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Adaptive Control for Mechanical Ventilation for
Improved Pressure Support

Joey Reinders , Bram Hunnekens , Frank Heck, Tom Oomen , Senior Member, IEEE,

and Nathan van de Wouw , Senior Member, IEEE

Abstract— Respiratory modules are medical devices used to
assist patients to breathe. The aim of this article is to develop
a control method that achieves exact tracking of a time-varying
target pressure, for unknown patient-hose-leak parameters and
in the presence of patient breathing effort. This is achieved
by an online estimation of the hose characteristics that enables
compensation for the pressure drop over the hose. Stability of the
closed-loop system is proven, and the performance improvement
compared to the existing control strategies is demonstrated by
simulation and experimental case studies.

Index Terms— Adaptive control, mechanical ventilation, med-
ical applications, respiratory systems, tracking performance.

I. INTRODUCTION

MECHANICAL ventilation is commonly used in
intensive care units (ICUs) to assist patients who need

support to breathe sufficiently. The main goals of mechanical
ventilation are to ensure oxygenation and carbon dioxide elim-
ination [1]. A large number of patients require mechanical ven-
tilation. According to [2], 19 186 people required mechanical
ventilation in ON, Canada, in 2000. Therefore, improvements
of ventilation benefit a large population worldwide.

The goal of mechanical ventilation is achieved using a
mechatronic system, the mechanical ventilator. A schematic
overview of a mechanical ventilator, with a single-hose setup
and a patient, is shown in Fig. 1. In this article, blower-driven
pressure-controlled ventilation (PCV) of sedated patients and
continuous positive airway pressure (CPAP) ventilation of
spontaneously breathing patients is considered.
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Fig. 1. Schematic of the blower-hose-patient system of the considered
positive pressure ventilation system.

Fig. 2. Airway pressure and patient flow during one breathing cycle of PCV
(paw: airway pressure and Qpat: flow into the patient’s lungs, see also Fig. 5).

In PCV, the blower compresses ambient air to achieve the
desired pressure profile (Fig. 2) near the patient’s mouth. The
blower is increasing the airway pressure during inspiration,
to achieve the inspiratory positive airway pressure (IPAP),
filling the patient’s lungs with air. After a preset amount of
time has passed, the blower decreases the pressure to the
positive end-expiratory pressure (PEEP) such that the lungs
are emptied.

In CPAP, the goal is to achieve a continuous airway
pressure, while the patient breaths through this profile. A sub-
stantial amount of research has been conducted to obtain the
optimal ventilator settings and modes [3]–[5], which focuses
on the design of the pressure set point.

Accurate tracking of the target pressure is important to
achieve sufficient support for the patient, especially in cases
of large flows, as a result of large lungs and/or unintentional
leaks, e.g., in noninvasive ventilation. Furthermore, accurate
pressure tracking results in better patient-ventilator synchrony;
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in [6] and [7], it is argued that better tracking prevents false
triggers, improving patient-ventilator synchrony. Asynchrony
between patient and machine is even associated with high
mortality [8]. Finally, for more complex ventilation modes,
allowing for patient effort, exact tracking is essential to deliver
the required level of assistance more accurately.

Traditionally, these ventilators are controlled using linear
time-invariant feedback controllers. This results in suboptimal
tracking performance in terms of overshoot and settling time,
as shown in Fig. 2. The main cause for such suboptimal
performance is the large variety of plants for which the linear
feedback controller should be robust. Indeed, the controller
should ensure robust performance for a broad spectrum of
patients, from infants to adults, varying disposable hose-filter
systems, unknown leakage, and possibly unknown patient
activity.

Different control strategies have been investigated to
improve the mechanical ventilators. In [9], an overview of
modeling and control techniques for mechanical ventilation is
presented. Variable-gain control is proposed in [6] and [7],
which aims to achieve pressure tracking while reducing the
overshoot in patient flow, preventing false triggering. This arti-
cle shows a clear reduction in patient flow overshoot. However,
still, some overshoot is present and the patient flow is used in
the control strategy, which is typically not available. In [10],
an adaptive feedback control approach is applied, which is
estimating the patient model and using this to adaptively
tune a controller that achieves a desired closed-loop transfer
function. In theory this works well, however, in practice it is
complex to obtain an accurate patient model. Furthermore,
in [10], the hose resistance is neglected, while for large
air flows, induced by large lungs and/or leakage, the hose-
induced pressure drop cannot be neglected. Also, funnel-based
control [11] is applied to mechanical ventilation; however,
the obtained gain in tracking performance is limited. In [12],
a model-based control approach is used, and in [13], a model
predictive control approach is applied. These methods require
accurate patient parameters that are typically not available in
practice. Furthermore, iterative learning control [14] is applied
to mechanical ventilation. This article shows a significant
improvement in tracking performance. A drawback of this
approach is that it is limited to repeated sequences of the set
point and initial conditions. Therefore, the performance of the
iterative learning control framework proposed in [14] degrades
when patients are breathing spontaneously.

Although previous research shows promising improvements
in tracking performance, it does not achieve sufficiently accu-
rate tracking of the target pressure, for the required range
of patients, patient effort, hose-filter systems, and set points.
To achieve this, this article presents an adaptive control
strategy that compensates for the pressure drop over the hose.
A hose resistance estimate and the measured output flow
are used to compensate for the pressure drop over the hose.
Manual calibration of the hose-filter system to obtain the
hose resistance is an undesired option because of the already
increasing demand of health care and the lack of trained
personnel (see [2], [15]). Furthermore, the hose resistance
might change during ventilation, due to clogging of the filter.

Therefore, an online recursive least squares (RLS) estimator is
developed to estimate the hose resistance automatically during
ventilation.

In this article, an adaptive control scheme is considered
instead of a robust scheme. First, the wide variety of patients
and hose types leads to a situation where it is challenging
to achieve adequate performance for every patient using one
single robustly tuned linear feedback controller. Second, man-
ual calibrations are undesired because of the lack of time in
a hospital setting; such calibration can be omitted by using
an adaptive controller. Third, since the system parameters
may vary over time, it is beneficial that an adaptive scheme
responds to such variations, thereby guaranteeing high perfor-
mance under such changing circumstances.

The main difference with the adaptive control strategy
in [10] is that, in the proposed control strategy, only the
hose-resistance model is estimated and used in the feedback
loop. The patient parameters are not estimated, which is
typically challenging because of the wide variety of patients
and the model uncertainty concerning the structure of the
patient model. Therewith, the method proposed in this article is
invariant to the patient model, which is a significant advantage
over the adaptive control scheme in [10].

The main contribution of this article is the design of a
control strategy for mechanical ventilation, which ensures
the exact tracking of the airway pressure independent of
the patient, hose, leakage, patient effort, and set point. Key
advantages of the proposed approach include that it allows for
a fast and accurate pressure response, even for large lungs and
big leaks, prevents overshoot in the patient flow and therewith
prevents false triggering, and is not using direct feedback on
the patient airway pressure, improving robustness, since the
patient airway sensor tube might detach.

The first subcontribution is a stability proof of the resulting
closed-loop system, ensuring exponential convergence of the
estimation and tracking errors to zero. As a second subcon-
tribution, a significant improvement in tracking performance
in comparison to state-of-practice control strategies is shown
through a simulation case study. The third subcontribution is
an experimental case study that shows the practical applicabil-
ity of the controller and improvement over the state-of-practice
control strategies.

The outline of this article is as follows. In Section II,
the control problem and high-level control approach are
described. In Section III, a mathematical model of the
patient-hose system is presented. In Section IV, the devel-
oped control strategy is described and a stability analysis is
presented. A model-based simulation study is presented in
Section V, comparing state-of-practice control strategies to
the developed adaptive controller. In Section VI, the adaptive
controller is compared to state-of-practice control strategies
in an experimental case study. Finally, the conclusions and
recommendations are presented in Section VII.

II. CONTROL PROBLEM FORMULATION

In this section, the considered system is first presented.
Thereafter, the control problem is formulated and the state-
of-practice control approach is discussed in this context.
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Fig. 3. State-of-practice control scheme of closed-loop linear feedback
control with unit feedforward.

Furthermore, a high-level description of the proposed control
approach is given.

A schematic overview of the system, with the most impor-
tant system components, is shown in Fig. 1. The system
is operated by the blower, which pressurizes ambient air in
order to ventilate the patient. A hose is used to connect the
respiratory module to the patient. The flow, which leaves the
blower, runs through the hose toward the patient. The patient
exhales partly back through the blower and partly through a
leak in the hose near the patient’s mouth (see Fig. 1). This
leak is used to refresh the air in the hose, ensuring that the
patient does not inhale previously exhaled, low-oxygen, air.

A. Control Problem and State-of-Practice Approach

In blower-driven respiratory systems, typically, linear inte-
gral feedback controllers are used. Implementing a linear
feedback controller results in a closed-loop system, as shown
in Fig. 3. In this closed-loop system, the airway pressure paw
is the variable to be controlled, i.e., it should track the target
pressure ptarget. The overall control goal is to minimize the
tracking error, which is defined as

e := ptarget − paw (1)

or ideally let it converge to zero asymptotically.
To achieve a blower output pressure pout = pcontrol, an accu-

rate lookup table is used in addition to a feedback controller
using feedback of the blower error (pcontrol − pout). This
lookup table is used to determine the desired blower RPM to
achieve the desired outlet pressure pout, given the measured
outlet flow Qout. The feedback controller is used to eliminate
the remaining blower error. Combined, the lookup table and
the feedback controller accurately achieve pout = pcontrol
in the frequency domain of interest. Consequently, the unit
feedforward in combination with the blower characteristic
ensures that pout is exactly tracking ptarget.

Since unit feedforward achieves pout = ptarget, the feedback
controller in Fig. 3 has to compensate for the pressure drop
�p = pout − paw along the hose. Note that it is challenging to
predict the pressure drop along the hose due to several factors.

1) The type of lung attached, i.e., the patient, is in prin-
ciple unknown. Although the pressure target is a priori
known, the amount of flow entering a lung depends on
the lung resistance and lung compliance and is therefore
unknown. Therewith, also the flow through the hose and,
thus, the pressure drop �p are unknown.

2) The characteristic of the hose system attached is also
unknown. Hence, the pressure drop along the hose is
unknown.

Fig. 4. Schematic of the proposed closed-loop system with an RLS estimator
for the hose resistance estimation.

3) During (noninvasive) ventilation, there can be leakage
around the mask, which cannot be predicted and there-
fore results in an a priori unknown pressure drop.

4) In addition, patients can have spontaneous breathing
activity (resulting in a flow and therewith a pressure
drop along the hose), which also cannot be predicted
a priori.

Therefore, exact feedforward control cannot be used to com-
pensate for the pressure drop �p over the hose.

Alternatively, a linear feedback controller, typically a
proportional–integral (PI) controller, is used to compensate for
the pressure drop over the hose. A linear feedback controller
has to be tuned for robustness over large plant variations.
Therefore, it is unable to achieve accurate tracking for all
considered patients. Furthermore, a feedback controller uses
the measured airway pressure paw in the feedback loop.
Feedback on paw is undesired since the sensor tube might
get detached in practice.

B. Proposed Control Strategy

Here, a control strategy is proposed that uses an estimated
hose resistance model and the output flow Qout, which is
measured near the blower, to compensate for the pressure drop
�p over the hose (see Fig. 4). Because the hose resistance is
unknown, an offline calibration could be conducted by hospital
personnel to estimate the hose resistance prior to ventilation.
This calibration requires extra time of the hospital staff, which
is undesired because of the already existing lack of time
for hospital staff, as mentioned in Section I. Furthermore,
the resistance may change over time.

Therefore, an adaptive control approach is developed, which
is using an online RLS estimator to estimate the hose resis-
tance automatically during ventilation (see Fig. 4). Practically,
this approach is considerably more reliable than the state-
of-practice feedback method, which is using paw directly
in the feedback loop. The proposed strategy is only using
paw for updating the estimator. In practice, the sensor tube
used to measure paw might get detached. In such a scenario,
the proposed controller can keep running without updating the
resistance, whereas the feedback controller fails and may cause
a potentially dangerous situation.

Another advantage of this control strategy is that it com-
pensates for the pressure drop �p over the hose using the
measured blower outlet flow Qout. The pressure drop over the
hose �p depends on the flow through the hose, which is equal
to the blower outlet flow Qout. Therefore, exact compensation
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Fig. 5. Schematic of the blower-hose-patient system, with the corresponding
resistances, lung compliance, and patient effort.

of this pressure drop based on the measured flow allows for
perfect tracking independent of the leak, patient dynamics,
and patient effort. In Section III, a model of the patient-hose
dynamics is presented.

III. PATIENT-HOSE DYNAMICS

In this section, a description of the system parameters used
in the model is given. Thereafter, the open-loop patient-hose
dynamics are presented.

A. Patient-Hose Parameters

Before presenting the mathematical model, the system para-
meters and their physical meaning are discussed. Consider the
schematic of the blower, hose, and patient shown in Fig. 5.
First, the blower compresses ambient air to the desired blower
outlet pressure pout. Note that all pressures are defined relative
to the ambient pressure, i.e., pamb = 0. This outlet pressure
results in a flow Qout through the hose, with resistance Rlin.
Furthermore, the patient airway pressure paw is measured just
in front of the patient’s mouth, using the sensor tube. A leak
is used to flush exhaled CO2-rich air from the hose system
and is modeled using the leak resistance Rleak. The lung
is modeled using a linear one-compartmental lung model as
described in [16], with lung compliance Clung and resistance
Rlung. Note that all physical patient-hose parameters, i.e., Rlin,
Rleak, Rlung, and Clung, are strictly positive. Furthermore, Fig. 5
shows the patient’s breathing effort ṗpat, which is considered
an exogenous disturbance on the lung pressure, caused by the
patient’s respiratory effort.

B. Patient-Hose Model

Using the parameters and models outlined earlier, a math-
ematical patient-hose model is derived. This model describes
the relation between the blower outlet pressure pout, the dis-
turbance ṗpat, the state plung, and the outputs paw and Qout.

Using conservation of flow, the output flow Qout, patient
flow Qpat, and leakage flow Qleak are related by

Qpat = Qout − Qleak. (2)

The resistances are modeled using a linear resistance model,
which is reasonably accurate for typical flows in ventilation.
Using the linear resistances Rlin, Rleak, and Rlung, the pressures

and flows are related as follows:
Qout = pout − paw

Rlin

Qleak = paw

Rleak
(3)

Qpat = paw − plung

Rlung
.

The lung dynamics are governed by

plung(t) = 1

Clung

∫ t

0
Qpatdt + ppat(t) + plung(0) (4)

with ppat(t) the (time-varying) patient effort. The patient effort
is modeled as an unknown disturbance on the lung pressure,
induced by the patient’s respiratory efforts, e.g., diaphragm
and/or abdominal muscle contractions. Furthermore, plung(0)
represents the initial lung pressure, excluding the patient effort.
The time derivative of the lung pressure then satisfies

ṗlung(t) = 1

Clung
Qpat + ṗpat. (5)

Combining (3) and (5), the lung dynamics are described by

ṗlung = paw − plung

Clung Rlung
+ ṗpat. (6)

The following relation for the airway pressure is obtained
from (2) and (3):

paw = Rlin Rleak plung + Rleak Rlung pout

R̄
(7)

with R̄ := Rlin Rleak + Rlin Rlung + Rleak Rlung. By substituting
(7) into (6), a differential equation for the lung dynamics is
obtained

ṗlung = −(Rlin + Rleak)

Clung R̄
plung + Rleak

Clung R̄
pout + ṗpat. (8)

Given (3), (7), and (8), the patient-hose system dynamics
can be written as a linear state-space system with input pout,
outputs paw and Qpat, state plung, and disturbance ṗpat

ṗlung = Ah plung + Bh pout + ṗpat[
paw
Qpat

]
= Ch plung + Dh pout (9)

with

Ah = − Rlin + Rleak

Clung R̄
, Bh = Rleak

Clung R̄

Ch =
[

Rlin Rleak

R̄
− Rlin + Rleak

R̄

]T

(10)

Dh =
[

Rleak Rlung

R̄

Rleak

R̄

]T

.

Since all resistances and the compliance are strictly positive
constants, Ah is negative and, hence, the patient-hose system is
inherently asymptotically stable. Note that ṗpat is considered to
be an exogenous disturbance, whereas, in practice, it contains
dynamics, i.e., the patient’s breathing behavior.
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IV. ADAPTIVE CONTROLLER DESIGN AND

STABILITY ANALYSIS

In this section, the proposed adaptive control approach is
presented, leading to the main contribution of this article.
In Section IV-A, the closed-loop dynamics resulting from the
new control strategy are presented, for the case in which a
constant estimate R̂lin of the hose resistance Rlin is used.
In Section IV-B, the RLS estimator, used to estimate the
hose resistance, is given. Finally, in Section IV-C, a stability
analysis of the resulting closed-loop dynamics, including the
estimator, is presented.

A. Closed-Loop Dynamics for a Constant Hose-Resistance
Estimate

In this section, a state-space description of the closed-loop
dynamics with a constant estimate R̂lin is derived. This
state-space description is needed to analyze the performance
and stability of the controlled system. In the closed-loop
dynamics, a feedback controller on the blower outlet flow
Qout is included, as shown in Fig. 4. The constant feedback
controller in Fig. 4 and the fact that the blower gain is 1 in
the frequency domain of interest results in pout = pcontrol =
� p̂ + ptarget. Using pout = � p̂ + ptarget and (9) results in

ṗlung = Ah plung + Bh(ptarget + � p̂) + ṗpat. (11)

From Fig. 4, we know that the estimated pressure drop is given
by � p̂ = R̂lin Qout. Using (2), (3), and (5), this pressure drop
estimate can be rewritten as

� p̂ = R̂lin Qout

= R̂lin(Qpat + Qleak) (12)

= R̂lin

(
Clung( ṗlung − ṗpat) + paw

Rleak

)
.

Note that pcontrol = � p̂ + ptarget together with (12) essentially
forms the proposed feedback law that aims at compensating
the pressure drop over the hose-filter system. Substituting the
airway pressure, obtained from (6), into (12) gives

� p̂ = R̂lin

(
Clung

(
1+ Rlung

Rleak

)
( ṗlung− ṗpat) + plung

Rleak

)
. (13)

For notational purposes, the combined variable

R(eLS) := eLS(Rleak + Rlung) + Rleak Rlung (14)

is defined with the estimation error

eLS := Rlin − R̂lin. (15)

Then, substitution of (13) in (11) gives

ṗlung= −Rleak−eLS

Clung R(eLS)
plung+ Rleak

Clung R(eLS)
ptarget+ ṗpat. (16)

The variables paw, Qpat, and Qout are considered as outputs,
and the resulting closed-loop system is described as follows:

ṗlung = A(eLS)plung + B(eLS)ptarget + ṗpat⎡
⎣ paw

Qpat
Qout

⎤
⎦ = C(eLS)plung + D(eLS)ptarget (17)

with

A(eLS) = −Rleak − eLS

Clung R(eLS)
, B(eLS) = Rleak

Clung R(eLS)

C(eLS) =
[
1− (Rleak+eLS)Rlung

R(eLS)

−Rleak−eLS

R(eLS)

−Rleak

R(eLS)

]T

(18)

D(eLS) =
[

Rleak Rlung

R(eLS)

Rleak

R(eLS)

Rleak + Rlung

R(eLS)

]T

.

Note that the dynamics in (17) are in fact nonlinear in the
estimation error eLS because of the dependence of the system
matrices on this estimation error. Next, the system is analyzed
for a constant least-squares estimation error eLS. In particular,
we are interested in these linear dynamics for eLS = 0 to
understand the closed-loop system behavior, with hose pres-
sure compensation once a perfect hose resistance estimate is
available. This analysis is performed by means of the transfer
function of the linear system with a constant estimation error.
From this transfer function, strong performance features of the
closed-loop system are obtained.

Using the system dynamics in (17) and (18), the transfer
function from the inputs ptarget and ṗpat to the output paw is
computed. Hereto, the closed-loop system is rewritten in the
following form:

ṗlung = Āplung + B̄u (19)

paw = C̄plung + D̄u (20)

with a combined input vector u = [
ptarget ṗpat

]T

Ā = A(eLS), B̄ = [
B(eLS)1

]
(21)

C̄ = C1(eLS), D̄ = [
D1(eLS)0

]
(22)

where C1(eLS) and D1(eLS) are the first elements in C(eLS)
and D(eLS), respectively. Using this form of the closed-loop
system, the transfer function from u to paw is obtained

paw(s)

u(s)
= C̄(s − Ā)−1B̄ + D̄ (23)

with s ∈ C the Laplace variable. Using this, an expression for
paw is obtained

paw(s) = P1 ptarget(s) + P2 ṗpat(s) (24)

with

P1

= Rleak+Clung Rleak Rlungs

Rleak+Clung Rleak Rlungs+eLS(1+Clung(Rleak+ Rlung)s)

and

P2

= ClungeLS Rleak

Rleak+Clung Rleak Rlungs+eLS(1+Clung(Rleak+ Rlung)s)
.

Next, an exact estimate of the hose resistance is assumed,
i.e., estimation error eLS = 0. For an exact estimate of the
hose resistance, the term P1 in (24), i.e., the transfer function
from ptarget to paw, is one for all s ∈ C. Furthermore,
the term P2, i.e., the transfer function from ṗpat to paw,
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is zero for all s ∈ C. Therefore, the airway pressure of the
closed-loop system is exactly the same as ptarget. Furthermore,
the airway pressure is independent of the patient dynamics
and the exogenous disturbance ṗpat related to the patient
effort. This is a highly desirable property for a controlled
system. A formal proof of these properties (zero tracking error
independent of patient effort and patient dynamics) for the
full nonlinear dynamics, i.e., with convergence of eLS to zero,
is presented in Section IV-C.

B. RLS Estimation of the Hose Resistance

In Section IV-A, the equations describing the proposed
controlled plant model are presented for a given (constant)
hose resistance estimate R̂lin. Since the hose resistance is
an unknown parameter, an RLS estimator that estimates the
value of Rlin automatically during ventilation is proposed;
hence, no additional calibration steps are required in the
hospital. In this particular application, an RLS algorithm with
exponential forgetting factor β is used [17, p. 200], since data
far in the past is considered less important than more recent
data. A schematic of the system, including the hose resistance
estimator, is shown in Fig. 4.

The RLS estimator with forgetting factor is given by1:
˙̂Rlin = P

�p − R̂lin Qout

m2 Qout (25)

Ṗ = β P − P2 Q2
out

m2 (26)

where Qout is the exciting variable, P(t) is called the covari-
ance, and (�p − R̂lin Qout)/(m2) represents the normalized
estimation error of the pressure drop, with m2 > 0 a constant
normalization parameter. Since �p = Rlin Qout, eLS(t) =
Rlin − R̂lin(t), and Rlin is a constant, the least-squares error
dynamics are written as follows:

ėLS = −P Q2
out

m2 eLS. (27)

The resulting closed-loop dynamics with estimator and hose
compensation controller are given by (17), (18), (26), and (27).

The parameters β and P(0) should be chosen such that
convergence is sufficiently fast, i.e., within a couple of breaths.
However, choosing β too high results in fast convergence but
might also result in strong oscillations in the parameter due
to the measurement noise and effects that are not captured by
the hose model. Furthermore, β and P(0) should be positive
to ensure stability as discussed in Section IV-C. In addition,
in this article, the constant normalization parameter m is
chosen to be one, i.e., m = 1, to reduce the number of tuning
parameters.

C. Stability Analysis

The closed-loop system dynamics with the adaptive con-
troller are given by (17), (18), (26), and (27). In this section,
stability conditions for the closed-loop controlled system are
derived. First, several auxiliary results are presented. Using

1The notation equivalents to the notation of [17, p. 200] are Rlin = θ∗,
R̂lin = θ , Qout = φ0, and �p = z.

these auxiliary results, Theorem 1 is presented in the follow-
ing. Theorem 1 provides sufficient conditions for exponential
convergence to zero of the tracking error e(t) and of the
estimation error eLS(t). Herein, we consider time-varying
pressure targets ptarget(t), unknown patient effort ppat(t), and
unknown patient-hose parameters, i.e., resistances and com-
pliance. In support of the proofs, the auxiliary lemmas in the
Appendix are used.

First, a Persistently Exciting (PE) signal is defined.
Definition 1: A piecewise continuous scalar signal φ(t) is

PE if there exist constants α0, α1, T0 ∈ R>0 such that

α1 ≥ 1

T0

∫ t+T0

t
φ2(τ )dτ ≥ α0 ∀t ≥ 0. (28)

Furthermore, the RLS estimator in (26) and (27) is assumed
to satisfy Assumption 1.

Assumption 1: The RLS estimator in (26) and (27) is
designed and initialized such that the following properties
hold.

1) P(0) is chosen to be positive, i.e., P(0) > 0.
2) R̂lin(0) is chosen such that the following inequalities

hold (with ε > 0 a small constant):
R̂lin(0) < Rlin + Rleak

R̂lin(0) ≤ Rlin + Rleak Rlung

Rleak + Rlung
− ε.

3) β is designed to be positive, i.e., β > 0.
Note that we can always design and initialize the RLS esti-
mator such that Assumption 1 holds. Furthermore, choosing
R̂lin(0) = 0 directly ensures the inequalities in Assumption 1
since all resistances are positive, though this may be a con-
servative initial estimate for the hose resistance.

Assumption 2 states that the target pressure profile is always
positive and bounded.

Assumption 2: ptarget(t) is bounded and positive by design;
in particular, ε1 < ptarget(t) < ∞, ∀t ≥ 0, with ε1 > 0 a
positive constant.

This is a valid assumption since a positive and bounded
target pressure is desired during positive pressure ventilation
(see Fig. 2), with PEEP > 0.

Assumption 3 states that the disturbance ṗpat(t) is bounded.
Assumption 3: The patient effort ppat(t) is a bounded sig-

nal. Furthermore, its time derivative ṗpat(t) is a bounded signal
as well.

Assumption 3 is valid in practice since a patient cannot
generate unbounded pressure or derivatives in pressure.

Note that PE conditions on the excitation signals are
required to guarantee the RLS estimators with a forgetting
factor to converge (see [17, Corollary 4.3.2]). Here, the excit-
ing variable Qout(plung(t), eLS(t), ptarget(t)) is not an external
signal, but a variable dependent on the states [see (17), (18)].
This complicates the stability analysis and requires an analysis
of the PE properties of Qout(plung(t), eLS(t), ptarget(t)) as in
Lemma 1. Note that no additional excitations are induced to
ensure the PE condition, i.e., Qout is PE in the considered,
common, ventilation scenarios.

Lemma 1: Consider the closed-loop system dynamics
defined by (17), (18), (26), and (27) and adopt
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Assumptions 1–3. Then, Qout(plung(t), eLS(t), ptarget(t))
is PE as defined in Definition 1.

Proof: To ensure the existence of upper bound α1 of the
PE condition in Definition 1, Lemma 5 in the Appendix is
invoked, which ensures that Qout(plung(t), eLS(t), ptarget(t)) is
bounded for all t ≥ 0. Since Qout(plung(t), eLS(t), ptarget(t))
is bounded, α1 > 0 indeed exists such that the upper bound
in (28) is satisfied for φ(t) := Qout(plung(t), eLS(t), ptarget(t)).

Next, we have to show that the lower bound α0 in the
PE condition in (28) exists. For such lower bound to exist,
the following equality should not hold for any t∗ ≥ 0 for
some T0 ∈ R>0 :
Qout(plung(t), eLS(t), ptarget(t))=0 ∀t ∈ [t∗, t∗ + T0]. (29)

If there is no output flow, i.e., Qout(plung(t), eLS(t),
ptarget(t)) = 0, then from (2), −Qleak = Qpat. Further-
more, the pressure drop paw − pout = �p = Rlin Qout and
the estimated pressure drop � p̂ = R̂lin Qout are also zero
under such condition. Using this and Assumption 2 gives
paw(t) = pout(t) = ptarget(t) > ε1 ∀t ∈ [t∗, t∗ + T0]
if Qout(plung(t), eLS(t), ptarget(t)) = 0 ∀t ∈ [t∗, t∗ + T0].
Moreover, −Qleak = Qpat in combination with (3) gives

− ptarget

Rleak
= ptarget − plung

Rlung
(30)

which is rewritten to obtain

plung(t)= Rlung

Rleak
ptarget(t)+ ptarget(t) ∀t ∈ [t∗, t∗ + T0]. (31)

Using (4) and (31), we obtain

1

Clung

∫ t

t∗
Qpat(τ )dτ + ppat(t) + plung(t

∗)

= Rlung

Rleak
ptarget(t) + ptarget(t) ∀t ∈ [t∗, t∗ + T0]

which is rewritten to

− 1

Clung Rleak

∫ t

t∗
ptarget(τ )dτ + ppat(t) + plung(t

∗)

= Rlung

Rleak
ptarget(t) + ptarget(t) ∀t ∈ [t∗, t∗ + T0] (32)

using Qpat = −(ptarget/Rleak). We can choose a value
T0 ∈ R>0 such that this will not hold for any t∗ ≥ 0.
If we take T0 → ∞, the term with the integral will go to
minus infinity, using Assumption 2. We know that ppat(t) and
plung(t∗) are bounded using Assumption 3 and Lemma 4,
respectively. Hence, the left-hand side of the equation will
become negative for large values of T0 and the right-hand
side is always positive by Assumption 2. Since (32) does not
hold for T0 → ∞, we know that (29) does not hold for
any t∗ for some very large T0. Therefore, we can conclude
that Qout(plung(t), eLS(t), ptarget(t)) is PE, according to Defi-
nition 1. �

Finally, using Lemma 1 and Lemmas 4 and 5 in the
Appendix, the stability of the closed-loop system, including
the RLS estimator is proven. More precisely, Theorem 1 shows
the exponential convergence of the least-squares error eLS(t)
and the tracking error e(t) to zero.

Theorem 1: Consider the system dynamics (17), (18), (26),
and (27) and suppose that Assumptions 1, 2, and 3 hold. Then,
solutions of the dynamical system (17), (18), (26), and (27)
have the following properties.

1) P(t), P−1(t), plung(t), and Qout(t) are bounded ∀t ≥ 0.
2) eLS(t) = Rlin − R̂lin(t) and e(t) = ptarget(t) − paw(t)

exponentially converge to zero.
Proof: First of all, the boundedness of plung and Qout is

shown in Lemmas 4 and 5, respectively (see the Appendix).
Furthermore, using Lemma 2, we know that P(t) and P−1(t)
are bounded ∀t ≥ 0.

From Lemma 1, we know that the PE property holds for
Qout(t). Therefore, [17, Corollary 4.3.2] can be used to show
that eLS(t) is exponentially converging to zero.

Finally, we have to show that e(t) exponentially converges
to zero. By substituting the airway pressure paw, defined
in (17) and (18), into the error definition e(t), defined in (1),
the tracking error can be written as

e(t) = −Rleak plung(t) + (Rleak + Rlung)ptarget(t)

eLS(t)(Rleak + Rlung) + Rleak Rlung
eLS(t)

= : v(t)eLS(t). (33)

Since, first, plung(t) is bounded (Lemma 4), second ptarget(t)
is bounded (Assumption 2), and third, eLS(Rleak + Rlung) +
Rleak Rlung is bounded away from zero (as shown in Lemma 4),
it is guaranteed that v(t) in (33) is bounded. Since v(t) is
bounded ∀t ≥ 0, i.e., there exists a bounded vmax, such that
|v(t)| ≤ vmax∀t ≥ 0, we can write

|e(t)| ≤ vmax|eLS(t)| ∀t > 0. (34)

Since eLS(t) converges to zero exponentially, (34) shows that
e(t) also converges to zero exponentially. �

Theorem 1 ensures exponential convergence of the tracking
error e(t) to zero for a time-varying target pressure, under
mild conditions on the initial estimate for the hose resistance
and the target pressure profile ptarget(t). Furthermore, this
property is independent of the unknown disturbance induced
by the patient’s breathing effort, as long as it remains bounded.
In control systems, perfect tracking is typically possible when
inverse-plant feedforward is applied and no further distur-
bances are present. In this case, it is achieved by compensating
for the disturbance through feedback. More precisely, the mea-
sured flow Qout that is used in the feedback loop contains
the disturbance, i.e., Qout depends on ṗpat through plung.
The estimate of the hose resistance is used to compensate
for the pressure drop such the target pressure is an invariant
solution of the closed-loop dynamics. This can be seen in (24)
with eLS = 0, which gives paw = ptarget independent of the
patient effort and dynamics. This is achieved independent of
the system, i.e., patient and hose, parameters as mentioned
in Remark 1. The system parameters only affect the flow
and therewith the convergence speed of the hose-resistance
estimate.

Remark 1: The relation between the hose-induced pressure
drop �p and the measured flow through the hose Qout is
independent of the patient and leak parameters, and the patient
effort. The patient and leak parameters only influence the mea-
sured blower output flow Qout, and therewith, the convergence
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TABLE I

ESTIMATION PARAMETERS OF THE ADAPTIVE CONTROLLER AND THE
PATIENT AND HOSE PARAMETERS AS USED IN THE SIMULATIONS

speed of the estimator is affected. However, exact tracking of
the target pressure independent of patient and leak parameters
and the patient effort is achieved.

V. SIMULATION CASE STUDY

In this section, the improvement in tracking performance
of the proposed adaptive control approach compared to state-
of-practice control strategies is shown through simulations.
The performance of the different control strategies is com-
pared by analyzing the pressure tracking, i.e., rise time, over-
shoot, undershoot, and settling time. Furthermore, overshoot
in patient flow is considered since a decrease in overshoot
prevents false triggering and improves patient comfort.

Two different scenarios are considered is this section.
In Section V-A, a sedated patients, i.e., ppat(t) = 0 ∀t , under
PCV ventilation is considered. In Section V-B, a spontaneously
breathing patient, i.e., ∃t ≥ 0:ppat(t) 
= 0, under CPAP
ventilation is considered.

In the case with a sedated patient, a step in the hose
resistance is introduced to show that the new control approach
can handle changes in resistance, which may be induced by
clogging of a filter. The following two state-of-practice control
strategies are considered to benchmark against feedforward
control and linear feedback control.

The feedforward controller is a unit feedforward; in other
words, the desired airway pressure is applied as ptarget =
pcontrol = pout and no feedback based on measurements is
used. For the linear feedback controller, an integral controller
is used to compensate for the pressure drop �p over the
hose. This feedback controller is used in addition to the unit
feedforward controller. The integral controller results in the
convergence of the tracking error to zero for constant target
pressures. Because the plant variations are large, the linear
feedback controller is tuned for robustness instead of perfor-
mance resulting in an integral controller with transfer function
C(s) = (10/s), with s ∈ C the Laplace variable. The RLS
estimator parameters and the patient-hose system parameters
are presented in Table I.

A. Scenario With Sedated Patients

First of all, the ventilation of sedated patients under PCV
is considered. This section is divided into the test case
description, the simulation results, and a summary of the main
conclusions.

Fig. 6. Simulation results of the feedforward, feedback, and adaptive control
strategy. This shows the resulting airway pressure and patient flow.

Fig. 7. Tracking errors of the different controllers and convergence of R̂lin
of the adaptive controller.

1) Test Case: In these simulations, the target pressures
of 5 and 20 mbar are used for the PEEP and the IPAP,
respectively. Furthermore, we introduce a step in the hose
resistance at t = 10 s, to show that the controller can
handle a change in resistance. This step in resistance is shown
in the bottom of Fig. 7. Finally, simulations with different
patient characteristics, such as compliance and resistance, are
performed to show that the controller works for a wide range
of patients.

2) Simulation Results: The resulting airway pressure of the
simulations is shown in Fig. 6. These results clearly show that
the feedforward controlled system has a steady-state tracking
error, which is caused by the pressure drop �p over the
hose. For the linear feedback controller it is observed that
the pressure is converging to the desired pressure, but there is
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undesired overshoot and undershoot caused by the feedback
controller. This results in nonoptimal patient support. More
specifically, the undershoot in pressure causes overshoot in
the patient flow, see the zoomed inset in the bottom of Fig. 6.
Overshoot in patient flow may result in false triggers dur-
ing ventilation modes that allow for patient-triggered breaths
(see [6]). The resulting airway pressure of the developed adap-
tive controller is also shown in Fig. 6. It shows that during the
first breathing cycle, the proposed controller behaves almost
the same as the feedforward controller. This is caused by the
initial estimate of R̂lin(0) = 0, resulting in � p̂ ≈ 0 during the
first breath, i.e., the adaptive controller is not compensating
the pressure drop yet. In the third breathing cycle, almost
perfect tracking with no overshoot and oscillations is achieved.
Thereafter, at t = 10 s, the controller has to adapt to the
step in Rlin, which introduces a deviation between the target
pressure ptarget and the airway pressure paw. This has almost
completely vanished after the fifth breathing cycle.

In Fig. 7, the significant improvement in tracking per-
formance is visualized. The tracking error of the adaptive
controller indeed converges to zero. The tracking errors of
the feedforward and feedback controllers remain the same
over successive breaths, with a slight increase when the hose
resistance is increased. Furthermore, Fig. 7 shows that the
estimated resistance is converging to the actual value as
expected. Therefore, no manual calibration of the hose is
required such that no additional time of the hospital staff is
required. It is also clearly observed that the controller can
handle the step in hose resistance since the tracking error is
converging to zero again after the step in resistance.

The convergence of the estimator takes about 10 s, i.e.,
2–3 breaths. In practice, this is sufficiently fast because a
patient breaths over 20 000 times a day. Therefore, these three
breaths are considered negligible in practice. Furthermore,
a manual calibration typically takes longer, during which the
patient is not ventilated at all. Therefore, the adaptive scheme
is preferred over a manual calibration procedure.

Pressure profiles for different lung characteristics
(resistance and compliance, see legend) are shown in Fig. 8.
This figure shows that the control approach works for a broad
range of patients. The patient parameters do affect the flow
and, therewith, the estimator performance is slightly affected.
However, the estimator will converge and the compensation
ultimately achieves perfect tracking independent of the patient
parameters.

3) Main Conclusion: The simulations show that the estima-
tion error eLS(t) converges to zero and, therewith, the track-
ing error e(t) converges to zero as well, as expected from
Section IV-C. Furthermore, the simulations show that there
is no overshoot in patient flow, preventing false triggering of
breaths. It is also shown that the adaptive controller works for
a broad range of patients and is able to handle changes in the
hose resistance.

B. Scenario With Spontaneously Breathing Patients

Since many patients are conscious and, therewith, able
to breathe themselves, another common ventilation mode is

Fig. 8. Airway pressure paw for multiple types of lungs, with the adaptive
controller. The lung characteristics are given in the legend where the units for
R are mbar s/L and the units for C are mL/mbar.

Fig. 9. Plot of the patient effort of the spontaneously breathing patient. This
patient effort is used in the simulations and experiments.

considered, namely, CPAP. CPAP aims to maintain a constant
positive airway pressure to assist the patient’s breathing and
to keep the lungs open. Also, this section is divided into the
test case description, the simulation results, and a summary of
the main conclusions.

1) Test Case: The considered patient has a respiratory
rate of 15 breaths per minute and generates a pressure
of −12 mbar in the lungs. The patient effort profile is a
semisinusoidal profile, similar to semisinusoidal profile of
the ASL 5000 Breathing Simulator, which is used in the
experiments in Section VI. The patient effort curve is shown
in Fig. 9. Note that there is no consensus on how to model
realistic patient effort according to [18]. However, the default
semisinusoidal of the ASL 5000 Breathing Simulator is
most often used according to [19]. The target pressure used
in this simulation is 5 mbar. Furthermore, we used the
same control and patient-hose parameters as in Section V-A
(see Table I).

2) Simulation Results: The resulting airway pressure paw
for the feedforward, feedback, and adaptive controller is shown
in Fig. 10. It is clearly shown that the airway pressure
converges to the desired constant pressure with the adaptive
controller. In the other two control approaches, we observe
the undesired pressure oscillations, caused by the patient’s
effort, around the pressure target. This case study shows
that the developed adaptive controller improves the tracking
performance significantly during CPAP ventilation.

3) Main Conclusion: These simulations show that the track-
ing performance is improved (see Fig 10). The adaptive con-
troller achieves exact tracking of the desired airway pressure,
whereas the feedforward and feedback controller show signif-
icant spikes in the airway pressure, caused by the patient’s
effort.
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Fig. 10. Simulation results of the feedforward, feedback, and adaptive control
strategy. This shows the resulting airway pressure of a spontaneously breathing
patient with the CPAP ventilation mode.

Fig. 11. Main components of the experimental setup. (a) Macawi
blower-driven mechanical Ventilator. (b) ASL 5000 breathing simulator.

VI. EXPERIMENTAL CASE STUDY

In order to show the practical applicability and performance
of the adaptive controller, an experimental case study has been
conducted. First of all, the results of two experiments for
the scenario of a fully sedated patient on PCV are shown.
Thereafter, the results for the scenario of a spontaneously
breathing patient with CPAP ventilation are presented.

The main components of the experimental setup used in this
case study are shown in Fig. 11. In Fig. 11(a), a blower-driven
mechanical ventilation module of Macawi is shown [20].
Inside this module, the commercially available Macawi res-
piratory centrifugal blower with its custom motor and motor
controller is used for the actuation of the system [20]. The
blower flow Qout is measured using a MEMS thermal flow
sensor inside the respiratory module. Both the airway pressure
paw and the blower outlet pressure pout are measured using
a gauge pressure sensor inside the respiratory module. The
ventilator is attached to a dSPACE system (dSPACE GmbH,
Paderborn, Germany), where the controls are implemented
using MATLAB Simulink (MathWorks, Natick, MA, USA)
running at a sampling frequency of 500 Hz.

Furthermore, the ASL 5000 Breathing Simulator (IngMar
Medical, Pittsburgh, PA, USA), as shown in Fig. 11(b), is used
to emulate the patient. This lung simulator can be used to
emulate a wide variety of patients with a linear resistance and
compliance. Furthermore, it is able to simulate a patient with
breathing effort.

Fig. 12. Experimental results of the feedforward, feedback, and adaptive
control strategy. This shows the resulting airway pressure and tracking error
of the different controllers with a target pressure of PEEP and IPAP of 5 and
10 mbar, respectively.

The patient and controller parameters in the experiments are
the same as the corresponding parameters in the simulations of
Section V (see Table I). However, the hose and leak resistance
in the simulations are estimated using an offline least-squares
fit of the actual hose resistance, and this results in a slight
parametric difference between the simulation and experimental
scenarios.

A. Scenario With Sedated Patients

In this section, the ventilation of a sedated patient under
PCV is considered. This section is divided into the test case
description, experimental results, and a summary of the main
conclusions.

1) Test Case: The same patient and controller parameters
as in the simulation case study for sedated patients are
used (Table I). Furthermore, two different target profiles are
considered. First of all, a target profile is used with a PEEP and
IPAP of 5 and 10 mbar, respectively. This first test case, with
low pressures, is considered to validate the developed control
strategy and its theory. These low pressures result in low flows,
and hence, the linear component of the hose resistance is
dominant over the quadratic part. Thereafter, the same target
profile as in the simulation case study is used with a PEEP and
IPAP of 5 and 20 mbar, respectively. Another difference with
the simulation-based case study is that the hose resistance in
the experiments is constant. In other words, the experiments
do not contain a step in the hose resistance.

2) Experimental Results: First of all, the results of the
experiments with the IPAP of 10 mbar are presented and
discussed. Thereafter, the results of the experiments with the
IPAP of 20 mbar are shown and discussed.

The results of the experiments with the IPAP of 10 mbar are
shown in Figs. 12 and 13. The airway pressure and tracking
error e = ptarget − paw are depicted in Figs. 12 and 13.
Figs. 12 and 13 clearly show the constant offset in the airway
pressure for the unit feedforward controller. Furthermore, it is
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Fig. 13. Experimentally obtained estimate of the hose resistance for a target
pressure of PEEP and IPAP of 5 and 10 mbar, respectively.

clearly shown that the feedback controller has significant
overshoot and undershoot. As expected, the adaptive controller
converges after approximately three breaths (see Fig. 13).
The resistance estimate is slightly oscillating upon conver-
gence, and this is caused by the quadratic nature of the hose
resistance. However, these oscillations are considered small
because the outlet flow Qout remains in a small interval.
Fig. 12 shows that upon convergence, the adaptive controller
achieves a significantly better tracking performance than the
feedforward controller. Furthermore, the adaptive controller
shows significantly less overshoot and undershoot than the
linear feedback controller. These overshoots are undesired
because the resulting peak pressures might damage the lungs.
Furthermore, the undershoot is undesired since it causes
oscillations in the patient flow, possibly resulting in false
triggering. Considering the tracking error in the bottom of
Fig. 12, it is noticed that still sharp peaks are present during
the increase and decrease of the pressure for both feedback
control strategies. These peaks are mainly caused by a delay in
the blower transfer from pcontrol to pout and the measurement
delay of the airway pressure paw. The blower delay causes
a timing mismatch between the desired controller pressure
pcontrol and the blower outlet pressure pout. Furthermore,
the measurement delay of the airway pressure paw causes a
timing mismatch between the performance variable paw and
the target pressure ptarget. This measurement delay is clearly
visible in the tracking error during changes of ptarget.

The results of the experiments with the IPAP of 20 mbar
are shown in Figs. 14 and 15. The obtained response is
similar to the simulations for both the feedback and the
feedforward controller. The feedforward controller does not
compensate for the pressure drop over the hose. The feedback
controller shows overshoot and undershoot in airway pressure
paw. This causes overshoot in the patient flow, which might
cause false triggering in triggered ventilation modes. Hence,
such overshoots are highly undesired.

The adaptive controller shows the convergence of the air-
way pressure during the first few strokes. Thereafter, a clear
decrease in overshoot and undershoot compared to the lin-
ear feedback controller is seen. The reduction in overshoot
prevents ventilator-induced lung injury caused by peak pres-
sures. Furthermore, the reduction in undershoot is beneficial
in preventing oscillations in the patient flow. These oscil-
lations are unpleasant for the patient and might result in
false ventilator-induced triggering. Therefore, the adaptive

Fig. 14. Experimental results of the feedforward, feedback, and adaptive
control strategy. This shows the resulting airway pressure and patient flow
with a target pressure of PEEP and IPAP of 5 and 20 mbar, respectively.

Fig. 15. Tracking errors of the different controllers and convergence of R̂lin
of the adaptive controller with a target pressure of PEEP and IPAP of 5 and
20 mbar, respectively.

controller improves patient comfort and consistency of the
treatment. Besides all these improvements, during the fifth
breath, the adaptive controller is slightly overcompensating
the pressure drop, causing overshoot in the airway pressure
(see Fig. 14). This is explained by the fact that a linear resis-
tance model is used to estimate the quadratic hose resistance of
the actual hose. This causes the estimator to overestimate the
resistance during the start of inhalation. The high flows during
inhalation result in a large contribution of the quadratic term
to the pressure drop. When the flow has converged to a steady
value during the remainder of the inhalation, the controller
will overcompensate the pressure drop, causing the pressure
to exceed the IPAP level. This oscillation of the estimated
resistance is clearly shown in Fig. 15.

A visualization of the resistance estimate R̂lin compared to
the actual resistance is shown in Fig. 16. Fig. 16 also shows
the pressure drop �p over the hose on the left vertical axis
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Fig. 16. Variation of the estimated hose model, linear resistance with
estimated R̂lin, with the actual measured model with a target pressure of PEEP
and IPAP of 5 and 20 mbar, respectively. Maximum flow in this figure is the
same as the maximum flow Qout through the hose in the experiment.

and the flow through the hose Qout on the horizontal axis.
The estimated resistance model, i.e., after 16 s in Fig. 15,
is depicted by the blue area, and the estimated resistance
model is oscillating in this area. The blue dots show the actual
measured resistance model of the hose. This shows that the
estimate is still fairly accurate in the low outlet flow area, up to
4 ×104 mL/min. The histogram in Fig. 16 displays how often
a given flow is measured. Since the flow is mainly in the low
flow regime, the linear estimate is fairly accurate on average.

3) Main Conclusion: This experimental study shows that
the adaptive controller is practically applicable to sedated
patients under PCV. The experimental study with low flows
shows that the tracking error converges to zero and decreases
overshoot and undershoot significantly compared to the linear
feedback controller. The error is clearly converging to zero
except for the region where the pressure is increasing and
decreasing. In these areas, the controller is responding slightly
too late, which is mainly caused by the presence of delays
in the system. In the experimental case study with higher
pressures and flows, the tracking error decreased significantly
compared to the state-of-practice controllers. In particular,
the adaptive controller prevents overshoot in patient flow,
which prevents false triggering. It should be noted that per-
formance could be further improved by using a quadratic
resistance model in the adaptive controller; this could prevent
oscillations of the resistance estimate. Furthermore, it may
improve the accuracy of the estimated pressure drop and there-
with the tracking performance. To improve the performance
even further, the delays in the system should be analyzed and
compensated in the control strategy. The latter two aspects are
considered outside the scope of this article.

B. Scenario With Spontaneously Breathing Patients

In this section, the results of an experiment with a spon-
taneously breathing patient under CPAP ventilation are pre-
sented and discussed. Again, the section is divided into the
test case description, experimental results, and a summary of
the main conclusion.

Fig. 17. Experimental results of the feedforward, feedback, and adaptive
control strategy. This shows the resulting airway pressure of a spontaneously
breathing patient with the CPAP ventilation mode.

1) Test Case: The same setup, i.e., patient, hose, leak, and
controllers, is used as in the previous experiments. Further-
more, the patient effort is the same as in the simulations and
is shown in Fig. 9. This profile is generated by the ASL
5000 Breathing Simulator, which is used in the experiments.
The target pressure used in this simulation is 5 mbar.

2) Experimental Results: The resulting airway pressure for
all three controllers is shown in Fig. 17. The feedforward
and feedback controller show the results comparable to the
simulations. The adaptive controller shows an improvement
in tracking performance. The biggest improvement is the
decrease in undershoot (see the arrow in Fig. 17). Furthermore,
the same problem as for the fully sedated patient is seen;
the controller is slightly overestimating the resistance during
inhalation. This causes the pressure to be slightly higher than
desired after inhalation and it is slowly converging to the
desired value (see Fig. 17). Furthermore, Fig. 17 shows some
peaks when the patient starts and ends inhalation, and this
indicates that the controller does not respond fast enough to
the patient-induced disturbance.

3) Main Conclusion: This experimental case study shows
that the adaptive controller is practically applicable to spon-
taneously breathing patients as well. The overall performance
is improved over the state-of-practice controllers. However,
it shows the oscillations in the patient airway pressure paw,
whereas the simulations showed exact convergence.

In conclusion, the adaptive controller shows an overall
improvement in performance over the state-of-practice con-
trollers. However, the performance of the adaptive controller
could be further improved by using a more realistic hose
model, i.e., including a quadratic term. Another problem that
affects the performance in experiments is the delay in the
sensor line of the airway pressure. This delay causes a timing
mismatch between the measured signals. Compensation for
this delay in the estimator might improve performance as well.

VII. CONCLUSION

In this article, an adaptive control approach for mechanical
ventilation is presented. This control approach aims to improve
the tracking performance for large variations of patient-hose
parameters, unintended leakages, and unknown patient breath-
ing efforts. It has been shown through stability analysis
that this controller ensures the exact tracking of the desired
pressure set-point, independent of the patient-hose parameters,
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unintended leakages, and unknown breathing efforts. Using
this control approach requires no additional calibration of the
hose-filter system, which saves valuable time in the ICU of a
hospital.

Furthermore, using a simulation study, it is shown that
the adaptive controller achieves exact tracking and therewith
improves tracking performance significantly over state-of-
practice controllers. Through an experimental case study, it is
shown that the controller is practically applicable. In these
experiments, the adaptive controller shows an improvement in
pressure tracking performance, i.e., improved rise time, less
overshoot and undershoot, and faster settling times, compared
to the state-of-practice linear feedback controller. Furthermore,
it prevents overshoot in patient flow, which might prevent false
triggers and improve patient comfort.

To improve the performance in practice, the adaptive con-
troller could be extended to contain a quadratic hose resis-
tance term. Furthermore, the delays in the system should
be incorporated in the controller design. This might prevent
the oscillations of the hose resistance estimate, resulting in
improved tracking performance in practice.

In future work, other control methods should be considered
to improve the control performance of mechanical ventilation
further. A key example is a data-driven control method,
namely, repetitive control. Repetitive control makes use of
tracking errors during previously executed tasks to improve
the performance in the current task. Therefore, it is particularly
suitable for a repetitive process, such as ventilation.

APPENDIX

AUXILIARY LEMMAS

The lemmas presented in this section are used to prove
Lemma 1 and Theorem 1 in Section IV-C. Lemmas 2–4 serve
as auxiliary results to Lemma 5, in which the boundedness of
Qout(t) is shown. First, Lemma 2 shows that P(t) is always
nonnegative.

Lemma 2: Consider the covariance dynamics in (26) and
suppose that Assumption 1 holds. Then, P(t) > 0 for all
t ≥ 0.

Proof: Using (26), it can be concluded that sufficiently
small positive P results in Ṗ > 0. Hence, P(t) > 0 for all
t ≥ 0 if Assumption 1 (P(0) > 0) holds. �

In Lemma 3, it is proven that |eLS(t)| is nonincreasing (and
bounded), and hence, the sign of eLS(t) will never change.

Lemma 3: Consider the least squares error dynamics in (27)
and suppose that Assumption 1 holds. Then, |eLS(t)| is non-
increasing (and bounded) for all t ≥ 0 and the sign of eLS(t)
will never change.

Proof: The differential equation governing the dynamics
of eLS is given in (27), and this can be written as ėLS =
−α(t)eLS, with α(t) := P(Q2

out(t)/m2). From Lemma 2,
the fact that Q2

out(t) ≥ 0, and m2 > 0, and it is ensured that
α(t) ≥ 0 and that |eLS(t)| is nonincreasing (and bounded) for
all t ≥ 0 and the sign of eLS(t) will never change. �
In Lemma 4, the boundedness of plung is shown.

Lemma 4: Consider the lung dynamics in (16) and suppose
that Assumptions 1–3 hold. Then, plung(t) is bounded for all
t ≥ 0.

Proof: First, it should be noted that ptarget is
bounded by design (Assumption 2) and ṗpat is bounded
(Assumption 3). Therefore, plung (see (16)) is bounded if,
first, (−Rleak − eLS)/(Clung(eLS(Rleak + Rlung) + Rleak Rlung))
remains negative and bounded for all t ≥0, note that eLS is
bounded (see Lemma 3) and, second, eLS(Rleak + Rlung) +
Rleak Rlung is bounded away from zero, i.e., |eLS(Rleak +
Rlung)+ Rleak Rlung| > ε, for some ε > 0, for all t ≥ 0. If these
conditions hold, ṗlung in (16) has the opposite sign of plung(t)
for large enough values of |plung(t)|, and therefore, plung(t)
is bounded. The following inequalities ensure the required
properties.

(I) eLS(t) > −Rleak ∀t ≥ 0.
(II) eLS(t) ≥ −(Rleak Rlung)/(Rleak + Rlung) + ε ∀t ≥

0 for some ε > 0.

Using Lemma 3, it is obtained that both inequalities, (I)
and (II), hold for all t ≥ 0 if these hold at t = 0 since
the sign of eLS will not change and |eLS| is nonincreasing.
Using eLS := Rlin − R̂lin, it is obtained that both inequalities,
(I) and (II), are ensured by Assumption 1, and hence, plung is
bounded for all t ≥ 0. �

Finally, in Lemma 5, the boundedness of Qout(t) is ensured.
Lemma 5: Consider the output flow Qout(t) induced by the

dynamics (17) and (18) and suppose that Assumptions 1–3
hold. Then, for all t ≥ 0, Qout(t) is bounded, and hence,
Qout(t) ∈ L∞.

Proof: Qout(t) is characterized by (17) and (18). Since
plung is bounded (Lemma 4) and ptarget is bounded by design
(Assumption 2), Qout(t) is bounded if eLS(Rleak + Rlung) +
Rleak Rlung is bounded away from zero for all t ≥ 0, see the
expression Qout(t) in (17) and (18). The latter is ensured as
well, as shown in the proof of Lemma 4. Since Qout(t) is
bounded, we also know that Qout(t) ∈ L∞. �
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