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Consensus Control for Vehicular Platooning
With Velocity Constraints
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and Henk Nijmeijer, Fellow, IEEE

Abstract— In this paper, a distributed consensus control
approach for vehicular platooning systems is proposed. In for-
malizing the underlying consensus problem, a realistic vehicle
dynamics model is considered and a velocity-dependent spac-
ing policy between two consecutive vehicles is realized. As a
particular case, the approach allows to consider bidirectional
vehicle interaction, which improves the cohesion between vehicles
in the platoon. Exponential stability of the platoon dynamics is
evaluated, also in the challenging scenario in which a limitation
on the velocity of one of the vehicles in the platoon is introduced.
The theoretical results are experimentally validated using a three-
vehicle platoon consisting of (longitudinally) automated vehicles
equipped with wireless intervehicle communication and radar-
based sensing.

Index Terms— Consensus, distributed control, intelligent trans-
portation systems, vehicular platooning, velocity constraint.

I. INTRODUCTION

THE societal demand to have clean, safe, and efficient
traffic systems on one hand and the need to improve these

systems to an adequate capacity level to prevent traffic jams
on the other hand have created large interest in the concept
of automated driving in recent years. Moreover, the advances
in computation, sensing, and communication technology sup-
ported and empowered this interest in automated traffic sys-
tems. The overall goal of automated driving is to optimize
traffic throughput, reduce overall exhaust emission [1], and
increase traffic safety [2].

Cooperative adaptive cruise control (CACC) systems poten-
tially contribute to such automation of on-road traffic.
CACC systems, of which particular implementations are
described in [3]–[6], are used for the control of a
platoon of vehicles. These systems employ wireless vehicle-to-
vehicle communication, in addition to on-board measurements,
to allow for driving at small intervehicle distances. While
achieving short-distance vehicle following, string stable pla-
toon behavior, i.e., disturbance attenuation along the platoon,
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is desired as well [4]. Driving with such short following
distance can significantly improve the road traffic throughput.

An example of a CACC implementation, which guarantees
a string stable behavior, is described in [4] and [5], where the
underlying interaction topology is a one-vehicle look-ahead
topology. That is, each vehicle only uses the information of
its direct predecessor. Although this connectivity structure is
useful and practical in many applications, in some cases, is it
desired to have more flexibility in the design of the interaction
topology between the vehicles in a platoon. In particular,
in a one-vehicle look-ahead topology, there is no possibility
to inform the leading vehicles of the performance of the
followers. In contrast, using information of the follower vehi-
cles can potentially improve the platoon cohesion. To support
this statement, envision a real-life scenario in which the
vehicles in a platoon have different limitations in terms of
velocity or acceleration. In particular, heavy-duty vehicles
may have a difference in weight due to the load variations
leading to distinct velocity and acceleration constraints. Such
differences in velocity or acceleration constraints may lead
to an undesired platoon breakup in case of a unidirectional
interaction topology between the platoon vehicles. The platoon
cohesion is likely to be improved by a bidirectional scheme,
and however, such a scheme also has adverse effects, e.g., tight
margins on string stability [25], [29].

This may be solved by formalizing the platoon control
problem in a framework offering more flexibility in terms
of the interaction topology, e.g., by using a bidirectional
interaction topology. To this end, a platoon of vehicles can
be viewed as an interconnected network of dynamic vehicular
systems interacting through an underlying communication and
sensing network. Since these networked vehicles aim at a
synchronized behavior in terms of identical velocity and inter-
vehicle distances, the platoon control problem aligns well with
the existing system-theoretic frameworks, such as consensus
seeking [7] and flocking [8], see also the overview of distrib-
uted multiagent coordination in [9] and the recent overview
of vehicular platoon control under the four-component
framework [27].

In recent work, the platoon control problem has indeed
been cast into a distributed consensus control frame-
work [10]–[12], [25], [26]. In most of these papers, a constant-
distance spacing policy between two consecutive vehicles
in the platoon is considered. However, in terms of traffic
throughput, safety, and disturbance attenuation, a constant-
distance spacing policy is not preferable [13], [14]. Further-
more, the robustness to vehicle actuator faults or bounded
control inputs, which can be seen as limitations on the velocity
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or acceleration, is investigated in [15]–[17]. However, in the
study of actuator faults [15], temporary or periodic actuator
faults are assumed. As a result, the group of agents will break
up when the actuator fault is permanent. This is not the case
for the approach developed in this paper.

In a previous paper of the authors, the vehicle following
problem was modeled as a consensus seeking problem [18].
The contribution of this paper is the extension of these results
to the case where platoon members are not homogenous in
terms of their dynamical capabilities. Specifically, the focus is
on solving the platoon cohesion problem when some of the
platoon members have a limited velocity capability. Through
an appropriate design of the local controllers as well as the
adopted interaction topology, it is shown that the platoon can
automatically identify this limitation and adapt its behavior to
the vehicles with limited functionality.

In this paper, a longitudinal vehicle dynamics model as
in [4], [12], [19], and [26] is adopted. This model includes
the influence of the vehicle drive-line dynamics and is known
to be a realistic model. Furthermore, the intervehicle spacing
policy is considered to be velocity dependent in contrast to
the work done in [10], [12], [25], and [26]. A formal analysis
of the exponential stability of the entire platoon dynamics,
subject to existence of constrained vehicles in the platoon,
is provided. The performance of the networked control strategy
is evidenced by a simulation-based case study, and practical
feasibility is demonstrated using an experimental three-vehicle
test setup.

The outline of this paper is as follows. Section II gives a
brief overview of the preliminaries of consensus control and
the problem formulation. In Section III, a distributed control
approach is proposed for exponential stability of the platoon
dynamics. In Section IV, a velocity constraint is introduced,
and again exponential stability of the platoon dynamics is
presented. The analytical result is verified by a simulation-
based study in Section V. Section VI shows the results of
a three-vehicle platoon practical feasibility study. Finally,
Section VII presents the main conclusions.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Graph Theory

A way to model information exchange in a network of
dynamical systems is by using the so-called graphs. A graph
consists of a node (e.g., a vehicle) set V = {1, · · · , n} and
an edge set E ∈ V × V . In an undirected graph, the existence
of an edge from node i to node j implicates the existence of
an edge from node j to node i , i.e., the information link is
bidirectional. In a directed graph (or digraph), at least one pair
of nodes has a unidirectional information link. An undirected
graph is called connected if there is a path between any
distinct pair of nodes via the edges of the graph, possibly via
other nodes. For a digraph, a distinction is made between a
graph being connected or strongly connected. A digraph is
called strongly connected if there exists a path between any
distinct pair of nodes via the graph’s edges. A digraph is called
connected, if there exists a path between any distinct pair
of nodes when you replace all directed communication links

in the graph by undirected communication links. A digraph
contains a so-called directed spanning tree if there is at least
one node having a directed path, via the graph’s edges, to all
other nodes. Such a node is called a root. The edge set E can
be described by an adjacency matrix G = [gi j ] ∈ R

n×n with
i, j ∈ V . If the edge set contains an edge from node j to
node i , then element gi j equals 1; gi j equals 0 otherwise.
Another fundamental matrix in a graph theory, which can be
derived from the adjacency matrix G, is called the Laplacian
matrix L = [li j ] ∈ R

n×n . This matrix is defined as

lii =
n∑

j=1

gi j and li j = −gi j i �= j. (1)

The Laplacian matrix L satisfies the conditions

li j ≤ 0 i �= j and
n∑

j=1

li j = 0. (2)

For an undirected graph, the Laplacian matrix L is symmetric
positive semidefinite. However, for a digraph, the symmetry
property does not hold. When a digraph contains a directed
spanning tree or when an undirected graph is connected,
the Laplacian matrix L has only one eigenvalue being zero.
This single zero eigenvalue is associated with a right eigen-
vector w ∈ R

n of the Laplacian matrix satisfying

w := α (1 · · · 1)T (3)

where α �= 0. In addition to a Laplacian matrix L, which
describes the topology of a network, a pinning matrix P =
[pi j ] ∈ R

n×n is defined as follows. The pinning matrix P is a
diagonal matrix, which defines a pinning on one of the nodes
in the network [20]. This pinning element “pins” the consensus
state of all nodes in the network to a desired consensus state
by putting an internal feedback on that specific node. The
diagonal elements of the pinning matrix are either 0 or 1 and
satisfy the following equation:

n∑

i=1

pii = 1 (4)

which implies that the states of only one node are pinned to a
fixed value. In the method proposed in Section III, this means
that one node will have an internal feedback in addition to the
interaction due to the choice for the Laplacian matrix.

Next, an example of a simple consensus control strategy
for a group of nodes (or systems) having single integrator
dynamics is given to illustrate the principles of consensus
control.

B. Consensus Control Law for Single-Integrator Dynamics

Consider a network of systems with dynamics given by

q̇i = ui , i ∈ V (5)

where qi (t) ∈ R is the state of system i and ui (t) ∈ R is the
control input. A standard consensus control law for this group
of systems, as proposed in [7] and [21], is given by

ui = −
n∑

j=1

gi j (qi − q j ), i ∈ V (6)
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Fig. 1. Top view of a vehicle platoon. Dashed arrows: (fixed) communication
topology of feedforward ui−1(t). Dotted arrows: (variable) communication
topology for sharing information on the state xi (t).

where gi j is the element of the adjacency matrix G describing
the connectivity graph of the network. By introducing the
lumped state vector q(t) = (q1(t) . . . qn(t))T , the closed-
loop dynamics, given by (5) and (6), are expressed as

q̇ = −Lq (7)

where the relation between the elements of the adjacency
matrix G and the Laplacian matrix L is as defined in (1).
If the Laplacian matrix L has only one single eigenvalue
equal to zero, i.e., the corresponding undirected graph is
connected or the corresponding digraph contains a directed
spanning tree, then it can be shown that consensus is reached
among the n systems [21], that is

limt→∞ (qi (t) − q j (t)) = 0 i �= j. (8)

Thus, all states exponentially converge to a common value,
which depends on the initial conditions. The latter fact has a
direct relation to the zero eigenvalue of the Laplacian.

When adding a pinning element, this common value is con-
strained to a desired value and, thus, does not depend on the
initial conditions. Further explanation is given in Section II-C,
where a more realistic dynamical model is considered rele-
vant in the scope of vehicular platooning, and in addition,
a velocity-dependent spacing policy is introduced.

C. Platoon Dynamics and Control Objective

Consider a platoon of n vehicles, as schematically shown
in Fig. 1, where xi (t) is the consensus state vector, which
will be defined in the following, di (t) is the distance between
vehicle i and its preceding vehicle i − 1, and qi (t), vi (t),
and ui (t) are the (rear-bumper) position, velocity, and control
input, respectively, of vehicle i . Note that, in addition to the
n vehicles, a virtual reference vehicle having index i = 0 is
introduced, as is described in the following. The dotted arrows
indicate the communication of the consensus state vector x j (t)
from a vehicle j to a vehicle i , used for distributed consen-
sus control, aiming to achieve closed-loop platoon stability.
In addition, the dashed arrows indicate the communication of
the control input ui−1(t) from vehicle i −1 to vehicle i , which
represents a one-vehicle look-ahead feedforward as commonly
used in CACC systems [4] and which will be described in the
following in more detail. The following velocity-dependent
spacing policy between two consecutive vehicles is desired:

ddes,i (t) = r + hvi (t), i ∈ V (9)

where r ≥ 0 and h > 0 are the standstill distance and the
desired time gap, respectively, and V = {1, · · · , n} is the
set of all vehicles in the platoon. The spacing policy (9) is
known to improve road efficiency [1], safety, and disturbance
attenuation [13], [14]. The spacing error can then be defined as

ei (t) = di(t) − ddes,i (t)

= (qi−1(t) − qi (t) − lv ) − (r + hvi (t)), i ∈ V (10)

where lv is the vehicle length. As mentioned earlier, a virtual
reference vehicle, having index i = 0, is introduced, such
that the error ei (t) is also defined for the first vehicle in
the platoon. The following longitudinal vehicle dynamics are
adopted [4], [12], [19]:
⎛

⎝
q̇i

v̇i

ȧi

⎞

⎠ =
⎛

⎝
0 1 0
0 0 1
0 0 − 1

τ

⎞

⎠

︸ ︷︷ ︸
A

⎛

⎝
qi

vi

ai

⎞

⎠ +
⎛

⎝
0
0
1
τ

⎞

⎠

︸ ︷︷ ︸
B

ui (t − φ), i ∈ {0} ∪ V

(11)

where τ is a positive constant representing the drive-line
dynamics, φ is an actuator delay, and ai (t) is the vehicle
acceleration. This dynamical model is a more realistic rep-
resentation of the longitudinal vehicle dynamics in compari-
son with a double integrator dynamical model, as employed
in [10] and [11]. It is assumed that τ is equal for all vehicles
in the platoon, i.e., a homogeneous dynamic response of the
vehicles is considered. Note that this does not necessarily
mean that we consider a fully homogeneous platoon, since
the velocity capabilities of the vehicles in the platoon may
differ due to the velocity constraint, which will be introduced
in the following. Also note that the virtual reference vehicle,
i.e., vehicle i = 0, has the same dynamics as the other vehicles
in the platoon, as defined in (11). As a result, in practice,
the virtual reference vehicle could also be replaced by an
actual leading vehicle. The control objective is to ensure that
the closed-loop platoon dynamics exhibits an exponentially
stable equilibrium for which it holds that

limt→∞ ei (t) = 0, i ∈ V (12)

for u0(t) = 0. This control objective implies that all intervehi-
cle distance errors ei (t) converge to zero when the velocity of
the virtual reference vehicle v0(t) goes to a constant velocity
v̄0 (which is the case for u0 = 0). As a result from (10)–(12),
it also holds that

limt→∞ vi (t) = v̄0, i ∈ V . (13)

The control objective, defined by (12) and (13), is achieved by
a consensus-based control approach as explained in Section III.

In the presence of a velocity constraint v f (t) ≤ vmax <
v0(t) for a vehicle f , the control objective is to automatically
adapt the platoon velocity toward the minimum of the virtual
reference vehicle velocity v0(t) and the maximum velocity
vmax of vehicle f , that is

limt→∞ vi (t) = min(v̄0, vmax), i ∈ V . (14)

This means that the platoon velocity converges to the desired
velocity v̄0 imposed by the virtual reference vehicle, when
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there is no velocity constraint, or the platoon velocity con-
verges to vmax in case of a velocity constraint being present.
This is explained in Section IV.

III. EXPONENTIAL STABILITY OF NOMINAL

CONSENSUS FRAMEWORK

In this section, a distributed control approach to achieve
the platoon control objectives (12) and (13), and conditions
for exponential stability of the closed-loop platoon dynamics
are proposed. For the sake of simplicity, the actuator delay φ
in (11) is assumed to be equal to zero while designing the
consensus-based controller. The impact of this delay is inves-
tigated in simulations and experiments in Sections V and VI.
For the sake of readability, from now on, the time argu-
ment t is omitted. Let the error, as defined in (10), and its
first and second time derivatives be stacked in the state vector

xi = (ei ėi ëi )
T , i ∈ V . (15)

Differentiating ëi (t), while using (10) and (11), gives

...
e i = − 1

τ
ëi + 1

τ
(ui−1 − ui − hu̇i ) , i ∈ V . (16)

By using (16), the following expression for the error dynamics
can be obtained:

ẋi = Axi + B (ui−1 − ui − hu̇i ) , i ∈ V (17)

where A and B are defined as in (11), and ei (t) is defined
in (10). Introducing the following precompensator on the
vehicle input ui (t):

u̇i = − 1

h
ui + 1

h
(ui−1 − ūi ) , i ∈ V (18)

with feedforward ui−1(t) and the new input ūi (t), where
ui−1(t) is obtained by vehicle i through wireless communica-
tion, as is indicated (by the dashed arrows) in Fig. 1, yields
the following error dynamics:

ẋi = Axi + Būi , i ∈ V . (19)

Remark 1: The feedforward in terms of ui−1(t) in (18) is
designed as to compensate for the aforementioned ui−1(t) term
in the error dynamics in (17). This significantly improves the
input disturbance attenuation properties of the platoon dynam-
ics. This implies a one-vehicle look-ahead strategy for (only)
the feedforward, but the following proposed approach gives
freedom in communication topology used for the feedback
design for the new input ūi (t).

Inspired by consensus control theory as explained in
Section II-B, the following distributed controller is introduced
for the new input ūi (t) in (18):

ūi = −
n∑

j=1

(gi j k
T (xi − x j )) − pii k

T xi , i ∈ V (20)

where x j (t) is obtained by vehicle i through additional com-
munication links which are described by an adjacency matrix
G = [gi j ] ∈ R

n×n . Moreover, pii represents the diagonal
elements of a pinning matrix P (as explained in Section II-A)
and kT = (k p kd kdd) is a controller gain vector. An example

of a communication topology for realizing the distributed
control term ūi (t) can be observed in Fig. 1 (indicated by
the dotted arrows); however, the analysis given below is valid
for any communication topology for the distributed controller.

Remark 2: The choice for the distributed control term for
ūi (t) (the first term in (20)) is based on the desire to address
interaction from follower vehicles and to have flexibility in the
interaction between the vehicles in the platoon. The pii kT xi

term in (20) results in an internal feedback on one particular
vehicle to ensure that all intervehicle distance errors converge
to zero in the consensus equilibrium. Moreover, it must be
noted that pii = 0 does not mean that the vehicle cannot
access its own state or that its state is not used in the
feedback, but it reflects a choice of the control structure.
Note that when using the zero matrix for the adjacency matrix
G and pii = 1 ∀i ∈ V , the same unidirectional interaction as
in [4] is obtained.

Let a lumped error state vector X (t) ∈ R
3n×1 be defined

as X (t) := (xT
1 (t) · · · x T

n (t))T . Substitution of (20) into (19)
results in the expression for the closed-loop error dynamics
for the entire platoon as given in (24), as shown at the bottom
of the next page, where the scalar elements li j are defined
as in (1) and the scalar elements pii are either zero or one,
satisfying (4). Now, let a lumped input state vector U(t) ∈
R

n×1 be defined as U(t) := (u1(t) · · · un(t))T . By substitu-
tion of (20) into (18) and by combining the result with (24),
the following compact expression for the closed-loop platoon
dynamics can be obtained:
(

Ẋ
U̇

)
=

(
In ⊗ A − L̂ ⊗ BkT O3n×n

L̂ ⊗ kT

h
1
h (I(−1),n − In)

) (
X
U

)

+
(

O3n×1
Bu

)
u0 (21)

where ⊗ denotes the Kronecker product, matrix L̂ ∈ R
n×n is

defined as L̂ := L + P , vector Bu ∈ R
n×1 is defined as

Bu =
(

1

h
0 · · · 0

)T

(22)

and vector O3n×1 ∈ R
3n×1 and matrix O3n×n ∈ R

3n×n are
a zero vector and matrix, respectively. Furthermore, matrix
In ∈ R

n×n is an identity matrix and matrix I(−1),n ∈ R
n×n is

defined as

I(−1),n =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · · · · · · · 0

1
. . .

...

0
. . .

. . .
...

...
. . .

. . .
...

0 · · · 0 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

. (23)

It can be observed that u0(t), which is the control input
(or desired acceleration) of the virtual reference vehicle, is the
only exogenous input to the platoon dynamics. Furthermore,
note that, as a result of the precompensator in (18), the error
dynamics (or X-dynamics) in (21) is independent of the time
gap h.

In order to prove exponential stability of the closed-loop
platoon dynamics (21), we first recall Lemma 1.
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Lemma 1 [22]: The origin is an exponentially stable equi-
librium of the dynamics

Ẋ = (In ⊗ A − L̂ ⊗ BkT )X (25)

if and only if all matrices

A − λi {L̂}BkT , i ∈ V (26)

are Hurwitz, where λi {L̂} is the i th eigenvalue of matrix L̂ .
Remark 3: Although it does not directly represent a con-

straint on the communication topology and the pinning ele-
ment defined by L̂ , (26) implies that the pinning element
should be applied to a vehicle that is the root of a directed
spanning tree in the communication topology. As a result,
the zero eigenvalue of the Laplacian L vanishes in L̂.

Using this lemma, conditions for exponential stability can
be derived, according to Theorem 1.

Theorem 1: The closed-loop platoon dynamics (21), with
λi {L̂} ∈ R

+(positive real) ∀i ∈ V and τ > 0, have an
exponentially stable equilibrium (for u0 = 0) if and only
if the controller gain vector k of the controller defined
by (18) and (20) satisfies

k p > 0

kd >
k pτ

min
i∈V

{λi {L̂}kdd + 1} (27)

kdd > − 1

max
i∈V

{λi {L̂}} .

Proof: Due to the lower block triangular structure of
the closed-loop dynamics in (21), exponential stability can
be assessed by evaluating the eigenvalues of the individual
diagonal block matrices. It can easily be seen that the right
lower matrix in the system matrix in (21) has only one single
eigenvalue having algebraic multiplicity n, that is

λi

{
1

h
(I(−1),n − In)

}
= − 1

h
, i ∈ V . (28)

Next, by using Lemma 1, it is known that the left upper matrix
in the system matrix in (21) is Hurwitz if and only if all
matrices (26) are Hurwitz. The characteristic polynomial of
the matrix in (26), for A and B as given in (11), k as in (20),
and L̂ being the communication topology combined with the
pinning element, is given by

det(μI3 − (A − λi {L̂}BkT ))

= μ3 + λi {L̂}kdd + 1

τ
μ2 + λi {L̂}kd

τ
μ + λi {L̂}k p

τ
(29)

where I3 ∈ R
3×3 is an identity matrix and μ is an eigenvalue

of matrix (26). According to the statement of the theorem,

the eigenvalues of matrix L̂ are positive real, i.e., λi {L̂} ∈
R

+ ∀i ∈ V , and the drive-line dynamics constant satisfies
τ > 0. Employing the Routh–Hurwitz stability criterion [23]
results in the necessary and sufficient conditions as given
in (27) for all matrices in (26) being Hurwitz. These conditions
are also necessary and sufficient for the left upper matrix
in the system matrix in (21) being Hurwitz (see Lemma 1).
As a result, the conditions in (27) are necessary and sufficient
for the entire closed-loop dynamics (21) being exponentially
stable. Hence, Theorem 1 is proven. �

Note that the stability conditions (27) do not depend on the
time gap h. This is mainly achieved by the use of the prec-
ompensator (18). In case this is not used as such, the stability
conditions would be affected by the time gap h, as also shown
in [19]. The origin being an exponentially stable equilibrium
of the closed-loop dynamics in (21) implies that all spacing
errors ei (t) converge to zero, thus satisfying the control
objective given in (12). The effect of the eigenvalues λi {L̂}
on the decay rate of the errors is similar as in [25]

Remark 4: The method used in the proof of
Theorem 1 is similar to the line of reasoning in the proof used
in [25, Th. 1.3]. However, in this paper, the dynamics involves
a velocity-dependent spacing policy and input feedforward.

Remark 5: In [25] and [26], results on fundamental limita-
tions in terms of stability margin for platoon dynamics with
constant distance spacing policy are presented. Such result
does not yet exist for the platoon dynamics as presented in
this paper, in which a constant time gap spacing policy is
realized. This can be the topic of the future research.

IV. CONSENSUS-BASED CONTROL OF A PLATOON WITH

NONHOMOGENEOUS VELOCITY CONSTRAINTS

In this section, first, a vehicle having a certain maximum
velocity vmax is introduced. It is shown that the platoon
will break up, under certain conditions, due to this velocity
constraint. Second, an additional control law for the virtual ref-
erence vehicle is introduced and combined with the consensus-
based control law of Section III to regain an exponentially
stable equilibrium.

A. Velocity Constraint
In Section III, a homogeneous platoon, consisting of vehi-

cles without velocity constraints, was considered. In this
section, a slow (or faulty) vehicle is introduced within the
platoon, similar as done in [15], and the platoon dynamics are
analyzed in the presence of such an inhomogeneous constraint.
Suppose that the maximum velocity of the f th vehicle in the
platoon, with f ∈ V , is defined as vmax such that

v f (t) ≤ vmax ∀t . (30)

Ẋ =

⎛

⎜⎜⎜⎜⎝

A − (l11 + p11)BkT −l12 BkT · · · −l1n BkT

−l21 BkT . . . . . .
...

...
. . . . . . −l(n−1)n BkT

−ln1 BkT · · · −ln(n−1) BkT A − (lnn + pnn)BkT

⎞

⎟⎟⎟⎟⎠
X (24)
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Some additional definitions are given to correctly model this
saturation on the velocity of vehicle f . Suppose that vehicle f
reaches its maximum velocity, i.e., v f (t) = vmax. Then,
by definition, the acceleration a f (t) and desired acceleration
u f (t) are equal to zero, i.e., a f (t) = 0 and u f (t) = 0 if
v f (t) = vmax. Given this constraint on the velocity of one
of the vehicles in the platoon, one can say that the platoon
can have two modes. Mode 1 represents normal platoon
operation with continuous dynamics as treated in Section III,
and Mode 2 represents the fixed velocity v f (t) = vmax for
vehicle f and normal operation with continuous dynamics for
all other vehicles in the platoon.

In the following, it is shown that when the virtual reference
vehicle is uncontrolled, i.e., having constant velocity larger
than vmax

v0(t) ≡ vdes > vmax (31)

with vdes being the desired platoon velocity, then the constant
platooning velocity solution, investigated in Section III, is not
an equilibrium when there is a vehicle f satisfying (30). This
is similar as what would occur under such conditions for
unidirectional CACC [4], [5].

Let, as a particular case, the communication topology used
in the distributed controller ūi (t) be defined by the Laplacian
matrix

L1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
...

. . . 1 −1
0 · · · · · · 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

. (32)

This results in a one-vehicle look-back topology for the imple-
mentation of the distributed consensus controller. In addition,
a one-vehicle look-forward topology is used for the purpose of
feedforward, due to (18). Given the topology of the distributed
consensus controller as defined by (32), only the last vehicle in
the platoon is the root of a directed spanning tree. Therefore,
the pinning element is applied on the last vehicle, that is

pnn = 1, pii = 0 ∀i �= n. (33)

For the analytical derivation of the resulting steady-state solu-
tion, it is assumed that when vehicle f goes into saturation,
i.e., switches from Mode 1 to Mode 2, it stays in Mode 2.

As a result of the velocity of vehicle f being saturated,
and the particular (single vehicle look-back) structure of the
topology in (32), the platoon dynamics can be divided into
two subsets. The first set Vb contains all vehicles which
drive behind the saturated vehicle, i.e., Vb = {V|i > f },
and the second set V f contains all vehicles ahead of the
saturated vehicle and the saturated vehicle itself, i.e., all
vehicles V f = {V|i ≤ f }. It should be noted that, for
this particular topology in (32), for the distributed controller
(18) and (20) in combination with the pinning element (33),
the last vehicle i = n in the platoon is controlled using
unidirectional CACC as presented in [4]. This means that, for
vehicle n, the conditions in (27) are the same as in [4]. Hence,
the origin is an exponentially stable equilibrium of the error

state vector xn(t) of vehicle i = n �= f , under the condition
of a properly designed controller gain vector k.

In Proposition 1, it is stated that under certain conditions,
the closed-loop platoon dynamics do not have an equilibrium
due to the above-introduced velocity constraint.

Proposition 1: The closed-loop platoon dynamics (21), with
the communication topology being defined by (32) and (33)
(without loss of generality), do not have a reachable asymp-
totically stable equilibrium if v0(t) and v f (t) satisfy

v f (t) ≤ vmax < v0(t) ≡ vdes. (34)

Proof: First, the dynamics of the vehicles behind vehi-
cle f , i.e., subset Vb, are treated. When v0(t) and v f (t)
satisfy (34), at some point, vehicle f reaches its maximum
velocity vmax. Clearly, in that mode, vehicle f is not a
controlled vehicle, but is driving at constant velocity vmax.
As a result of the one-vehicle look-back topology for the
distributed consensus controller as defined by the Laplacian
matrix in (32), when considering all the vehicles in subset V f ,
the dynamics of vehicle f + 1 depends only on vehicle f .
Moreover, with this interaction topology, the dynamics of all
other vehicles in vehicle subset Vb do not depend on any of
the vehicles in vehicle subset V f . Therefore, vehicle f (with
u f = 0) acts as a virtual leading vehicle for the vehicles in
subset Vb, driving with a constant velocity v f = vmax. Hence,
the conditions (27) of Theorem 1 for exponential stability
apply for that part of the platoon.

Second, an equilibrium analysis is executed for the dynam-
ics associated with the intervehicle distance error states of
the saturated vehicle f and all vehicles ahead of this vehicle,
i.e., all vehicles in V f . In an equilibrium, all time derivatives
of the states are equal to zero. For the second time derivative
of ei (t), this equilibrium must satisfy [using (10) and (11)]

ëi = ai−1 + h − τ

τ
ai − h

τ
ui = 0 ∀i ∈ V f . (35)

As stated earlier, the (desired) acceleration of vehicle f is
equal to zero when it is in saturation, i.e., u f (t) = 0 and
a f (t) = 0. Moreover, there are no restrictions (or saturations)
on the vehicles’ acceleration ai (t) or desired acceleration ui (t)
for i �= f . Therefore, (35) has a solution for all i ∈ V f , since
all vehicles in V f (except for vehicle f ) can reach ai = ui = 0
for t → ∞. By using this, and the known relation between the
desired acceleration ui (t) and the actual acceleration ai (t) as
in (11), for φ = 0, it can be shown that the acceleration ai(t)
and the desired acceleration ui (t) are equal to zero for each
vehicle i ∈ V f when (35) holds.

For the first time derivative of ei (t), the equilibrium must
satisfy

ėi = vi−1 − vi − hai = 0 ∀i ∈ V f . (36)

As shown earlier, vehicle acceleration ai (t) equals zero for
each vehicle i ∈ V f when the platoon dynamics satisfy (35),
i.e., is in a steady state. Employing this fact, (36) results in

ė1 = v0 − v1 = 0

ėi = vi−1 − vi = 0 ∀i ∈ {V f |1 < i < f } (37)

ė f = v f −1 − v f = 0.
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According to (34) in the proposition, the velocity of the
virtual reference vehicle satisfies vmax < v0(t) ≡ vdes and
the velocity of vehicle f satisfies both satisfy v f (t) ≤ vmax.
As a result, the equilibrium in (37) cannot be reached, and
thus, the dynamics of the vehicles in subset V f do not have
an equilibrium. Hence, Proposition 1 is proven. �

Proposition 1 shows that the platoon will break up in the
presence of a limitation on the velocity of one of the vehicles
in the platoon, which is lower than the desired velocity
imposed by the virtual reference vehicle. In Section IV-B,
a controller for the dynamics of the (leading) virtual reference
vehicle is introduced and combined with the consensus control
law of Section III, to improve the platoon cohesion in the
presence of a limit on the velocity of one of the vehicles.

B. Consensus-Based Velocity-Adaptive Platoon Control
As mentioned earlier, the aim of the design of a controller

for the virtual reference vehicle is to prevent the platoon from
breaking up, even when there is a vehicle in the platoon which
has a maximum velocity vmax < vdes. In other words, we aim
to guarantee that the closed-loop platoon dynamics in (21)
still have an exponentially stable equilibrium, associated with
a common velocity for all vehicles. The only exogenous
input to the closed-loop platoon dynamics in (21) is the
desired acceleration of the virtual reference vehicle u0(t), and
therefore, a controller is designed for this input. To arrive at a
stable equilibrium, the following control law is proposed for
the virtual reference vehicle:

u̇0 = − 1

h
u0 + kv

h
(vdes − v0) − kT

0

h
x1 (38)

where kv > 0 is the velocity control gain, kT
0 = (k p0 kd0 0)

are proportional and derivative error controller gains, and x1(t)
is the error state vector of vehicle i = 1

x1 = (e1 ė1 ë1)
T . (39)

One can observe that again a low-pass filter is used having a
pole at −(1/h), to have some relaxation effect, such that the
desired acceleration of the virtual reference vehicle changes
less rapidly. The purpose of the velocity control term in (38) is
to drive the velocity of the virtual reference vehicle v0(t) to the
desired platoon velocity vdes(t). The error control term in (38)
aims to drive the intervehicle distance error e1(t) to zero, since
it has a negative contribution to the desired acceleration of the
virtual reference vehicle. Given the control law for the virtual
reference vehicle in (38), the velocity of the virtual reference
vehicle v0(t) is not fixed anymore, i.e., v0(t) �≡ vdes. As a
result, the equilibrium in (37) may now be reachable.

As mentioned earlier, the platoon can be either in Mode 1,
i.e., having continuous dynamics for all vehicles in the platoon,

or in Mode 2, which means that vehicle f is in saturation and
all other vehicles have continuous dynamics. In the following,
conditions for exponential stability of the platoon dynamics for
the separate modes are derived. To this end, in (40), as shown
at the bottom of this page, a representation of the entire platoon
dynamics is given. This representation is based on the closed-
loop platoon dynamics in (21) and, in addition, the dynamics
of the virtual reference vehicle subjected to controller (38).
Here, matrix A and vector B are as defined in (11), matrix In ∈
R

n×n is the identity matrix, matrix I(−1),n is defined in (23),
matrix L̂ ∈ R

n×n is defined as L̂ := L + P , vector Bu ∈
R

n×1 is defined in (22), and vector p0 = (q0 v0 a0)
T contains

the states of the virtual reference vehicle dynamics. Again,
note that switching between the two modes is not taken into
account in this stability analysis. The practical relevance of
only considering the stability analysis in the individual modes
can be understood by realizing that the time scale at which
vehicle f goes in and out saturation is typically much slower
than the time scale of the closed-loop platoon dynamics. This
is realized by assuming that vdes changes at a large time scale.

1) Stability in Mode 1: In Theorem 2, conditions for expo-
nential stability of the closed-loop platoon dynamics in (40)
will be given.

Theorem 2: The closed-loop platoon dynamics (40), with
λi {L̂} ∈ R

+(positive real) ∀i ∈ V and τ > 0, have an
exponentially stable steady-state equilibrium (for v̇des = 0)
if and only if the controller gain vector k satisfies the condi-
tions in (27), and in addition, controller gain kv satisfies the
condition

kv <

(
1

τ
+ 1

h

)
. (41)

Proof: From the dynamical representation in (40), it can
directly be seen that X = 0 is an exponentially stable
equilibrium of the closed-loop error X-dynamics, since the
conditions of Theorem 1 are satisfied under the conditions of
Theorem 2. Next, from (40), it can be observed that the error
state vector X (t) acts as an input to the dynamics of the virtual
reference vehicle, i.e., the dynamics regarding the state vector
p0(t) and state u0(t). These dynamics are defined as follows:
⎛

⎜⎜⎝

q̇0(t)
v̇0(t)
ȧ0(t)
u̇0(t)

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 − 1

τ
1
τ

0 − kv
h 0 − 1

h

⎞

⎟⎟⎠

⎛

⎜⎜⎝

q0(t)
v0(t)
a0(t)
u0(t)

⎞

⎟⎟⎠

+

⎛
⎜⎜⎝

0
0
0

BT
u ⊗ −kT

0

⎞
⎟⎟⎠ X (t) +

⎛
⎜⎜⎝

0
0
0
kv
h

⎞
⎟⎟⎠ vdes. (42)

As mentioned earlier, it is known that X = 0 is an exponen-
tially stable equilibrium of the dynamics of the lumped error

⎛

⎜⎜⎝

Ẋ
U̇
ṗ0
u̇0

⎞

⎟⎟⎠ =

⎛

⎜⎜⎜⎝

In ⊗ A − L̂ ⊗ BkT O3n×n O3n×3 O3n×1

L̂ ⊗ kT

h
1
h (I(−1),n − In) On×3 Bu

O3×3n O3×n A B

BT
u ⊗ −kT

0 O1×n

(
0 −kv

h 0
)

− 1
h

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎝

X
U
p0
u0

⎞

⎟⎟⎠ +

⎛

⎜⎜⎝

O3n×1
On×1
O3×1

kv
h

⎞

⎟⎟⎠ vdes (40)
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state vector X (t). Exponential stability of the virtual reference
vehicle dynamics can thus be assessed by evaluating the poles
of the system matrix in (42). The steady-state solution of this
system is given by

lim
t→∞

⎛
⎜⎜⎝

q0(t)
v0(t)
a0(t)
u0(t)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

q̄0(t)
vdes

0
0

⎞
⎟⎟⎠ (43)

where q̄0(t) = ∫ t
0 vdesdt + q0(0) is the position of the

virtual reference vehicle in steady state. One eigenvalue of the
system matrix in (42) is equal to 0, which is associated with
the position state q0(t). Exponential stability of the steady-
state solution can be assessed by evaluating the poles of the
lower right submatrix of the system matrix in (42) corre-
sponding to the states v0(t), a0(t), and u0(t). Employing the
Routh–Hurwitz stability criterion [23] directly results in the
necessary and sufficient conditions for exponential stability of
the steady-state solution, as given in (41). What remains, is to
check the stability of the subsystem of (40) corresponding to
the state vector U(t), i.e., the subsystem

U̇(t) = 1

h
(I(−1),n − In)U(t)+ L̂ ⊗ kT

h
X (t)+ Buu0(t). (44)

It has already been shown that X (t) and u0(t) are zero in
steady state. Note that this is called a steady state and not an
equilibrium, since the state q0(t) is not constant in this steady-
state solution of the platoon dynamics. Furthermore, matrix
(1/h)(I(−1),n − In) is a Hurwitz matrix having one eigenvalue

λ1 = − 1

h
(45)

with algebraic multiplicity n. Thus, U = 0 is an exponentially
stable equilibrium of the U(t)-subsystem dynamics.

As a result, the platoon dynamics in (40) have an exponen-
tially stable steady-state solution

(X̄ T Ū T q̄0 v̄0 ā0 ū0)
T = (0T 0T q̄0(t) vdes 0 0)T (46)

when the necessary and sufficient conditions in (27) and (41)
are satisfied. �

Remark 6: Theorem 2 shows that no conditions on the
controller gain vector k0 are needed for stability. This directly
follows from the proof above; moreover, this can be under-
stood by observing that the closed-loop platoon dynamics (40)
is lower triangular when partitioning the X (t)-dynamics and
the other dynamics. The term with gain vector k0 only appears
in the first column of the system matrix in (40), and therefore,
there are no conditions on k0 for stability.

2) Stability in Mode 2: When the platoon is in Mode 2, it is
assumed that the velocity of vehicle f is constant, i.e., v f (t) =
vmax and u f = 0. With the velocity of vehicle f being
constant, vehicle f acts as a leading vehicle with constant
velocity for the vehicles behind. Conditions for exponential
stability of the dynamics of these vehicles in subset Vb are
given in Section IV-A, while being in Mode 2, the stability of
the dynamics of the vehicles in subset V f is independent of
the dynamics of the vehicles in subset Vb.

For the vehicles in the vehicle subset V f , the constant
velocity of vehicle f can be seen as a constant input to the
dynamics. To be able to write this constant velocity vmax as
a constant input to the system, first, a state transformation
must be applied to the dynamics of the vehicle subset V f of
platoon dynamics representation in (40), such that the vehicle
velocity becomes a state. This state transformation will result
in a new state representation of the platoon dynamics, in which
the vehicles’ state vector

χi = (ei vi ai )
T ∀i ∈ V f (47)

contains the intervehicle distance error ei (t), the vehicle
velocity vi (t), and acceleration ai(t). Similar to the state
vectors xi (t), the state vectors χi (t) are collected in a lumped
state vector

χT = (
χT

1 · · · χT
f

)
. (48)

Now, let vector ξ(t) be the state vector of the dynamics in (40)
excluding the dynamics of the vehicles in the vehicle subset Vb

ξ = ((
x T

1 · · · x T
f

)
(u1 · · · u f ) pT

0 u0
)T

. (49)

The platoon dynamics for vehicle subset V f can then be
expressed by

ξ̇ = Aξ + Bvdes (50)

where matrix A ∈ R
(4 f +4)× (4 f +4) and vector B ∈ R

(4 f +4)×1

can be derived from (40). Let a second state vector ζ(t) be
defined as

ζ = (
χT (u1 · · · u f ) pT

0 u0
)T

. (51)

Since the vehicle subset dynamics (50) represent a linear time-
invariant system, it is known that there exists a similarity
transformation matrix T , such that

ζ = T ξ. (52)

More details on this similarity transformation matrix T can be
found in [24]. Applying this similarity transformation to (50)
results in

ζ̇ = T AT −1ζ + T Bvdes. (53)

As a second step, the velocity v f (t), acceleration a f (t)(≡ 0),
and desired acceleration u f (t)(≡ 0) can be removed from
the state space of the platoon dynamics, since v f (t) = vmax
is assumed to be constant. As a result, the dynamics of the
intervehicle distance error of vehicle f is given by

ė f (t) = v f −1(t) − vmax. (54)

Consequently, the states v f (t), a f (t), and u f (t) can be
removed from the state space in (53). This results in the
following state vector of the platoon dynamics:

ρ = (
χT

1 · · · χT
f −1 e f U T

r pT
0 u0

)T (55)

where Ur (t) = (u1(t) · · · u f −1(t))T . Thus, the order of the
platoon dynamics (53) is reduced with three. The platoon
dynamics can now be represented by

ρ̇ = ARρ + BR,1vmax + BR,2vdes (56)

where system matrix AR , vector BR,1, and vector BR,2
have a complex structure which can be found in [24].
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Fig. 2. Maximum of the real part of the eigenvalues of matrix AR ,
i.e., η(AR) (for α = 5). Dark gray indicates that the maximum is
larger than zero, which results in unstable platoon dynamics. (a) f = 3.
(b) f = 10.

In (56), the maximum velocity vmax and the desired platoon
velocity vdes(t) are now both written as external inputs to the
platoon dynamics. The steady-state solution of (56) is given as

ρ̄ = (
1̄1×( f −1) ⊗ (ē vmax 0) ē O1×( f −1) q̄0(t) vmax 0 0

)T (57)

where vector 1̄1× ( f −1) ∈ R
1× ( f −1) only contains elements

being equal to one, vector O1× ( f −1) ∈ R
1× ( f −1) is a zero

vector, and ē = (kv/k p0)(vdes − vmax).
In contrast to the system matrix in (40), the structure of sys-

tem matrix AR does not allow for the derivation of analytical
conditions for exponential stability of the platoon dynamics.
Therefore, only numerical results are given on exponential
stability of the dynamics in (56). In Fig. 2, the maximum
of the real part of the eigenvalues of matrix AR is plotted
against control gain kv and gain k̄, where the controller gains
are chosen as

k1 = k̄, k2 = αk̄, k3 = 0, k p = k̄, kd = αk̄. (58)

This design for the controller gains leaves two degrees of
freedom, namely, kv and k, where kv is associated with the
platoon trying to reach its desired velocity and k mainly
influences the interaction between the vehicles. This two-
degree of freedom structure allows for providing insight on
the platoon stability using a 3-D plot, as shown in Fig. 2. The
time gap used here is defined as h = 0.6 s. The dark gray
area of the surface plot indicates the instability of the platoon
dynamics. One can clearly see the stability boundary defined
by the condition in (41), which is a condition related to the
dynamics of the virtual reference vehicle (42). This condition

for exponential stability does indeed not depend on the platoon
length, as can be seen by comparing the maximum real
eigenvalue plot for a platoon with f = 3 and f = 10, i.e., the
third or tenth vehicle is saturated in velocity. Nevertheless,
by comparing Fig. 2(a) and (b), one can observe that increasing
the index f of the vehicle being saturated in velocity does
decrease the size of the set of controller gains that result in
exponentially stable platoon dynamics. This effect is related to
the amount of vehicles situated ahead of the saturated vehicle,
which influences the system matrix AR in (56).

Remark 7: This means that if in practice you do not know
where in the platoon the saturated vehicle will be, a careful
design of the controller parameters is in order accounting
for the maximum number of vehicles ahead of a potentially
saturating vehicle.

However, from Fig. 2(b), it can be observed that for con-
troller gains: 3 < kv < 11.4 and 0.56 < k < 2, the platoon
dynamics is exponentially stable for a platoon up to ten
vehicles, with the minimum velocity constraint being present
on any arbitrary vehicle in the platoon.

In this paper, only a single vehicle velocity constraint
is assumed to be present in the platoon. In case there are
multiple vehicles in the platoon which are, possibly differently,
constrained in velocity, the velocity in the equilibrium of the
platoon dynamics will be equal to the maximum velocity of
the slowest constrained vehicle. Asymptotic stability of this
equilibrium depends on many conditions; for example, the
amount of vehicles that are in between these constrained vehi-
cles. However, multivehicle constraints are not investigated in
this paper.

V. SIMULATION RESULTS

In this section, first, numerical simulations are executed
to validate the main exponential stability result obtained in
Section III.

In these simulations, the vehicle parameters are set to
τ = 0.1 s and lv = 4.46 m, and the desired spacing-policy
parameters are set to r = 2 m and h = 1 s. As was mentioned
earlier, during the control law design, it was assumed that
the actuator delay φ is equal to zero. Also, until now, it is
assumed that the wireless communication between the vehicles
is not subjected to delay. However, the influence of both
of these delays cannot be ignored in practice. Therefore,
additional simulations are executed as a comparison, having
an actuator delay of φ = 0.2 s and a communication delay of
θ = 0.02 s, which are typical values for a practical setup as
will be described in the following. The signals that are received
through wireless communication, i.e., ui−1(t) and x j (t), are
subject to this communication delay θ . The communication
topology used in the distributed control term ūi (t) is defined
by the Laplacian matrix as defined in (32), and the pinning
matrix being defined as in (33), such that the positive real
assumption on the eigenvalues of L̂ in Theorem 1 is satisfied.
The controller gain vector is chosen as kT = (0.2 1.2 0),
which satisfies the conditions for exponential stability as given
in Theorem 1 while yielding a reasonable transient response in
terms of settling time and comfort. The control gain kdd = 0
is chosen, since feedback of the jerk error is in practice
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Fig. 3. Simulated time response of (a) velocity vi (t) and (b) acceleration ai (t)
(dark-light gray: i = 1, 2, 3), with zero delays and nonzero delays φ = 0.2 s
and θ = 0.02 s.

unfeasible due to high measurement noise. A simulation study
is executed using a prescribed smooth step velocity profile
for v0(t), based on which the input u0(t) has been calculated.
Initially, the platoon is at standstill in equilibrium. The height
of the first and second smooth step in velocity is 5.56 m/s
(20 km/h) and 8.33 m/s (30 km/h), respectively, such that
eventually the platoon is driving at 13.89 m/s (50 km/h). Fig. 3
shows the velocity and acceleration responses for a platoon of
three vehicles, i.e., n = 3. In addition to the simulation with
zero delay, the platoon response for the case with actuator
delay φ = 0.2 s and communication delay θ = 0.02 s is
presented. One can observe that the platoon dynamics are
exponentially stable and that all vehicles in the platoon follow
the velocity profile imposed by the virtual reference vehicle
for both scenarios. When comparing the platoon responses
with delays and without delays, one can observe that the
responses are comparable; however, the response with delays
is slightly slower. Moreover, a slight overshoot is observed in
the velocity response compared with the response with zero
delays (visible in zoomed-in view of Fig. 3); However, for
both scenarios, no overshoot with respect to the predecessor
is present in the velocity response. Furthermore, the maximum
amplitude of the acceleration response decreases for increasing
vehicle index i for both scenarios, as can be seen in Fig. 3(b).
That is, in upstream direction of the platoon, we see the
desired behavior in terms of input disturbance attenuation.
The intervehicle distance errors ei (t) also converge to zero,
although this is not explicitly shown here.

Fig. 4. Simulated time response of (a) velocity vi (t) and (b) acceleration ai (t)
(dark-light gray: i = 1, 2, · · · , 10), with zero delays and nonzero delays φ =
0.2 s and θ = 0.02 s.

Although string stability [4] is not extensively assessed
here, the influence of the platoon length n on the platoon
response is evaluated by applying the same “double smooth
step” velocity profile to a platoon of length n = 10 vehicles.
The only difference is an additional phase of 15 s in between
the two smooth steps, such that the second smooth step starts
when the transients due to the first step are approximately
vanished. In Fig. 4, the resulting platoon responses for a
platoon of length n = 10 vehicles are shown for zero and
nonzero delays φ and θ . Similar to the case of the platoon of
length n = 3, the intervehicle distance errors ei (t) converge
to zero for both scenarios. When comparing the simulations
with nonzero delays and zero delays, again the responses are
comparable. However, for nonzero delays, the responses are
again slower and a slight overshoot is observed compared with
the velocity responses with no delay. Now, in contrast to a
platoon of length n = 3, a minor overshoot with respect to
the predecessor occurs in the velocity response for some of the
vehicles in the platoon (visible in zoomed-in view of Fig. 4).
Namely, for the vehicles i ∈ {2, 3, 4, 5}, a slight overshoot
in the velocity response is observed with respect to their
preceding vehicles, see inset in Fig. 4(a), suggesting string
unstable behavior. However, for the acceleration response, still
a decreasing trend of the maximum value in the upstream
direction of the platoon is present, as is visible in Fig 4(b).

For larger platoon lengths, for example, platoon lengths
above n = 20 vehicles, the overshoot with respect to the
desired equilibrium velocity is more than 1% of the smooth
step height (approximately). Also, more oscillatory behavior
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occurs around the equilibrium velocity, and thus, increasing
the platoon length n leads to less damped transient behavior,
again suggesting string unstable behavior. As it can be seen
through the simulation results, due to the bidirectional nature
of the interaction between the vehicles in the platoon, changing
the platoon length n influences the dynamical behavior of
all vehicles in the platoon (although in accordance with
Theorem 1, closed-loop platoon stability will remain guar-
anteed for any platoon length). As a result, assessment of
performance properties such as disturbance attenuation in
relation to the platoon length n (related to string stability)
is not straightforward. For example, the method for finding
a minimal time headway h that guarantees string stability as
described in [28] does not apply for bidirectionally connected
systems. Alternatively, one could analyze string stability using
a passivity-based framework, such as presented in [30]. How-
ever, that result should be then extended to velocity-dependent
spacing policy. From this, it is clear that the analysis of string
stability is not straightforward, and therefore, an extensive
analysis of the influence of the platoon (or string) length on
string stability for such bidirectional network topologies is left
for future research.

Remark 8: Similarly, as for an increase in platoon length n,
for a decrease in the desired time gap h, the overshoot in the
velocity response shows a slightly increasing trend.

As mentioned in Section III, the decay rate of an initial
condition perturbation depends on the eigenvalues of the
Laplacian matrix L. To illustrate this effect, the transient
response for an initial condition perturbation for two different
topologies is compared. The first topology is the same as used
in the simulations shown earlier, i.e., a one vehicle look-back
topology defined by (32) and (33). The second topology is
defined by the Laplacian matrix

L2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 . . . 0

−1 2
. . .

...

0
. . .

. . .
. . . 0

...
. . . 2 −1

0 . . . 0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(59)

characterizing a bidirectional topology, and the following
pinning element:

p11 = 1, pii = 0 ∀i �= 1. (60)

Initially, all the vehicles in the platoon have a spac-
ing error ei (0) with respect to the steady-state zero
value. The transient response for both topologies is shown
in Fig. 5. It can be observed that for the first topology, i.e.,
Topology 1, the initial condition perturbation is damped out
after approximately 40 s. In contrast, for Topology 2, the initial
condition perturbation is not yet damped out after 100 s. This
can be explained by observing the second smallest eigenvalue
of the Laplacian matrices of both topologies, which are

Topology 1: λ2{L1} = 1

Topology 2: λ2{L2} = 0.098.

Fig. 5. Spacing error ei (t) response for two different communication topolo-
gies for the distributed feedback controller (dark-light gray: i = 1, 2, · · · , 10),
with zero delays. (a) Topology 1 (one vehicle look-back). (b) Topology 2
(one vehicle look-back and look-forward).

The significantly lower second smallest eigenvalue for
Topology 2 explains the smaller decay rate for this topol-
ogy in the simulation. Similar to the reasoning presented
in [25], when the platoon length n goes to infinity, for
Topology 2, the second smallest eigenvalue approaches zero.
However, the method proposed in this paper is meant for the
improvement of cohesion between vehicles in a platoon with
a relatively small finite platoon length. Nevertheless, the com-
munication topology defined by L and P must be designed
carefully. In the remainder of this paper, only Topology 1 is
considered.

Next, numerical simulation results are shown to demonstrate
the adaptability of the platoon to a velocity constrained vehicle
under the bidirectional interaction control structure. In this
simulation, the same structure is used for the distributed
controller, i.e., the communication topology is defined by (32)
and the pinning element by (33). Suppose the desired platoon
velocity vdes, imposed by the controller of the virtual reference
vehicle as given in (38), is 13.89 m/s (50 km/h). A simulation
of a platoon of three vehicles is described. Here, the focus
is on a three-vehicle platoon to be able to compare the result
with the experimental results described in Section VI. The
velocity of the third vehicle in the platoon is limited to a
maximum of vmax = 9.72 m/s (35 km/h). Fig. 6 shows
the platoon response for this platoon configuration. It can be
observed that the initial velocity of the vehicles in the platoon
is approximately 5 m/s (18 km/h). Since this is lower than
the desired velocity imposed by the virtual reference vehicle,
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Fig. 6. Simulated time response of the velocity for a platoon of three vehicles,
including a vehicle having limited velocity (black: desired velocity vdes and
dark-light gray: i = 1, 2, 3).

Fig. 7. Experimental three-passenger vehicle platoon.

the vehicles in the platoon start to increase their velocity.
After approximately 10 s, the third vehicle in the platoon has
reached its maximum velocity. It can be observed that the first
vehicle initially strives to increase its velocity to the desired
velocity vdes; however, at some point, the influence of the
look-back structure in the consensus-based control approach
is visible. As a result, the first and the second vehicle will
adapt their velocity according to the maximum velocity of this
limited third vehicle, such that the platoon does not break up.

Suppose that the platoon would have a length of ten
vehicles, such that there are seven vehicles driving behind the
constrained third vehicle. The velocity of those seven vehicles
would also converge to this maximum velocity vmax.

VI. EXPERIMENTAL RESULTS

To demonstrate the practical feasibility of the proposed
consensus-based control strategy, the distributed controller in
(18) and (20) is implemented in three longitudinally automated
passenger vehicles (Toyota Prii). Each vehicle is equipped with
on-board radar and camera sensors to measure the longitudi-
nal distance toward the preceding vehicle, and in addition,
IEEE 802.11p-based wireless intervehicle communication is
used. The longitudinal dynamics of the automated passenger
vehicles, which are shown in Fig. 7, have been identified
to comply with (11), with τ = 0.1 s and φ = 0.2 s. The
hardware implementation is identical to the one described
in [4]. Based on the earlier experiments, it is known that
the communication of the desired vehicle acceleration ui−1(t)
and consensus state vector(s) x j (t) to a vehicle i is subjected
to a communication delay of θ ≈ 0.02 s. Furthermore,
the platoon input u0(t) and all controller parameters are chosen

Fig. 8. Measured time response of (a) velocity vi (t) and (b) acceleration ai (t)
(dark-light gray: i = 1, 2, 3).

the same as in the above-described simulation study. The
measured responses of the executed test scenario are shown
in Fig. 8. When comparing the measured response of this
experimental test and the simulated response in Fig. 3, it can
be observed that, besides the presence of noise in case of
the experimental results, the responses are comparable. These
results confirm that the proposed consensus-based control
strategy indeed induces exponentially stable platoon dynamics.
For the measured velocity response, some overshoot is visible
after the first smooth step; however, this may be caused by
unmodeled disturbance effects. During the second smooth
step, one can clearly see the similarities in simulated and
experimental responses. When comparing the acceleration
responses, obviously the measured acceleration responses are
contaminated with noise; however, the shape and amplitude of
the simulated and measured acceleration are comparable.

Next, experimental results are shown to demonstrate the
practical feasibility of the proposed consensus-based control
strategy to improve a platoon’s cohesion, i.e., enabling platoon
adaptability to a velocity constrained vehicle. The initial
platoon conditions and designed parameters, such as controller
gains, desired platoon velocity, and platoon length, in this
experimented scenario are similar to those used in the platoon
adaptability simulation of which the response was shown
in Fig. 6. The results of the practical experiments are shown
in Fig. 9. It can be observed that the initial platoon velocity
is again below the desired velocity vdes. The vehicles in the
platoon start to increase their velocity until the third vehicle
reaches its maximum velocity vmax, and the vehicles adapt
their velocity accordingly. When comparing the simulated
response as shown in Fig. 6 and the experimentally obtained
response shown in Fig. 9, one can see that these responses are
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Fig. 9. Measured time response of the velocity for a platoon of three vehicles,
including a vehicle having limited velocity (black: desired velocity vdes and
dark-light gray: i = 1, 2, 3).

very similar. This shows, in addition to the practical feasibility
of the approach, that the modeling of the simulation-based
study is done in a representative way.

In summary, the presented experimental results, first,
demonstrate the feasibility of the proposed consensus-based
control strategy for vehicular platooning in practice. Improve-
ment of the platoon cohesion, in the sense of automatic
velocity adaptation to a velocity constrained vehicle, is verified
as well. Second, the experimental results show a good cor-
respondence with the model-based simulation results, thereby
motivating further work in the direction of model-based design
of consensus strategies for platooning systems.

VII. CONCLUSION

A novel distributed consensus control approach for longi-
tudinal vehicular platoon control has been proposed. Within
this approach, a realistic model is used for the vehicle’s
longitudinal dynamics and a velocity-dependent spacing policy
for consecutive vehicles is employed. With the proposed
controllers and subject to a bidirectional connectivity pattern,
the adaptability of platoon members to vehicles with velocity
constraints is formally proven. This adaptability of the platoon
members’ velocity is dealt with/without the use of a switching
controller or decision logic. Conditions for the exponential
platoon stability of the resulting closed-loop dynamics have
been formulated. The control approach is validated in practice
by applying it to a platoon of three passenger vehicles.
In this paper, the dynamical behavior for one communication
topology using the designed distributed control is evaluated.
Evaluation of the influence of the communication topology
on the dynamical behavior is a relevant topic, which will
be addressed in the future work. Moreover, further research
should also investigate string stability properties of platooning
systems with other topologies than unidirectional interaction
topologies.
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