oi3(s)〈�〉1 + Oi4(s)〈�〉2

+ Oi5(s)W (15)

where the coefficients Oi1, Oi2, Oi3, Oi4, and Oi5 only
depend on the configuration of the BHA and the location of
the inclination sensor. We exploit an expression for the bit
inclination θ (to be used in (15)) that can be obtained by
combining (3) with (10):

θ = 1

η�− Fb

(

η��− Fb〈�〉1 + FwW + Fr	

+
n−1∑

i=1

Fi (〈�〉1 − 〈�〉2)

)

. (16)

Now an expression for the measured output ym as a function
of the state vector x and the input force 	 can be obtained
by substituting (16) into (15):

ym = Cx + D	 + EW, (17)

where the matrices C, D, and E depend on the configuration
of the BHA and the location of the inclination sensors.
We note that the influence of the gravity term W on the
measured output ym is generally very small. The total
state-space model is now given by (14) and (17), with state x ,
input 	, and measured output ym .

III. CONTROL PROBLEM FORMULATION

The main purpose of a directional drilling system is to
drill a borehole with some predetermined geometry. It is
common practice that, this desired borehole geometry consists
of multiple constant curvature segments. In addition, it is
often assumed that applying a constant RSS force leads to a
constant curvature borehole. Under this assumption, a borehole
consisting of multiple constant curvature segments can be
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TABLE I

GEOMETRY OF THE BENCHMARK BHA

drilled by applying the correct constant RSS force in each
segment. In Section III-A, we analyze the open-loop dynamics
to gain insight into the deficiencies of such open-loop actuation
strategies of the directional drilling process and to support the
problem formulation for closed-loop control. In particular, it is
shown that such an open-loop actuation method may lead to
(directional) instability, undesired borehole oscillations, and
lacks robustness to parameter uncertainties and disturbances.
In Section III-B, the control problem is formulated as a robust
tracking problem with transient performance specifications.

A. Analysis of the Open-Loop Dynamics

It can be verified whether a constant RSS force results in a
constant curvature borehole in the PD model by analyzing
the steady-state solutions of the open-loop dynamics [21]
(see also [17]). The stability properties of such steady-state
solutions can be assessed by analyzing the poles of (14). Due
to the delay nature of (14), there exists an infinite number of
system poles. The poles pk , for k ∈ [1,∞], of the open-loop
system are computed by solving the characteristic roots of the
following equation [32]:

det�(p) = 0, (18)

where

�(p) = pI − A0 −
n∑

i=1

Ai e
−p

∑i
j=1 � j (19)

is the characteristic matrix. Although for the DDE under
consideration there exist an infinite number of poles, it can be
shown that limk→∞|pk| → +∞, and limk→∞R(pk) → −∞
since the DDE (14) is of retarded type [32]. Consequently,
there only exist a finite number of poles in a vertical strip of
the complex plane. The poles of the DDE can be calculated
using the MATLAB toolbox described in [33]. This toolbox
allows the computation of the finite number of poles with real
value exceeding some bounded value α (i.e., for 
(λk) ≥ α).

Both the model in Section II and the controller synthesis
approach in Section IV are fully generic and can deal with
scenarios with any number of stabilizers. It has been shown
in [4] that the dynamics of directional drilling system is
dominated by the effects induced by the first two stabilizers
and the inclusion of additional stabilizers in the model does
not significantly change the dynamics. This fact motivates
the consideration of a benchmark study with two stabilizers.
In particular, we consider a particular BHA with two stabiliz-
ers and characterized by geometric properties listed in Table I.
(The inner and outer radius Ir and Or of the BHA are needed
to compute the weight w and the second moment of area I
used in the scaling of the forces and moments.) It is assumed
the entire BHA is made of steel with E = 2e11 N/m2 and
density ρ = 7800 kg/m3.

The poles of the corresponding benchmark BHA model are
shown in Fig. 5 for � = 0.0093, η = 30, and χ = 0.1

Fig. 5. Poles with 
(λ) > −1.6 for the benchmark BHA model for
� = 0.0093, η = 30, and χ = 0.1 (i.e., η� = 0.279).

Fig. 6. Characterization of the open-loop response for (χ/η) = (0.1/30) =
0.0033 depending on the (uncertain) composite parameter η�.

(i.e., η� = 0.279). There are n + 1 = 3 poles located at zero.
As previously mentioned, n = 2 of these poles are caused by
the state-space description (14) of the system (in particular
by the inclusion of the averaged BHA segment inclinations
as states) and do not affect the stability of the system as
described by (12). The additional single pole at zero indicates
that the system does not exhibit a globally asymptotically
stable constant inclination equilibrium solution. This pole acts
as an integrator for the system, and leads to the conclusion
that for this benchmark system, a constant RSS force results
in a constant curvature borehole in steady state. As long as
no poles are located in the open right-half complex plane this
constant curvature solution is asymptotically stable.

Note that the open-loop poles depend on the parameters
of the system, which are not known exactly in practice.
In particular, it has been explained in Remark 1 that the
composite parameter η� is subject to uncertainty for different
reasons, while being an essential one from a stability analysis
point of view. A characterization of the three possible
open-loop responses for varying values of η� is shown
in Fig. 6. In general, the open-loop poles of the system
move further into the right-half complex plane for lower
values of η�. There exists a value η�|� = 0.1125 for
which a (pair of) pole(s) crosses the imaginary axis for the
first time (see Fig. 6). For values η� < η�|�, a constant
RSS force result in growing borehole oscillations. In practice,
these instability-induced oscillations may lead to limit cycling
when unmodeled nonlinear behavior (such a nonlinear
bit–rock characteristics and unilateral contact between the
BHA and borehole) is taken into account in the directional
drilling model. For values of η�|� < η� < η�|nmp, the
right-most open-loop poles are located in the left-half complex
plane (apart from the pole(s) at zero). Due to this, oscillations
in the response are damped out and a constant borehole
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Fig. 7. Simulation results for a step in 	 depending on the (uncertain)
composite parameter η� (and for (χ/η) = (0.1/30) = 0.0033).

curvature is obtained. Finally, for high values of the
weight-on-bit (η� > η�|nmp), a non-minimum phase
response is obtained, which corresponds to a change of sign of
the coefficient b0 at η� = η�|nmp. Physically, this is caused
by the fact that for high values of η�, the penetration direction
of the bit is dominated by the influence of the deformation of
the BHA (caused by the RSS force) on the bit inclination, and
not by the lateral cutting action of the bit θ [1].

To investigate the dynamic response to a constant RSS force,
simulations of the response of system (12) to a step in the
RSS force have been performed. The initial condition
corresponds to a vertical borehole, characterized by
�d(0) = 0. The RSS force Frss jumps from 0 to 10 000 N
at ξ = 1 (this corresponds to 	 = 0.0062). Fig. 7 shows the
inclination response to this step force for several values of the
composite parameter η�. The three different types of open-
loop responses, mentioned above, can clearly be observed in
the simulation results displayed in Fig. 7. Moreover, it can be
observed that at ξ = 1 there is a kink in the borehole (jump
in the inclination). This kink is caused by the fact that the
instantaneously applied RSS force leads to a lateral force at
the bit, which in turn causes lateral penetration of the bit into
the rock. As mentioned before, such borehole spiraling/kinking
is undesirable, since it negatively affects borehole quality.

Besides the above problems in the transient response, this
open-loop actuation technique is not robust for parameter
estimation errors and disturbances acting on the system. The
RSS force needed to drill a borehole with some desired curva-
ture can be calculated based on the model. Due to parameter
estimation errors in the model (e.g., of the weight-on-bit �),
this force is generally incorrect and a slightly different steady-
state borehole curvature is induced. As a result, the borehole
inclination diverges from the desired borehole inclination.
Continual (human-in-the-loop) steering adjustments would be
needed to correct for such undesired behavior. In addition, the
influence of gravity can be seen as a quasi-constant disturbance
on the system. This disturbance also causes a mismatch
between desired and obtained steady-state borehole curvature.

B. Robust Tracking Problem Formulation

The main goal of directional drilling is the generation of
a borehole with some particular geometry. In terms of the
model in (14), this objective can be formulated as a tracking
problem. More specifically, we aim to track some inclination
reference trajectory yr (ξ) = �r (ξ) for ξ ∈ [−�tot,∞]. Note
that defining yr (ξ) immediately results in the state refer-
ence trajectory xr (ξ) being fully defined, since the average
inclination state references 〈�〉r1, 〈�〉r2 can be obtained by
integration over �r . Hence, the problem can be formulated
as a state tracking problem. We will assume that �r (ξ) is
continuously differentiable, which is reasonable in practice
as it avoids curvature discontinuities. Given the directional
drilling model for the two-stabilizer BHA:

x ′(ξ)= A0x(ξ)+ A1x(ξ1)+ A2x(ξ2)+ B0	 + B1	
′ + BW

(20)

ym(ξ) = Cx + D	 + EW, (21)

an output-feedback controller needs to be designed such that
the control input 	(ξ) renders xr (ξ) the globally asymptoti-
cally stable solution of the closed-loop system.

Besides the above formulation of the control goal as a state
tracking problem, certain additional objectives are induced by
the fact that the spiraling behavior in the borehole, which is
observed in practice, needs to be reduced/eliminated. Such
borehole spiraling can either be caused by poles in the right-
half complex plane (i.e., instability, which is avoided if the
state tracking problem is solved) or by weakly damped poles
(i.e., undesired transient behavior). For this reason, we focus
on appropriate placement of the poles of the tracking error
dynamics (with the tracking error defined as e := x − xr ), to
reduce/eliminate borehole spiraling. Another control objective
is related to the fact that not all model parameters are known
exactly. The controller, which is designed based on estimates
of the model parameters, is required to be robust for these
parameter uncertainties, such that the tracking error dynamics
remain stable under such uncertainties. In this paper, we
focus on uncertainties in the active weight-on-bit �, since, as
mentioned before, this parameter is both a key drilling process
parameter and subject to relatively high levels of uncertainty.
The last control objective is related to the fact that there exist
several sources of force disturbances. We focus on the effect of
the gravity-induced forces here. Although strictly speaking, the
gravity term in (12) acts as a nonlinear term in the DDE, it can
be seen as a slowly varying quasi-constant disturbance force
(see (14)), since the average inclination 〈�〉1, on which the
gravitational term in the directional drilling model depends,
only changes slowly with the distance drilled ξ . We aim to
reduce the influence of this disturbance on the steady-state
inclination error e� := �−�r .

IV. CONTROLLER SYNTHESIS APPROACH

In this section, we propose an observer-based output
feedback control strategy that solves the tracking problem
stated above, while also accounting for the additional
performance aspects mentioned in Section III. In Section IV-A,
we introduce the controller structure and the resulting
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tracking error dynamics is presented in Section IV-B. An
optimization-based method is employed in Section IV-C
for the parametric tuning of the controller. Finally, in
Section IV-D, we analyze the robustness of the control strategy
in the presence of parameter uncertainties in the weight-on-bit.

A. Controller Structure

The directional drilling model for the case of a
two-stabilizer BHA (20) contains terms in both the RSS force
	 and its derivative 	

′
. In support of the controller design,

we introduce a control input u defined as Bu(ξ) = B0	(ξ)+
B1	

′
(ξ), with B = [1, 0, 0]T , which is well defined by the

grace of the specific structure of B and that of B0 and B1
(see Appendix B). Substituting this expression for u in (20)
results in the following DDE model:
x ′(ξ)= A0x(ξ)+ A1x(ξ1)+ A2x(ξ2)+ Bu(ξ)+ B2W . (22)

Note that the state-dependent influence of gravity is modeled
here as a quasi-constant disturbance B2W . The input force 	,
supplied to the RSS actuator, now satisfies the following
differential equation:

	
′ = −b0

b1
	 + 1

b1
u (23)

where b0 and b1 are the only nonzero terms in, respectively,
i.e., B0 = [b0, 0, 0]T and B1 = [b1, 0, 0]T (see Appendix B).
For the filter (23) to be asymptotically stable, b0/b1 needs to
be positive (this holds for minimum phase situations, which
are under consideration here). The control input u is decom-
posed as u(ξ) = v(ξ) + ur (ξ), where ur is a model-based
feedforward signal and v is the control input used for feedback.
The influence of the quasi-constant gravity disturbance will
not be taken into account in the feedforward. Hence, the
feedforward input ur is obtained by solving

Bur (ξ) = x ′
r (ξ)− A0xr (ξ)− A1xr (ξ1)− A2xr (ξ2). (24)

To obtain ur (ξ) satisfying (24), it suffices to ensure the
satisfaction of the first scalar equation of the vector (24), since
by definition if �(ξ) = �r (ξ) then 〈�〉1(ξ) = 〈�〉1r (ξ) and
〈�〉2(ξ) = 〈�〉2r (ξ). The solution for ur that solves (24) is
thus given as

ur (ξ) = BT (x ′
r (ξ)− A0xr (ξ)− A1xr (ξ1)− A2xr (ξ2)). (25)

Next, we propose a feedback control strategy (for v) that
consists of a model-based observer with integral action in com-
bination with a dynamic state-feedback controller including
a low-pass filter and integral action. The observer provides
a state estimate x̂ to be employed by the state-feedback
controller. The following observer is proposed:

x̂ ′ = A0 x̂(ξ)+ A1 x̂(ξ1)+ A2x̂(ξ2)+ L(ym − ŷm)+ B(q+u)

q ′ = ζo[l1, l2](ym − ŷm)

ŷm = Cx̂ + D	, (26)

where a hat is now used to denote an estimate.
The observer gain matrix L is defined as

L =
⎡

⎣
l1 l2
0 0
0 0

⎤

⎦. (27)

This structure in L ensures that the estimates of the average
inclinations ˆ〈�〉1 and ˆ〈�〉2 are simply given by integration
of the inclination estimate �̂ (i.e., are obtained purely by
model-based prediction). This choice reduces the number of
observer parameters that needs to be determined. The strength
of the weak integral action is determined by the parameter ζo.
This integral action is included to ensure convergence of the
observer error to zero in the presence of the gravitational
disturbance acting on the system (which is not modeled
in (26)). The dynamic state-feedback controller is designed
as follows:

z′
1 = ζ [k1, 0, 0](x̂ − xr )

z′
2 = −γ z2 + γ (z1 + K (x̂ − xr ))

v = z2, (28)

where the control gain matrix K = [k1, k2, k3]. Weak
integral action is included to remove the influence of constant
disturbances (such as gravitational effects) on the steady-state
tracking error. The cut-off frequency of the weak integral
action is determined by the control parameter ζ . Moreover,
the controller contains a low-pass filter to reduce oscillations
in the transient borehole inclination response (to further reduce
borehole oscillations). The controller parameter γ determines
the cut-off frequency of the low-pass filter. Note that indeed
the observer-controller combination (26) and (28) (and in par-
ticular the inclusion of the low-pass and integrals actions) aims
at addressing the additional performance aspects discussed in
Section III: 1) robustness to (quasi-)constant disturbances and
2) improving the transient response in an attempt to reduce
undesired borehole oscillations.

Remark 2: The dynamics of the directional drilling model
exhibits three essential length scales: 1) short range,
ξ = O(10−1); 2) medium range, ξ = O(100–101); and
3) long range, ξ = O(102–103) [1]. The structural design
of the proposed above controller targets these different length
scales in the following way:

1) Short Range: The low-pass filtering properties in the
feedback controller (28) ensure that excitation of the
short-range (boundary layer) dynamics is avoided, there-
with avoiding severe borehole kinking.

2) Medium Range: The design of both the observer in (26)
and the controller in (28) aims at the stabilization of the
medium-range dynamics (through design of the gains
K and L to be addressed in Section IV-C), therewith
guaranteeing the absence of instabilities related to bore-
hole oscillations (as observed in the open-loop behavior
in Fig. 7).

3) Long Range: The inclusion of integral action in both
the observer in (26) and the controller in (28) ensure
the long-range tracking error to be zero in the presence
of (e.g., gravity related) disturbances.

Remark 3: The model in (14) and the proposed controller
are formulated with ξ (associated with the length of the
borehole) as an independent variable. To implement such
controllers in practice, information on the rate of penetration
would be needed to translate control action as a function of
borehole length to control action as a function of time.
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B. Error Dynamics

In support of the optimization-based tuning of the controller
and observer parameters, we now construct the tracking and
observer error dynamics. We define the tracking error as
e := x − xr and the observer error as δ := x − x̂ . Applying
the control decomposition u = ur + v and observer-based
controller (26), (28) to (20), we obtain the following closed-
loop error dynamics:
⎡

⎢
⎢
⎢
⎢
⎣

e′
z′

1

z′
2

δ′
q ′

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

A0 0 B 0 0
ζ [k1, 0, 0] 0 0 −ζ [k1, 0, 0] 0
γ K γ −γ −γ K 0

0 0 0 A0 − LC −B
0 0 0 ζ0[l1, l2]C 0

⎤

⎥
⎥
⎥
⎥
⎦

×

⎡

⎢
⎢
⎢
⎢
⎣

e(ξ)
z1(ξ)
z2(ξ)
δ(ξ)
q(ξ)

⎤

⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎣

A1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 A1 0
0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

e(ξ1)
z1(ξ1)
z2(ξ1)
δ(ξ1)
q(ξ1)

⎤

⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎣

A2 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 A2 0
0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

e(ξ2)
z1(ξ2)
z2(ξ2)
δ(ξ2)
q(ξ2)

⎤

⎥
⎥
⎥
⎥
⎦
. (29)

Note that the quasi-constant disturbance of the gravity is
neglected in (34), since the error dynamics are constructed
to support the design of a stabilizing controller. The effect of
gravity-induced disturbances on the closed-loop response is
further investigated in Section V. The origin (corresponding to
zero tracking and observer errors) is an asymptotically equilib-
rium point of (34) if all poles of these closed-loop dynamics
are located in the open left-half complex plane.1 Note that
due to the block-diagonal structure of the system matrices
in (34), the separation principle holds. This means that the
poles of the closed-loop system are given by the union of the
poles of the tracking error subsystem, with state [e, z1, z2]T

and input [δ, q]T , and the observer error subsystem, with
state [δ, q]T . This allows the controller parameters K , ζ , and γ
and the observer parameters l1, l2, and ζ0 to be designed
separately, such that the poles of the respective subsystems are
properly placed in the left-half complex plane and stabilization
is achieved.

Remark 4: Besides the stabilization of the desired inclina-
tion trajectory as pursued here, in practice also the Cartesian
position of the borehole should be controlled, which is typi-
cally performed by a human directional driller on the basis of
complex data sets involving the target destination, rock layer
geometries and properties, etc.

C. Optimization-Based Tuning for Stabilization

To guarantee asymptotic stability of the closed-loop system,
the controller and observer parameters need to be tuned such
that the poles of the error dynamics are located in the left-half

1As mentioned before, the poles at zero, caused by the inclusion of the
average inclination states in the state-space description, can be disregarded
for the stability analysis of the system.

complex plane. An optimization-based approach is taken to
design such stabilizing controller and observer parameters.
Herein, we aim to minimize the real part of the right-most
pole of both the closed-loop tracking error dynamics and
the observer error dynamics. By the grace of the separation
principle, mentioned above, if these right-most poles have
negative real part, then the closed-loop system is globally
asymptotically stable. Moreover, this eigenvalue- and
optimization-based approach toward controller/observer
tuning also aims to improve transient performance to limit
transient borehole oscillations. Here, we only design the
controller gain matrix K and the observer gains l1, l2 using
such an optimization-based tuning approach. The parameters
ζ, γ , and ζo, corresponding to the properties of the dynamic
low-pass and integrating filters, are designed a priori as:
1) these effectuate the desired controller properties at different
length scales (see Remark 2) and 2) this reduces the number
of parameters that need to be optimized.

The optimization problem to be solved to design K and L
can now be described as follows:

min
K
αc(K )

min
L
αo(L), (30)

where the objective functions αc(K ) and αo(L) are given as

αc(K ) = sup
i∈[1,2,…,∞]

{
(pCi(K )} (31)

αo(L) = sup
i∈[1,2,…,∞]

{
(pOi(L)}. (32)

Herein, pCi(K ) indicates poles relating to the tracking error
dynamics

⎡

⎣
e′
z′

1

z′
2

⎤

⎦ =
⎡

⎣
A0 0 B

ζ [k1, 0, 0] 0 0
γ K γ −γ

⎤

⎦

⎡

⎣
e(ξ)
z1(ξ)
z2(ξ)

⎤

⎦

+
⎡

⎣
A1 0 0
0 0 0
0 0 0

⎤

⎦

⎡

⎣
e(ξ1)
z1(ξ1)
z2(ξ1)

⎤

⎦

+
⎡

⎣
A2 0 0
0 0 0
0 0 0

⎤

⎦

⎡

⎣
e(ξ2)
z1(ξ2)
z2(ξ2)

⎤

⎦ (33)

for controller gain K , and pOi (L) indicates the poles corre-
sponding to the observer error dynamics

[
δ′
q ′

]

=
[

A0 − LC −B
ζ0[l1, l2]C 0

] [
δ(ξ)
q(ξ)

]

+
[

A1 0
0 0

] [
δ(ξ1)
q(ξ1)

]

+
[

A2 0
0 0

] [
δ(ξ2)
q(ξ2)

]

(34)

for observer gain L.
Since the separation principle holds, the synthesis

method consists of separately minimizing the objective
function αc(K ), describing the right-most pole of the tracking
error dynamics and minimizing the objective function αo(L),
describing the right-most pole of the observer error dynamics.
This allows us to place the poles of the observer further
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into left-half complex plane, such that the observer error δ
converges to zero faster than the inclination error e.

Remark 5: As shown in [32], the objective functions in (31)
and (32) are typically nonsmooth. In Section V, we employ
a hybrid algorithm for nonsmooth optimization [34], [35]
combining: 1) the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) method, a quasi-Newton algorithm, with an inexact
line search algorithm based on weak Wolfe conditions,
and 2) a particular gradient bundle method, called gradient
sampling, near nonsmooth manifolds of the objective function.
Moreover, stopping criteria αc(K ) ≤ αc,max < 0 (for the
design of K ) and αo(L) ≤ αo,max < 0 (for the design of L)
are used to terminate the optimization-based gain tuning
algorithm, where αc,max and αo,max reflect certain transient
performance specifications.

D. Robustness Analysis

Above, we assumed that the system matrices A0, A1, A2,
B,C , and D are known exactly. In practice, these matrices are
subject to uncertainty due to parameter estimation errors. Here,
in particular, parametric uncertainty in the essential composite
parameter η� (see Remark 1) is considered. We note that the
parameters related to the dimensions of the BHA are typically
accurately known.

The actual value of η� is given as η� = η�+ η̃�, where
η� is the nominal value and η̃� reflects the uncertainty. Now,
the controller and observer are based on the nominal system
matrices Ā0, Ā1, Ā2, B̄, C̄ , and D̄ corresponding to the nom-
inal value η�. Next, we will analyze the consequences of the
inclusion of such parametric model uncertainty on two levels.
First, we assess closed-loop stability in the presence of such
uncertainty. Robust stability in the presence of uncertainty on
the weight-on-bit is essential in practice to guarantee stable
directional drilling operations without borehole oscillations
for a wide range of operational conditions. Second, the feed
forward input ur is calculated based on the nominal system
matrices, and is thus prone to errors in the presence of
uncertainty. We will investigate the influence of such feed-
forward error on the closed-loop performance in Section V.

Note that the input-transformation in (23) depends on the
uncertain weight-on-bit (as the parameters b0 and b1 do). As a
consequence, the corresponding (nominal) filter

	
′ = − b̄0

b̄1
	 + 1

b̄1
u (35)

needs to be included in an uncertain closed-loop model
description for the purpose of robustness analysis. The result-
ing uncertain closed-loop dynamics can be written as follows:

z′(ξ) = Q0z(ξ)+ Q1z(ξ1)+ Q2z(ξ2)+ U(ξ), (36)

where the state vector z = [e, 	, z1, z2, δ, q]T (see [31] for
details). Note that the influence of all gravity-related effects are
neglected from this analysis (as these do not affect stability).
The system matrices Q1, Q2, and Q3 and the additional
perturbation U are given in Appendix C. It can be observed
that the block-triangular structure of the closed-loop system
matrices is destroyed which invalidates the separation principle

Fig. 8. Comparison of open-loop poles, tracking error dynamics poles, and
observer error dynamics poles.

for the purpose of robustness analysis. In addition, due to the
perturbation terms U the observer error δ no longer converges
to zero exactly, since it influences the integrator state q .

The robust stability of a specific controller/observer com-
bination can be analyzed by computing the right-most pole
of (36) for an uncertainty range of η̃� ∈ [−η̃�max, η̃�max],
where η̃�max is the maximum allowable uncertainty on the
composite parameter η�. If the right-most pole of the system
is strictly negative for this entire uncertainty range, robust
stability is guaranteed.

V. ILLUSTRATIVE BENCHMARK STUDIES

In this section, several simulations studies are performed to
confirm that the proposed control strategy solves the tracking
(borehole generation) problem at hand. We begin by validating
the control strategy under nominal conditions while drilling
a simple curved borehole. Second, we demonstrate that the
proposed control strategy is able to drill a complex borehole,
consisting of multiple constant curvature sections, while under
the influence of a parameter uncertainty in the weight-on-bit.

Let us design a controller and an observer for the benchmark
BHA system introduced in Section III using the design strategy
proposed in Section IV. The nominal value for η� is taken as
η� = 0.279. The controller parameters are chosen as γ = 0.8
and ζ = 0.5; the optimization for designing the controller
gain K is performed until αc(K ) < −0.5. The observer
objective function is optimized such that αo(L) < −0.8 with
ζo = 0.45. Optimization of both objective functions results
in the controller gain matrix K = [−2565,−742, 161] and
observer gains l1 = 133 and l2 = 2998. Fig. 8 shows a
comparison of the open-loop poles, the poles of the tracking
error subsystem and the poles of the observer error subsystem.
It can be observed that the optimization procedure successfully
places the poles of the closed-loop system according to the two
optimization criteria above.

The performance of this controller/observer combination
under nominal conditions can be verified by the means of
a simulation of the closed-loop system. In the following
simulations, the nonlinear influence of gravity on the
system (12) is taken into account. Here, we consider the
situation in which we transition from a constant inclination
borehole into a constant curvature borehole. The inclination
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Fig. 9. Inclination and observer error for the observer with weak integrat-
ing action and the dynamic controller. In this simulation, the gravitational
influence on measured output is not taken into account in the model.

reference trajectory is given as

�r (ξ) = π

4
, for ξ ∈ [−(�1 + �2), 5]

�r (ξ) = π

4
+ 0.01(ξ − 5), for ξ ∈ [5,∞]. (37)

The initial borehole inclination is given as �d(0) = (π/4)+
0.01 and the initial inclination estimate is given as �̂d(0) =
(π/4) (i.e., there exist both an initial inclination tracking
error and an initial observer error). Let us first investigate the
response while neglecting the small gravitational influence on
the measured output (17) (the nonlinear gravitational influence
on the system is still taken into account). Fig. 9 shows the
inclination tracking error e� := � − �r and the observer
inclination error δ� := � − �̂. Note that the nonlinear
influence of the gravity disturbance on the system (12) has
been successfully compensated for by the integral action in
both the controller and observer and as a result the steady-
state errors converge to zero. Although the observer error
contains some fast transients, the inclination error remains
smooth due to low-pass filter included in the controller. Due
to the fact that a nominal value for η� is considered here,
the required feedforward signal ur is known exactly. As a
consequence, no error is induced at the transition between the
constant inclination and constant curvature borehole at ξ = 5.
In other words, during a transition from a constant incli-
nation section to a constant curvature section, no borehole
oscillations are induced (as would likely be the case with
conventional constant RSS force actuation). Fig. 10 shows the
scaled RSS force 	 (i.e., control effort) corresponding to the
response in Fig. 9. Note that the peak value of approximately
	 = 0.008 corresponds to a (real) RSS force of approximately
Frss = 13 000 N, which is feasible in practice. We also
note that the transient control action hardly overshoots the
steady-state RSS force needed to generate the steady-state
curvature of 0.0027 1/m. Moreover, Fig. 10 shows that indeed
no step in the RSS force is employed at the transition between
the straight borehole section and the constant curvature section
(at ξ = 5), thereby avoiding borehole kinking at such a
transition. Still, this transition is clearly visible in the control
action. Fig. 11 shows the results of a simulation in which
the gravitational effect on the measured output is taken into

Fig. 10. Scaled RSS force 	 for the observer with weak integrating action
and the dynamic controller (corresponding to Fig. 9).

Fig. 11. Inclination and observer error for the observer with weak integrat-
ing action and the dynamic controller. In this simulation, the gravitational
influence on measured output is taken into account in the model.

account (see (17)). Due to this gravitational influence on
the measured output, which was not taken into account in
the observer design, only a small steady-state error occurs
(<10−3 rad). By comparing Figs. 9 and 11, we conclude,
however, that the transient behavior is hardly affected the
influence of gravity on the measured output.

Let us now consider the case in which we aim to drill a
borehole consisting of multiple constant curvature sections.
The transition from an initially vertical borehole into a hor-
izontal borehole is made over 800 m (this corresponds with
a scaled distance of ξ = 800/λ1 ≈ 219). The inclination
reference is shown in Fig. 12 and is given as

�r (ξ) = 0, for ξ ∈
[

0,
100

λ1

]

�r (ξ) = c1

(

ξ − 100

λ1

)

, for ξ ∈
[

100

λ1
,

200

λ1

]

�r (ξ) = c1
100

λ1
, for ξ ∈

[
200

λ1
,

400

λ1

]

�r (ξ) = c1
100

λ1
+ c2

(

ξ − 400

λ1

)

, for ξ ∈
[

400

λ1
,

800

λ1

]

�r (ξ) = π

2
, for ξ ∈

[
800

λ1
,

1000

λ1

]

,

(38)

where c1 = 0.0128 and c2 = 0.0112.
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Fig. 12. Reference trajectory of the complex borehole.

Fig. 13. Real value of the right-most pole of the uncertain closed-loop system
for varying parameter uncertainty in the composite parameter η�.

In this case study, the influence of a parameter uncertainty
η̃� = 0.25η� is also investigated. Due to this parameter
uncertainty, the perfect feedforward is no longer known.
In addition, the robust stability of the system needs to be
verified. Fig. 13 shows the real value of the right-most pole
of the uncertain closed-loop system (36) for a parameter
uncertainty up to η̃�max = 0.5η�. It can be observed that this
controller/observer combination possesses excellent robustness
properties. A parameter uncertainty of 25% in η� only results
in a slight movement of the right-most pole and thus it can be
concluded that the controller/observer combination is robustly
stable.

For this case study, the initial borehole inclination is given
as �d(0) = 0.01 and the initial inclination estimate is given
as �̂d(0) = 0. Fig. 14 shows the inclination tracking error
and observer inclination error. It can be observed that the
uncertain closed-loop system is indeed still asymptotically
stable. Note that at the transition between the multiple constant
curvature sections a peak in the tracking error occurs due to
the feedforward errors induced by the 25% parameter error
in the weight-on-bit. However, this error quickly damps out
and remains small due to the integral action. In addition,
due to the perturbation term U in the uncertain closed-loop
dynamics (see (36)), the steady-state error does not converge
to zero exactly but to a small, practically acceptable error

Fig. 14. Inclination error and observer error while drilling the complex
borehole with an observer-based output feedback controller. Left: transient
response. Right: response to curvature transitions.

Fig. 15. Scaled RSS force 	 for complex borehole (corresponding to Fig. 14).

level (especially given the relatively high level of uncertainty
considered here). Finally, Fig. 15 shows the (scaled) RSS force
	 for this scenario. The difference between the RSS force
levels need in constant inclination sections (dominated by the
compensation of gravity) and constant curvature sections is
clearly visible.

VI. CONCLUSION

In this paper, a model-based control strategy for directional
drilling has been proposed. The problem of drilling complex
curved boreholes using down-hole robotic systems has been
formulated as a robust tracking problem. The benefits of the
proposed control strategy are as follows. First, it guarantees
the stable generation of complex curved boreholes without
the occurrence of undesired borehole oscillations. Second, the
observer-based controllers only need limited measurements of
the inclination of the BHA. Third, the resulting closed-loop
system is robust against both parameter uncertainties and
(gravity-induced) perturbations. The effectiveness of the
proposed observer-based output feedback control strategy,
including its robustness properties, has been illustrated by
case studies.
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Q0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A0 B0 − B1
b̄0

b̄1
0

B1

b̄1
0 0

0 −b0

b1
0

1

b̄1
0 0

ζ [k1, 0, 0] 0 0 0 −ζ [k1, 0, 0] 0
γ K 0 γ −γ −γ K 0

−d A0 + LdC Ld D − d B0 + d B1
b0

b1
0 −d B1

1

b̄1
Ā0 − LC − LdC −B

−ζo[l1, l2]dC −ζo[l1, l2]d D 0 0 ζo[l1, l2](C + dC) 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

APPENDIX A
COEFFICIENTS OF INFLUENCE

The coefficients of influence for a BHA with two stabilizers
are given as

Fb = −6 + 4�2

3 + 4�2

Fw = 6 + 10�2 − 3�3
2

12 + 16�2

Fr = −3 − 4�2 +�2(9 + 6�2)− 2�3(3 + �2)

3 + 4�2

F1 = 6

3 + 4�2

Mb = 4(1 + �2)

3 + 4�2

Mw = − 1 − 2�2 + �3
2

12 + 16�2

Mr = �(1 −�)[3 + 4�2 −�(3 + 2�2)]
3 + 4�2

M1 = − 2

3 + 4�2
,

where �i is the dimensionless length of the i th BHA section
(�i := (λi/λ1), i = 1, 2).

APPENDIX B
SYSTEM MATRICES FOR TWO-STABILIZER BHA

A0 = 1

χ�

⎡

⎢
⎢
⎢
⎢
⎣

−Mb + χ

η

(

Fb − F1

�1

)

Mb + E −E

χ�

�1
0 0

0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

with E = (FbM1 − F1Mb − M1η�)/(η�)

A1 = 1

χ�

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

χ

η

(F1

�1
+ F1

�2
− Fb

)

0 0

−χ�
�1

0 0

χ�

�2
0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

A2 = 1

χ�

⎡

⎢
⎢
⎢
⎣

−χ
η

F1

�2
0 0

0 0 0

−χ�
�2

0 0

⎤

⎥
⎥
⎥
⎦

B0 = 1

χ�

[FbMr − FrMb − Mrη�

η�
, 0, 0

]T

B1 = 1

χ�

[

−χ
η
Fr , 0, 0

]T

.

APPENDIX C
SYSTEM MATRICES FOR UNCERTAIN

CLOSED-LOOP DYNAMICS

Q0 is given by the matrix shown at the top of this page,
and

Qi =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ai 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−d Ai 0 0 0 Āi 0
0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

for i = 1, 2

U =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

d Bur (ξ)− d A0xr (ξ)− d A1xr (ξ1)− d A2xr (ξ2)
1

b̄1
ur (ξ)

0
0

−d A0xr (ξ)− d A1xr (ξ1)− d A2xr (ξ2)+ LdCxr (ξ)
−ζo[l1, l2]dCxr(ξ)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where d Ai = Ai − Āi , d Bi = Bi − B̄i , dC = C − C̄ , and
d D = D − D̄.
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