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Bandwidth-on-Demand Motion Control
S.J.L.M. van Loon, B.G.B. Hunnekens, A.S. Simon, N. van de Wouw, and W.P.M.H. Heemels

Abstract— In this brief, we introduce a “bandwidth-on-
demand” variable-gain control (VGC) strategy that allows for a
varying bandwidth of the feedback controller. The proposed VGC
can achieve improved performance given time-varying, reference-
dependent performance requirements compared with linear time-
invariant (LTI) control suffering from design tradeoffs between
low-frequency tracking performance and sensitivity to higher-
frequency disturbances. The VGC consists of frequency-domain
loop-shaped linear filters and a variable-gain element, which
depends on reference information. We present easy-to-use con-
troller design guidelines and data-based frequency-domain condi-
tions to verify stability and convergence of the closed-loop system.
Moreover, the ability of the “bandwidth-on-demand” controller
to outperform LTI controllers is emphasized through experiments
on an industrial nanopositioning motion stage.

Index Terms— Control design tradeoffs, frequency-
domain, industrial application, motion control, variable-gain
control (VGC).

I. INTRODUCTION

THE increasing performance demands on speed, accuracy,
throughput, and soon, of today’s high-precision motion

systems require them to operate under diverse modes of
operation, each having their own specific set of performance
requirements. If this comes with the presence of multiple
disturbance sources, active in various frequency ranges, this
poses a challenging control design task. This is due to the
fact that the vast majority of controller designs techniques
generally rely on classical linear control theory in which
fundamental design tradeoffs are inherently present. Namely,
increasing the bandwidth of the controlled system improves
the low-frequency disturbance rejection properties, and, hence,
the tracking performance, but due to the waterbed effect, this
also results in a larger sensitivity to higher-frequency distur-
bances (i.e., around and/or above the bandwidth) [1]. This
fundamental tradeoff can already be challenging when just one
mode of operation is considered, but this is severely aggra-
vated when high performance is required in multiple modes
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of operation, because this generally means that the control
objectives vary over time, e.g., depend on the reference. As an
example, we like to comment on the conflicting control design
situation that arises for typical third/fourth-order reference
profiles used in many industrial positioning systems, such
as pick-and-place machinery, metrology stages, lithographic
systems, copiers, and so on. During standstill, high-frequency
disturbance sources are often dominant over low-frequency
disturbance sources, such that a low bandwidth (LBW) of the
controlled system is desired in order not to amplify these high-
frequency disturbances. On the other hand, when the reference
is changing low-frequency disturbances play a dominant role
in the closed-loop error, and, hence, a high bandwidth (HBW)
is preferred to achieve good tracking performance. Due to
fundamental limitations in linear time-invariant (LTI) feedback
control, the design of one LTI controller typically requires a
compromise between these conflicting design goals thereby
limiting the overall performance achievements of the con-
trolled system. This problem generically arises in motion
applications, but is also relevant for entirely different applica-
tions such as the control of dimmers for lighting applications
in which a tradeoff between the sensitivity to the time-varying
reference induced by a user turning the dimmer knob and the
sensitivity to high-frequency, e.g., net-induced, disturbances
also arises naturally.

In this brief, we propose a variable-gain control (VGC)
strategy that allows for a reference-dependent, and thus time-
varying, “bandwidth” of the feedback controller. By taking
online reference information into account, this feature allows
to “anticipate” on the “required bandwidth” for each mode
of operation. This allows, contrary to LTI control, to deal
with the conflicting control objectives induced by reference-
dependent dominance of multiple disturbance sources that are
acting in various frequency ranges. The proposed controller
consists of frequency-domain loop-shaped linear filters and a
variable-gain element, with its gain depending on reference
information and inducing the desired “bandwidth” of the
resulting controller. The proposed controller structure supports
the design of all the linear components of the VGC con-
figuration using well-known (frequency-domain) loop-shaping
techniques [2]. It therefore connects to the state-of-the-art
industrial motion control setting, in which easy-to-measure
frequency response functions (FRFs) play an important role in
the controller design, e.g., by using frequency-domain loop-
shaping techniques.

The concept of VGC has already been successfully
applied in numerous industrial applications to improve the
performance of (linear) motion systems [3]–[7]. In fact,
the use of VGC to target similar LTI control design
tradeoffs as considered in this brief, i.e., balancing tradeoffs
between low-frequency tracking properties and sensitivity to
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Fig. 1. Schematic representation of a classical LTI feedback controlled
system.

higher-frequency disturbances, has been considered
in [5] and [6]. The novelty in our approach lies in the
fact that we couple this fundamental tradeoff to time-varying
control objectives depending on online reference information,
which makes it possible to design a time-varying controller
with a “bandwidth-on-demand” characteristic.

Other techniques that can deal with the considered tradeoff
are, e.g., linear parameter-varying (LPV) control [8]–[10] and
switched controller design [11], [12]. The main drawback of
these approaches, compared with the control design proposed
in this brief, is that they require accurate parametric plant mod-
els and solving linear matrix inequalities for design [12], [13],
which both are less desirable from a practical point of view.

The main contributions of this brief are as follows. First,
a novel reference-dependent VGC strategy is introduced that
has a “bandwidth-on-demand” characteristic and is applicable
to generic (motion) control problems. Second, easy-to-use
design guidelines are presented as well as graphical data-based
conditions to verify stability and convergence of the variable-
gain controlled closed-loop system. Third, the entire design
process and its potential to outperform LTI controllers are
experimentally demonstrated on an industrial case study of
a nanopositioning motion stage.

A. Nomenclature
Let C and R denote the set of complex and real numbers,

respectively. The real part of a complex variable z is denoted
by Re(z). The Laplace transform of a signal x : R≥0 → Rn

is denoted by L{x} and s ∈ C denotes the Laplace variable.
Consider the LTI feedback control configuration in Fig. 1 with
single-input–single-output (SISO) LTI plant P(s), s ∈ C, and
an SISO LTI controller C(s). The bandwidth ωb is defined as
the frequency ω ∈ R where the magnitude of the open-loop
|P( jω)C( jω)| crosses 1 from above for the first time [14].

II. REFERENCE-DEPENDENT VGC
In this section, a reference-dependent VGC strategy with

a “bandwidth-on-demand” characteristic will be proposed,
which allows for a reference-dependent “bandwidth” of
the feedback controller, i.e., the “bandwidth” (and thereby the
controller) is varied online based on a relation between the
preferred bandwidth and the actual reference characteristics.

Remark 1: By definition, bandwidth is an LTI concept and,
hence, does not apply to our proposed time-varying control
strategy. Nevertheless, with some abuse of definition, we will
use the term “bandwidth” in this brief but use quotation marks
to avoid confusion with the LTI case.

The overall reference-dependent feedback control configu-
ration as proposed in this brief is shown in Fig. 2. It consists of
a standard LTI feedback controlled system, similar to Fig. 1
with C(s) = Clbw(s), augmented with an add-on VGC part.
Moreover, in Fig. 1, di and do denote unknown, bounded

Fig. 2. Schematic representation of the reference-dependent VGC system.

input/output disturbances, respectively, and e := r − y − η
denotes the tracking error between the reference signal r , the
output y of P(s), s ∈ C, and the measurement noise η. The
variable gain part of the total controller Cvg consists of an LTI
shaping filter F(s), and a time-varying variable gain α(v(t))
depending on a scheduling variable v(t), t ∈ R≥0, which is
related to characteristics of the reference signal. In this brief,
and in particular in Section IV, we will use the reference
velocity as scheduling variable, i.e., v(t) = ṙ(t), although
other options are imaginable as well. For instance, the variable
gain could depend on the reference position, i.e., v(t) = r(t),
on the acceleration, i.e., v(t) = r̈(t), or combinations and
so on. The process of extracting the relevant information,
e.g., v(t) = ṙ(t), from the reference signal r is indicated
by the dashed box in Fig. 2. Note that for the particular
choices mentioned, the reference information is not required
to be known in advance. The variable gain element is given
by a mapping α : R → [0, ᾱ], where ᾱ ∈ R>0 denotes
the maximum value. Let us first consider the situation where
α ∈ [0, ᾱ] is a fixed gain, and study the following cases (α = 0
and α ∈ (0, ᾱ]).

1) If α = 0, we have a linear control scheme with linear
controller C f

vg(s) = Clbw(s).
2) For a fixed α ∈ (0, ᾱ], we have a linear control scheme

with controller

C f
vg(s) = (1 + αF(s))Clbw(s). (1)

Remark 2: The reference-dependent VGC reduces only to
an LTI controller for fixed values of α. Therefore, we denote
it by C f

vg(s) only when α is fixed, and use Cvg with α(v(t))
varying over time otherwise.

This variable gain allows us to deal with the conflicting
design criteria as described in Section I, i.e., preferring a
controller that results in a LBW ωb over a controller that
results in a higher bandwidth ωb < ωb ≤ ωb, or vice versa,
depending on actual reference information. Here, ωb denotes
the highest bandwidth that we consider. In fact, by assigning
α(v(t)) = 0 to the situation where a LBW is preferable, the
user can loop-shape the controller Clbw(s) such that the best
possible performance is obtained for this particular situation.
On the other hand, the proposed structure of the reference-
dependent VGC Cvg allows that, by proper design of the
variable-gain element α : R → [0, ᾱ] and the linear filter F(s)
(see in Section III-B), the “bandwidth” ωb of the VGC C f

vg(s)
(for fixed values of α) will gradually increase (and can take
values in [ωb, ωb]) for increasing values of α ∈ [0, ᾱ].
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Fig. 3. Schematic representation of a Lur’e-type description of the reference-
dependent VGC system.

III. STABILITY CONDITIONS AND DESIGN GUIDELINES

In Section III-A, we present data-based graphical conditions
to verify stability and convergence ([15], [16]) of the closed-
loop system as in Fig. 2 for every mapping α : R → [0, ᾱ]
and any choice of scheduling variable v (even when v is dis-
continuous). Moreover, general design guidelines are provided
in Section III-B.

A. Stability and Convergence

The system, as in Fig. 2, belongs to the class of Lur’e-type
systems [17], as depicted schematically in Fig. 3. Such systems
consist of a linear dynamical part in feedback with a time-
varying, but memoryless, variable-gain element given (in this
case) by ϕ(v(t), e). Consider therefore Fig. 3, in which the
linear part is given by

L{e} = Geu(s)L{u} + Gew(s)L{w} (2)

in which the external inputs are denoted by
w = [r d�]� ∈ Rnw , and the vector d = [d�

i d�
o η]� ∈ Rnd

contains the external disturbances. In (2), the transfer function
between “input” u and “output” e (see Fig. 3) is given by

Geu(s) = F(s)
P(s)Clbw(s)

1 + P(s)Clbw(s)
︸ ︷︷ ︸

=:T (s)

(3)

in which T (s) represents the complementary sensitivity func-
tion, and the transfer function between the external inputs w
and e is given by Gew(s) = [

S(s) −Sp(s) −S(s) −S(s)
]

, in
which S(s) and Sp(s) represent the sensitivity and process
sensitivity function, respectively. The closed-loop dynamics
can be represented in state-space form as

ẋ = Ax + Bu + Bww (4a)

e = Cx + Dww, u = −ϕ(v, e) (4b)

with state x ∈ Rnx , (A, B, C) minimal such that Geu(s) =
C(s I − A)−1 B , and Gew(s) = C(s I − A)−1 Bw + Dw with
I an identity matrix of appropriate dimensions. Finally, the
variable-gain in Fig. 3 depends on the reference via

ϕ(v, e) = α(v)e, for all v ∈ R and e ∈ R. (5)

If (the origin of the) the system (4) and (5) is asymptotically
stable for a fixed value of α (in the absence of external
disturbances, i.e., w = 0), it is known (via linear system
theory) that it exhibits a unique, bounded, and globally asymp-
totically stable steady-state solution (irrespective of the initial
condition) for any bounded signals of external variables [18].

Clearly, such a property does not hold in general for nonlinear
systems such as the closed-loop system with the variable-
gain as studied here. However, here we establish conditions
such that these favorable properties can be guaranteed also for
systems with time-varying gains α(v(t)), independent of the
particular reference r (recall that v(t) = ṙ(t)). In the literature,
such a property is called convergence (see [15], [16]). Before
we provide conditions to ensure that our proposed VGC design
renders the closed-loop system (4), (5) convergent, we first
provide a formal definition of a convergent system. Therefore,
consider a general nonlinear system description of the form

ẋ = f (x, w, t) (6)

with state x ∈ R
nx and input w ∈ Rnw . The function

f (x, w, t) is locally Lipschitz in x , continuous in w, and
piecewise continuous in t . Moreover, the inputs w are assumed
to be piecewise continuous functions of time defined for all
times t ∈ R.

Definition 3 [15], [16]: System (6) is said to hold the
following.

1) convergent if there exists a solution x̄w(t) such that the
following hold.

a) x̄w(t) is defined and bounded for all t ∈ R.
b) x̄w(t) is globally asymptotically stable.

2) exponentially convergent if it is convergent and x̄w(t) is
globally exponentially stable.

In Definition 3, the solution x̄w(t) [which depends on the
input w(t)] denotes the steady-state solution of the system (6).
Exponential convergence implies first, exponential stability
for any reference and disturbance realization, and second,
the existence of a unique steady-state solution [16]. The
latter property allows for a unique steady-state performance
evaluation in the face of disturbances, and, as such, it also
results in an easier design and tuning of the VGC Cvg. The
following conditions are sufficient to establish that a system
of the form (4) and (5) is exponentially convergent.

Theorem 4: Consider system (4) with variable-gain ϕ(v, e)
given by (5), in which α : R → [0, ᾱ] for all t ∈ R for some
ᾱ ∈ R>0. Suppose that the following hold. (I)

1) The system matrix A is Hurwitz.
2) Geu( jω) as in (3) satisfies

1

ᾱ
+ Re( lim

ω→∞Geu( jω)) > 0 (7)

and
1

ᾱ
+ Re(Geu( jω)) > 0 for all ω ∈ R. (8)

Then, system (4) and (5) is exponentially convergent.
Proof: The proof basically follows the reasoning of the

proof in [5], [16], and [19], with the minor difference that
in our system ϕ(v, e) as in (5) depends on the scheduling
variable v(t), t ∈ R. We note that a key step of the
proof of [5], [16], and [19] consists of proving incremental
stability, i.e., showing that two solutions x1 : R → Rnx and
x2 : R → Rnx subject to the same scheduling variable v and
external inputs d , but with different initial conditions, converge
to each other. It is essential for this part of the proof to observe
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that α(v(t)), t ∈ R, is exactly the same for both solutions given
the external inputs (including r and thus v). �

Remark 5: Condition (I) of Theorem 4 will be satisfied by
proper controller design of Clbw(s). This is due to the fact
that if the open-loop P(s)Clbw(s) satisfies the Nyquist stability
criterion [14], the complementary sensitivity function T (s) has
all its poles located in the complex left half plane (LHP).
In addition, if the shaping filter F(s) is designed such that it
has no unstable poles, the transfer function Geu(s) as in (3) will
have all its poles located in the LHP as well. As a result, the
system matrix A of (4) will be a Hurwitz matrix. Moreover,
note that for many motion systems Geu( jω) → 0 for ω → ∞,
resulting in condition (7) being satisfied automatically.

B. Design and Tuning Guidelines

In this section, we present a four-step systematic design
approach of a reference-dependent VGC Cvg as in Fig. 2,
where we assume that a plant model P(s) is available,
e.g., identified based on measured frequency response data.

Step 1 (Study the Control Tradeoff): The first step consists of
studying the control design tradeoff in greater detail, which can
be done in a model-based environment as well as by means of
experiments. The following knowledge is required to perform
this study:

1) The minimum and maximum scheduling variable
under which the system needs to operate, i.e., deter-
mine v and v such that v(t) ∈ [v, v] for all t ∈ R≥0;

2) A performance measure J (v, ωb) depending on the
scheduling variable v and the bandwidth ωb, typi-
cally related to the application at hand (in this brief,
we assume that a low J corresponds to a good
performance);

3) Model-Based Study: A (rough) estimation of the types,
and corresponding frequency ranges, of the disturbances
acting on the system, i.e., di , do, and η in Fig. 1.

Consider the model structure as in Fig. 1 in which (in
the case of a model-based study) we use the estimated plant
model P(s). First, we define a grid of constant scheduling
variables vc,i , i = 1, 2, . . . , n, satisfying vc,i ∈ [v, v] with
v = vc,1 < vc,2 < · · · < vc,n−1 < vc,n = v . Moreover,
we design m LTI controllers C j (s) (see Fig. 1) with each a
different bandwidth ωb, j , j = 1, 2, . . . , m. Then, for each of
these constant scheduling variables vc,i , i = 1, 2, . . . , n, we
evaluate the performance for each of these LTI controllers
C j (s), j = 1, 2, . . . , m. This allows us to (approximately)
characterize the performance as a function of the bandwidth
for each vc,i , i = 1, 2, . . . , n. This results in “performance”
curves as schematically shown in Fig. 4. Fig. 4 represents
the control design tradeoff, because each particular value vc,i

for the scheduling variable will typically show optimal perfor-
mance (minima in Fig. 4, indicated by the black dots) for a
different bandwidth ωb. We denote this “optimal bandwidth”
by ωb,opt,i for the corresponding scheduling variable vc,i , and
is given by

ωb,opt,i = arg min
ωb

J (vc,i , ωb), for i = 1, 2, . . . , n. (9)

Step 2 (Design of a Low-Bandwidth and High-Bandwidth
Controller Clbw(s) and Chbw(s), Respectively): Based on

Fig. 4. Schematic representation of a control design tradeoff for a range
of constant scheduling variables vc,i ∈ [v, v], i = 1, 2 . . . , n, with vc,1 = v
and vc,n = v .

Step 1, we select the desired LBW ωb as ωb =
mini=1,2,...,n ωb,opt,i , and take Clbw(s) as the corresponding
LTI controller. In Step 4, we will ensure that the VGC C f

vg(s)
represents Clbw(s) if α(v) = 0. The LTI controller Chbw(s)
is designed1 such that the highest achievable bandwidth ωb

is obtained under sufficient robustness margins,2 such as gain
margin, modulus margin, phase margin, and so on [14]. This
HBW controller Chbw(s) is the “target” controller for the high-
gain situation, i.e., when α(v) = ᾱ, we aim to approximate
Chbw(s) with our VGC C f

vg(s). How to achieve this will be
discussed in the next step.

Step 3 (Design the Linear Filter F(s) and Determine the
Maximum Allowable Gain ᾱ): In this step, we design F(s)
and ᾱ with the aim to vary the “bandwidth” ωb of the
resulting controller Cvg online in the set [ωb, ωb], depending
on the scheduling variables v. The control architecture of the
proposed VGC as in Fig. 2 results in C f

vg(s) = Clbw(s) for the
limit case α = 0, as already mentioned. For the other limit
case, α = ᾱ, we aim to design F(s), and determine ᾱ, such
that

(1 + ᾱF(s))Clbw(s) = Chbw(s). (10)

When satisfying (10) exactly, we obtain values of ᾱ and F(s)
(which is normalized to gain 1 when jω = 0) corresponding
to an “optimal high-gain situation,” satisfying

ᾱoptFopt(s) = Chbw(s)

Clbw(s)
− 1. (11)

From (11) and the normalization Fopt( jω) = 1 when jω = 0,
ᾱopt and Fopt(s) can be determined uniquely. However, this
optimal choice might not always be practically feasible due to
the following reasons.

1) This approach does not guarantee a priori the closed-
loop stability of (4) and (5), for the obtained ᾱopt
and Fopt(s);

2) This approach of fixing ᾱ and F(s) leaves the designer
with no possibilities to influence the shape of Geu( jω)
as in (3), e.g., through the manual shaping of F(s),

1Note that both Clbw(s) and Chbw(s) can be designed using well-known
frequency-domain loop-shaping techniques [2].

2In this respect, note that (in general) ωb �= maxi=1,2,...,n ωb,opt,i .
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in order to satisfy the circle criterion condition (8)
leading to stability and convergence guarantees [5].

3) For a large difference between ωb and ωb, this approach
might yield a high gain ᾱopt. Consequently, for such high
values of ᾱopt, we have that (1/(ᾱopt)) → 0. Therefore,
in such cases, the FRF Geu( jω) as in (3), with ᾱ = ᾱopt
and F(s) = Fopt(s), is required to be (almost) positive
real in order to satisfy the conditions of Theorem 4,
which in many (motion control) cases is a too strict
requirement.

Therefore, it is often better to design the filter F(s) manu-
ally by loop-shaping techniques, in which Fopt(s) resulting
from (11) can be used as a target design. In this respect,
if (10) is not exactly satisfied for the resulting F(s) and ᾱ, the
target bandwidth ωb can most probably not exactly be attained
anymore. Therefore, from this point onward, the bandwidth of
the resulting controller C f

vg(s) = (1+ᾱF(s))Clbw(s) is denoted
by ωnew

b , for which it typically holds that ωnew
b ≤ ωb. How to

apply this step will be demonstrated in Section IV-B.
Step 4 (Design the “Reference-to-Gain” Mapping): The last

step in the design of a reference-dependent VGC Cvg is to
design the mapping α : [v, v] → [0, ᾱ]. We start by establish-
ing a relation between the “bandwidth” ωb of Cvg as a function
of α ∈ [0, ᾱ]. Note that, for fixed values of α, the controller
C f

vg(s) as in (1) (in which the shaping filter F(s) and maximal
gain ᾱ follow from Step 3) is linear and that the resulting
bandwidth can be straightforwardly assessed. In particular, for
each αi ∈ [0, ᾱ], i = 1, 2, . . . , k, on a discrete grid, we assess
the corresponding bandwidth ωb,i , i = 1, 2, . . . , k. By inter-
polation, the relation ωb = Hbw(α) can be approximately
determined for all α ∈ [0, ᾱ]. Here, we assume for simplicity
that the map Hbw : [0, ᾱ] → [ωb, ω

new
b ] is strictly monotone

(although one can also deal with other situations). Then, the
desired “reference-to-gain” mapping α : [v, v] → [0, ᾱ] is
given by α(v) = arg min0≤α≤ᾱ J (v, Hbw(α)). We want to
emphasize that this step will never jeopardize stability and
convergence of the system (4) and (5) as long as α(v(t)) ∈
[0, ᾱ], t ∈ R≥0 due to the stability and convergence guarantees
obtained in Step 3.

Remark 6: The proposed “bandwidth-on-demand” con-
troller offers more design freedom compared with a “standard”
LTI controller to accommodate for reference-dependent per-
formance requirements in the presence of multiple disturbance
sources. Although its design process is slightly more involved,
only well-known frequency-domain loop-shaping techniques
are needed to design a “bandwidth-on-demand” controller
following the four steps discussed in this section.

IV. CASE STUDY ON AN INDUSTRIAL NANOPOSITIONING

MOTION STAGE

The nanopositioning motion stage considered in this brief
is an experimental setup of a high-precision motion stage that
requires movements with velocities ranging from standstill, to
nanometers per second, to even millimeters per second, all
with (sub)nanometer resolution. The nanopositioning motion
stage has several key modes of operation, namely: 1) standstill;
2) constant velocities in a broad range; and 3) fast (user-
operated) point-to-point movements. Due to the presence

of multiple disturbance sources in various frequency ranges
(depending also on the mode of operation), this results in
conflicting control design tradeoffs. As such, this nanoposi-
tioning motion stage forms a relevant case study to validate the
practical feasibility of the proposed “bandwidth-on-demand”
VGC strategy. An overview on the control for nanopositioning
systems can be found in [20]. Here, we present the experimen-
tal study as a representative motion control problem for the
new bandwidth-on-demand control methodology as presented
in this brief. Note that this novel control design methodology
is relevant for many other control applications as already
discussed in Section I. The sole objective of the particular
experimental nanopositioning study is to illustrate the design
procedure, which can also be applied to many other problems.
As such, a comparison with alternative control solutions for
the nanopositioning stage is beyond the scope of this brief.
As such, we refrain from a comparison with alternative control
strategies for the particular application of nanopositioning.

Remark 7: To protect the interests of the manufacturer,
we cannot provide concrete information about the reference
velocities (and thus scheduling variables v) and the disturbance
modeling. For the same reason, all figures in this section have
either been scaled or use blank axes in terms of units.

A. Nanopositioning Motion Stage

The nanopositioning motion stage is driven by piezo-
electric actuators, positioned on a vibration isolation table,
and equipped with a first-order 100-Hz low-pass actuation
filter Pact(s) in the hardware to filter off high-frequency
actuator noise, given by the transfer function Pact(s) =
1/(1/(2π100)s + 1). The plant Pn( jω) is identified based
on measured FRFs with and without the additional low-
pass filter, i.e., Pn( jω)Pact( jω) and Pn( jω), respectively.
This revealed, first, that the plant Pn( jω) behaves as
a rigid-body system in the frequency range of interest
(i.e., Pn(s) ≈ 1/(ms2) with mass m), and second, the presence
of a significant, and thus bandwidth-limiting, delay.

The experimental nanopositioning motion setup operates in
a laboratory environment instead of in its dedicated appli-
cation. Therefore, additional disturbances are emulated to
recover the real situation in the application as much as
possible. Based on measurement data, an output disturbance
do,add = H(s)ε has been identified, where the magnitude of
H( jω) is depicted in Fig. 5 and ε is normally distributed white
noise with zero mean and variance λ2

ε = (2 · 10−9)2. As a
result, a controlled experiment is created that allows us to
analyze the influence of the bandwidth ωb on the performance
measure as realistically as possible.

B. Design of a Reference-Dependent VGC

To illustrate the intuitive design of a reference-dependent
VGC, we follow the design process using the guidelines
presented in Section III-B, in which, from this point onward,
the scheduling variable is taken as the reference velocity,
i.e., v(t) = ṙ(t), t ∈ R≥0.

Step 1 in the Design: In this step, we study the
control design tradeoff in a model-based environment.
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Fig. 5. Bode magnitude plot of the disturbance filter H( jω).

Consider therefore Fig. 1, in which the plant is given by
P(s) = Pn(s)Pact(s), with Pn(s) a 2nd-order LTI model
identified on measured FRF data and Pact(s).

Next, the following information is employed: The minimum
reference velocity is v = 0. The following disturbances are act-
ing on the system: Sensor noise η, modeled as white noise with
zero mean and variance λ2

η = (10−9)2; actuator noise di,act

modeled as white noise with zero mean and variance λ2
di,act

=
(
√

10−19)2; periodic impact disturbances di,p that depend on
the reference velocity v, which are induced by piezoelectric
actuators [21]; environmental disturbances do,add = H(s)ε,
where H(s) is depicted in Fig. 5 and ε is normally distributed
white noise with zero mean and variance λ2

ε = (2 · 10−9)2.
Furthermore, the performance measure is taken as the mean
square of the error, which is given for an N × 1 vector e by
eMS := (1/N)

∑N
i=1 |ei |2.

Next, a range of constant velocities vc,i , i = 1, 2, . . . , 11,
are created in the set vc,i ∈ [0, v], and 21 LTI controllers
C j (s) are designed each having a different bandwidth, j =
1, 2, . . . , 21. These controllers all consist of the same types of
linear filters, namely a lead filter, integrator, and second-order
low-pass filter, and are given by

C j (s) = kp, j

{

s + 2π f I, j

s

}

⎧

⎨

⎩

1
2π fle1, j

s + 1

1
2π fle2, j

s + 1

⎫

⎬

⎭

×
⎧

⎨

⎩

1
1

(2π fl, j )2 s2 + 1
2π fl, j

s + 1

⎫

⎬

⎭

(12)

where the parameters depend on the bandwidth ωb, j , are given
by fle1, j = (1/4)ωb, j , fle2, j = 4ωb, j , f I, j = (1/9)ωb, j and
fl, j = 6ωb, j , with j = 1, 2, . . . , 21. By shaping the gains kp, j

to the appropriate value, 21 controllers with a different band-
width ωb, j ∈ [5, 25] Hz, j = 1, 2, . . . , 21 have been designed.
Then, following the procedure of Step 1, the performance as
a function of the bandwidth for each vc,i , i = 1, 2, . . . , 11, is
characterized and depicted in Fig. 6. This shows us that indeed
the “optimal bandwidth” ωb,opt,i increases for increasing ref-
erence velocities vc,i , i = 1, 2, . . . , 11.

Step 2 in the Design: The LBW is chosen as ωb =
5 Hz. The controller design of Clbw(s) is based on the plant
Pn(s)Pact(s), thereby explicitly taking the hardware actuation
filter Pact(s) into account. The hardware actuation filter has a
cutoff frequency of 100 Hz, which does not pose limitations
on achieving a bandwidth of ωb = 5 Hz. However, Pact(s)
does poses severe limitations on the maximum achievable
bandwidth. Therefore, Pact(s) was removed from the setup

Fig. 6. Mean square of the closed-loop error eMS, at various constant
reference velocities vc,i as a function of the bandwidth ωb. The black dots
denote the minima of each curve, and thus the optimal bandwidth ωb,opt,i for
each particular reference velocity, i = 1, 2, . . . , 11.

and thus not included in the controller design of Chbw(s),
i.e., this is based on the plant Pn(s) only. In order to make
a fair comparison with the LBW situation, an additional first-
order low-pass filter Pact,hbw(s) is digitally included in the
design of Chbw(s). This filter Pact,hbw(s) is designed with
cutoff frequency 20ωb Hz, i.e., with the same ratio compared
with the LBW (5 Hz) situation (20ωb = 100 Hz). This
finally results in an HBW controller Chbw(s) that achieves a
bandwidth of ωb = 20 Hz.

Step 3 in the Design: In this step, we will first determine the
shaping filter Fopt(s) and maximal gain ᾱopt for the “optimal
high-gain situation.” Because the actuation filter Pact(s) will
be present in the hardware during the experiments with the
reference-dependent VGC Cvg, we take this explicitly into
account in the design of the shaping filter Fopt(s) (and later
in F(s)) in order to make a fair comparison with Chbw(s)
for high values of α. By doing so, the optimal gain ᾱopt and
optimal shaping filter Fopt(s) follow from:

ᾱoptFopt(s) = Pact,hbw(s)Chbw(s)

Pact(s)Clbw(s)
− 1. (13)

This results in a gain ᾱopt = 129 and a shaping filter
Fopt(s) (which is normalized to gain 1 when jω = 0) as
depicted in Fig. 7. It was already argued in Section III-B
that this approach might result in a (too) high gain ᾱopt such
that satisfying the circle criterion condition of Theorem 4
is hard. Indeed, as indicated in Fig. 8, the solid green line
intersects the green dashed line and, hence, we do not satisfy
Re(Fopt( jω)T ( jω)) > −(1/129) for all ω ∈ R, for T ( jω) as
in (3) with P( jω) = Pn( jω)Pact( jω). Nevertheless, Fopt(s)
forms a good starting point for the manual design of F(s).
Closer inspection of Fig. 7 shows that the filter F(s) should
have a −1 slope in the frequency range ∼ [0.7, 6] Hz,
which basically represents the shift of the integrator to higher
frequencies, which is realized by designing an appropriate lag
filter. In the frequency range ∼ [30, 105] Hz, we observe a +3
slope in Fig. 7, which is realized by adding three lead filters.
These create phase lead around the HBW by “canceling” the
second-order low-pass filter in Clbw(s) and the first-order low-
pass actuation filter Pact(s) around those frequencies. Finally,
in order to satisfy the circle criterion condition (8), a notch
filter is added to fine-tune the shape of Re(Geu( jω)). This can
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Fig. 7. Bode plot of the shaping filters F(s) and Fopt(s).

Fig. 8. Nyquist diagram for Geu( jω) as in (3) for three cases. No shaping
filter F(s) (blue solid curve), with shaping filter F(s) as in (14) (red solid
curve), and with the optimal shaping filter Fopt(s) (green solid curve).

be done graphically by means of a Nyquist diagram of Geu( jω)
as in (3), with P( jω) = Pn( jω)Pact( jω). This tuning/loop-
shaping procedure results in the shaping filter F(s) as depicted
by the dashed line in Fig. 7, and which is given by the
following transfer function:

F(s) =
{

1
2π26 s + 1

1
2π105 s + 1

}{

1
2π30 s + 1

1
2π110 s + 1

}2 {

1
2π6 s + 1

1
2π0.5 s + 1

}

×
{ 1

(2π26.5)2 s2 + 2·0.85
2π26.5 s + 1

1
(2π80)2 s2 + 2·1.3

2π80 s + 1

}

. (14)

Based on the circle criterion condition (8), the maximal gain
is selected as ᾱ = 29, thereby allowing for some robustness
margin (see Fig. 8) which shows that the solid red line
stays on the right of the red dashed line with some margin.
Once the circle criterion condition (8) has been verified,
i.e., Re(Geu( jω)) > −(1/29) for all ω ∈ R, and real-
izing that Geu( jω) → 0 for ω → ∞, condition (II) of
Theorem 4 is satisfied. In order to verify condition (I), note
that the LBW controller Clbw(s) is designed such that the
open-loop Pn(s)Pact(s)Clbw(s) satisfies the Nyquist stability
criterion [14]. Since the shaping filter F(s) as in (14) has
no unstable poles, we also satisfy condition (I) of Theorem 4
(see Remark 5). Hence, we can conclude that all conditions
of Theorem 4 are being satisfied, which guarantees that the
designed reference-dependent VGC system is exponentially
convergent, independent of how the gain α(v(t)) ∈ [0, 29],
t ∈ R≥0, varies over time.

Step 4 in the Design: The mapping α : [0, v] → [0, 29] is
obtained by following the three design parts listed in Step 4.

Fig. 9. Designed “reference-to-gain” mapping.

Fig. 10. Performance measure of the measured steady-state error e of
the nanomotion stage during 20 constant velocities vc in the range [0, v]
(represented in % of v).

The “reference-to-gain” mapping α : [0, v] → [0, 29] that is
used during the experiments is depicted in Fig. 9.

C. Experimental Results

Let us start with presenting the results of the performance
analysis of the measured steady-state error e, depicted in
Fig. 10. The analysis is performed for constant reference
velocities v(t) = vc, for all t ∈ R≥0, using the two linear
controllers Clbw(s) and Chbw(s) and the reference-dependent
VGC C f

vg(s) as in (1) for different fixed values of α ∈ [0, 29].
Note that for each velocity vc, there exists a corresponding
α ∈ [0, 29] (see Fig. 9). Let us first focus on low velocities
vc in the range [0, 0.1 · v], see the zoom plot in Fig. 10.
Clearly, in this range, both the LBW controller Clbw(s) as
well as the reference-dependent VGC C f

vg(s) perform better
than the HBW controller Chbw(s) as their mean-square error
eMS is significantly lower (at vc = 0) or, at worst, (approx-
imately) equal (at vc = 0.1 · v). At standstill, we achieve
(approximately) the same performance with the VGC C f

vg(s)
(with α = 0) as for Clbw(s), while compared with Chbw(s), the
performance is increased by ∼ 66%. This is due to the fact
that for this case, the disturbances do,add, di,a and η are being
dominant, which are more amplified in the HBW situation. The
increase in performance compared with the HBW situation is
also clearly visible in the time-domain (see Fig. 11), which
shows the measured steady-state error at standstill.

Fig. 10 also shows that the higher the reference velocity vc,
the more beneficial it is to have a higher bandwidth controller.
This is due to the fact that for increasing reference velocities,
the periodic disturbance dp due to the piezoelectric actuator
becomes more influential and eventually dominant over do,add,
di,a , and η. The effect of this disturbance is suppressed by
increasing the gain α, and as a result, the “bandwidth” ωb of
the VGC Cvg. With this in mind, let us now focus in Fig. 10 on
the velocities vc in the range [0.1·v, v]. As expected, the LBW
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Fig. 11. Measured steady-state error e of the nanomotion stage during
standstill, i.e., velocity vc = 0.

Fig. 12. Measured steady-state error e of the nanomotion stage during a
constant velocity vc = v .

Fig. 13. Time-domain performance analysis, moving from v(t) = 0 to
v(t) = v with a constant acceleration, and back to v(t) = 0.

controller Clbw(s) performs worst, since its bandwidth of 5 Hz
is too low to suppress the periodic impact disturbances dp.
The HBW controller Chbw(s) and our reference-dependent
VGC C f

vg(s) show an approximately similar performance,
which is superior compared with that of Clbw(s).

Fig. 12 shows the measured steady-state error at a high
constant velocity of v for which the low-frequency periodic
disturbance dp is dominant. The performance of the HBW
controller Chbw(s) and the VGC C f

vg(s) are comparable, as
was already indicated in Fig. 10. It is clear that the periodic
impact disturbances dp are much better suppressed by Chbw(s)
and C f

vg(s) than using the LBW controller Clbw(s).
The previous results were obtained for constant refer-

ence velocities, resulting in fixed values of α and, hence,
a comparison between Clbw(s) and Chbw(s) with a linear

controller C f
vg(s). However, it is (also) important to com-

pare the behavior for time-varying velocity profiles, which
is depicted in Fig. 13. Fig. 13 shows the time-domain error
behavior for a constant acceleration, starting from v(t) = 0
until we move at v(t) = v for approximately 5 s, and then
moving back to v(t) = 0. Indeed, as indicated in Fig. 13, the
performance using Cvg for low velocities is comparable with
using Clbw(s), while for high velocities, the performance of
Cvg is similar to Chbw(s). This demonstrates that the proposed
reference-dependent VGC Cvg is able to deal with reference-
dependent conflicting control design tradeoffs. In fact, the
experiments show that the VGC Cvg can achieve “the best of
both worlds,” referring to preferring a controller that results
in an LBW ωb over a controller that results in an HBW ωb,
or vice versa, depending on the actual reference information.

V. CONCLUSION

In this brief, we proposed a novel reference-dependent
VGC strategy that allows for a varying “bandwidth” of the
feedback controller. A complete design framework for such
reference-dependent VGCs has been presented, in which most
of the design steps involve the usage of state-of-practice
frequency-domain loop-shaping tools. This design feature,
together with graphical data-based conditions to verify stabil-
ity and convergence of the VGC closed-loop system, makes
the analysis and design intuitive for control engineers and,
as such, connects to the industrial control engineering prac-
tice. The design framework has been illustrated based on an
industrial nanopositioning motion stage with challenging and
conflicting linear control goals. It has been experimentally
demonstrated that the proposed reference-dependent VGC
indeed has the ability to outperform (fixed bandwidth) LTI
controllers.
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