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Control-Oriented Modeling for Managed Pressure
Drilling Automation Using Model Order Reduction
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Wil H. A. Schilders, and Nathan van de Wouw

Abstract— Automation of managed pressure drilling (MPD)
enables fast and accurate pressure control in drilling operations.
The performance that can be achieved by automated MPD
is determined by, first, the controller design and, second, the
hydraulics model that is used as a basis for controller design.
On the one hand, such hydraulics model should be able to
accurately capture essential flow dynamics, for example, wave
propagation effects, for which typically complex models are
needed. On the other hand, a suitable model should be simple
enough to allow for extensive simulation studies supporting
scenario analysis and high-performance controller design well.
In this paper, we develop a model order reduction approach
for the derivation of such a control-oriented model for single-
phase flow MPD operations. In particular, a nonlinear model
order reduction procedure is presented that preserves key system
properties such as stability and provides guaranteed (accuracy)
bounds on the reduction error. To demonstrate the quality of the
derived control-oriented model, comparisons with field data and
both open-loop and closed-loop simulation-based case studies are
presented.

Index Terms— Automatic control, managed pressure drilling,
model order reduction, modeling, wave propagation.

I. INTRODUCTION

TO ACCESS underground resources, such as oil, gas
and geothermal energy, deep wells often need to be

drilled. While drilling a well, a fluid, called drilling mud,
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is circulated through the drilling system to transport drilling
cuttings to the surface and to keep the wellbore pressurized. In
particular, the pressure at the bottom of the wellbore should
be kept above a lower limit to prevent influx of liquid and
gas into the wellbore from surrounding formations, otherwise
disastrous well control events, such as the Deepwater Horizon
blowout [1], can occur. In addition, the bottom-hole pressure
should be kept below an upper pressure bound to avoid frac-
turing the formations and prevent lost circulation, which can
cause pressure drop if not detected. These objectives are con-
ventionally accomplished by adjusting the mud density during
drilling. However, this method of pressure control is slow and
inaccurate, and this method lacks a means of compensating
transient pressure fluctuations caused by, for instance, drilling
into a high pressure zone and variations in the mud flow
rate.

To overcome the drawbacks of the conventional pressure
control method, the method of managed pressure drilling
(MPD) has been introduced a few decades ago, see, for
example, [2]. In MPD, the annulus is sealed off at the top
with a rotating control device and the mud is circulated out of
the well through a choke valve, see Fig. 1. This combination
provides a back-pressure that can be actively controlled by
changing the choke opening to compensate for fluctuations
in the downhole pressure [3]. In automated MPD, the back-
pressure is controlled by an automatic control system.

The performance of this control system not only depends
on the controller itself but also on the underlying hydraulics
model based on which the control system is designed. This
model should be accurate enough to capture the essential
hydraulic characteristics of the system and, at the same time,
the complexity of the model should be restricted to facilitate
the application of established system-theoretic analysis and
controller design techniques. Existing low complexity models,
such as the model mentioned in [3], are, however, incapable of
capturing essential transient dynamics, such as the propagation
of pressure waves. Ignoring such phenomena in modeling and
controller design can cause a failure in the accomplishment
of control objectives, such as guaranteeing that the downhole
pressure stays within the aforementioned pressure bounds.
Specifically, in the case of longer wells (longer than 4000 m),
the wave propagation effect becomes so significant [4] that
it can cause instability issues [5]. The goal of this paper is
to construct a high-fidelity, though low-complexity, hydraulics
model suitable for MPD automation.
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Fig. 1. Simplified schematic of a drilling system operated using MPD.

For many drilling scenarios, the system hydraulics can be
described by linear hyperbolic partial differential equations
(PDEs) and a set of boundary equations. The equations
describing these boundary conditions are nonlinear, but these
nonlinearities act only locally, that is, at the boundaries. For
controller design, we are more interested in finite-dimensional
and low-order models of ordinary differential equations
(ODEs), for which control theory is well developed. A finite-
dimensional model can be obtained by spatially discretizing
the PDE. In this case, the order of the finite-dimensional
model is dependent on the resolution of the discretization,
the discretization scheme, and the desired accuracy in the
preservation of the properties of the infinite-dimensional
model. Preservation of the wave propagation effect is
of particular interest, which requires a high-resolution
discretization, due to the dominant advective nature of
hyperbolic systems. Moreover, there are local variations in
the cross-sectional area of the flow path which can potentially
cause additional local nonlinearities in the finite-dimensional
model [6]. Thus, finite-dimensional models resulting from
the spatial discretization of PDEs are generally of high order,
nonlinear, and not suitable for existing controller design
techniques or may lead to high-order controllers that are
challenging to implement in real time.

Model reduction may be employed to obtain low-order
approximations of the resulting finite-dimensional model such
that system key properties, including stability and accuracy, are
preserved. During the last decade, control-oriented hydraulics
models obtained from physics-based model-complexity reduc-
tion have gained popularity in MPD automation [2], [3], [7].
These models are obtained by ignoring the distributed nature
of the hydraulics of a drilling system. Another perspective
to physics-based model reduction is given by using low-
resolution spatial discretization methods [5], [8], [9]. This

approach has drawbacks similar to the physics-based approach,
as low-resolution discretization methods are generally not
capable of accurately capturing the wave propagation phenom-
enon. Contrary to these two approaches, the high potential
of model complexity reduction through model order reduction
techniques has only rarely been employed in MPD automation.
In [10], a linear model reduction method is used for the reduc-
tion of complex controllers designed for MPD systems. In
[11], a staggered-grid approach was used to derive a high-order
MPD-relevant hydraulics model. This model was then reduced
using a linear model order reduction technique. In [12], data-
based techniques were employed for deriving linear control-
oriented MPD models. Nonlinear model order reduction for
MPD automation has not yet received considerable attention.

In this paper, given: 1) the infinite-dimensional (PDE)
model combined with 2) local nonlinearities, the resulting
(discretized) model is a nonlinear system comprising high-
order linear dynamics with local nonlinearities. In our previous
work [13], we studied model reduction of an earlier version of
this hydraulics model based on the method mentioned in [14],
which preserves key system properties such as L2 stability.
We also provided a guaranteed and computable bound on the
reduction error of the reduced-order system. For controller
purposes, availability of such an error bound is important for
two reasons: 1) the error bound is a measure of the accuracy
of the reduced model and 2) it can be used as a bound
on the modeling uncertainty induced by reduction that can
be useful in the design of robust controllers [15]. In this
paper, we extend the work of Naderi Lordejani et al. [13]
from three perspectives. First, we extend the nonlinear finite-
dimensional, but high-order, hydraulics model by considering
interactions with formations and addressing variations in the
cross-sectional area of the flow path. Additionally, compar-
isons with field data are provided to evidence the accuracy of
the model. Second, the complexity of the resulting nonlinear
model is reduced by taking a bounded-realness preserving
approach to model reduction. This approach guarantees the
preservation of stability properties irrespective of the reduction
order. Third, we illustrate the importance of preserving the
wave propagation effect in a control-oriented model through
closed-loop simulation case studies.

Outline: Section II is devoted to the mathematical modeling
of the system. In Section III, the proposed model order reduc-
tion procedure is described. Model validation and illustrative
simulation results are presented in Section IV and, finally,
conclusions in Section V.

Notation: The notation R refers to the field of real num-
bers, and L2 is the space of functions x : [0,∞) → R

n

with bounded norm �x�2 = (
� ∞

0 x T (t)x(t) dt)
1/2

. We define
δx := x − x̂ , with x̂ an approximate of x . A block-diagonal
matrix with A1, . . . , Am on the diagonal is represented as
blkdiag{A1, . . . , Am}, and Im is the m × m identity matrix.
Sub-/superscripts a and d are used to distinguish between,
respectively, the annulus and drillstring, and their respective
variables and parameters. A sub-/superscript p, for pipe, is
used when model developments apply to both annulus and
drillstring.
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II. MATHEMATICAL MODELING

This section focuses on hydraulics modeling for MPD. An
infinite-dimensional hydraulics model is presented first, and
then it is discretized to obtain a finite-dimensional ODE model.

A. Infinite-Dimensional Model

A common modeling approach in drilling is the so-called
U-tube modeling, where the drillstring and annulus are
regarded as pipes connected in the middle in a “U” shape.
The behavior of a 1D single-phase laminar flow in a pipe
(by discarding energy equations) can be described by a PDE
system as (see [3], [16] and the references therein)

∂(ϕρ)

∂ t
+ ∂(ϕρν)

∂ξ
= ϕ�

∂(ϕρν)

∂ t
+ ∂(ϕρν2+ϕp)

∂ξ
= −ϕ

�
ρg sin θ+ 32μρν

ρD2

�
+ p

∂ϕ

∂ξ
(1)

where ξ ∈ (0, l) and t > 0 are the spatial and time variables,
respectively, and l is the length of the pipe. The variables
ρ(t, ξ), ν(t, ξ), and p(t, ξ) are the density, velocity, and
pressure of the fluid, respectively. Moreover, ϕ(ξ), D(ξ),
and θ(ξ) are the cross-sectional area, hydraulic diameter, and
inclination of the pipe. Finally, μ and g are the liquid viscosity
and the gravitational acceleration, respectively, and � is the
distributed flux of liquid exchange between the flow path and
the surroundings. The equation of state is chosen as in [3],
that is,

p = c2
l (ρ − ρ0) + p0 (2)

where cl is the speed of sound in the mud, and p0 and ρ0 are
the reference pressure and density, respectively.

Assumption 1: The variations in the area of the pipe occur
in the form of a limited number of discontinuities, that is, ϕ(ξ)
is piecewise constant.
This assumption is in agreement with the geometry of a typical
drilling system, see [6], [17]. In a single-phase drilling system,
the flow velocity ν(t, ξ) is far smaller than cl . Thus, we may
ignore the term ϕρν2 in (1) when comparing it to the term
ϕρc2

l , which arises in (1) due to (2). Moreover, given that
the variations of density compared to ρ0 are also small, we
assume that 1/ρ ≈ 1/ρ0. Furthermore, we assume that the
flux exchange can occur only at a single point at boundaries
which leads to � = 0. Applying these assumptions together
with Assumption 1, (1) reduces to a linear PDE system of the
form

∂q

∂ t
+ 


∂q

∂ξ
= −F(ξ)q (3)

with

q =
�

ρ
ρν

�
, 
 =

�
0 1
c2

l 0

�
, F =

⎡
⎣ 0 0

g sin θ
32μ

ρ0 D2

⎤
⎦.

Remark 1: We note that (3) holds for the entire flow path
ξ ∈ (0, l) except at the location of the discontinuities in the
cross-sectional area. At those locations, we still describe the
flow behavior using (1).

Remark 2: We use two models of the form (3) to describe
the flow in the annulus and drillstring. For the drillstring, ξ = 0
and ξ = l, respectively, correspond to the location of the pump
outlet at the surface and the bit, whereas for the annulus these,
respectively, refer to the bottom of the well and the choke inlet
at the surface.

Remark 3: The hydraulic diameter of the drillstring is given
by its inner diameter, that is, Dd = din, while that for
the annulus is given as Da = Din − do, with do the outer
diameter of the drillstring and Din the diameter of the wellbore.
Moreover, we have θd(ξ) = −θa(l − ξ).

For a drilling system in an MPD setting, we define boundary
conditions as follows:

Jp(t) − ϕd(0)ρd(t, 0)νd(t, 0) = 0 (4a)

Jb(t) − ϕd(l)ρd(t, l)νd(t, l) = 0 (4b)

Jb(t) − ϕa(0)ρa(t, 0)νa(0, t) + Jr (t) = 0 (4c)

Jb(t) − fb(ρ
d(t, l) − ρa(t, 0)) = 0 (4d)

Jc(t) − cl�
nz

i=1kc,i Gi(zc,i (t)) fc(ρ
a(t, l), ρco(t)) = 0 (4e)

with [18]

fb(x) = Anzcd cl

�
2ρ0 max(0, x) (5a)

fc(x, ρco) = sgn(r)
�|r |, r = 2x(x − ρco). (5b)

In these equations, Jp, Jb, and Jc represent the pump, bit,
and choke mass flow rates, respectively. Moreover, nz , kc,i ,
zc,i (t), and Gi (·) are, respectively, the number of choke valves,
the flow factor, opening, and characteristic of the choke i =
1, . . . , nz , and ρco is the density corresponding to the pressure
downstream the choke pco, whereas Anz and cd are the area
and the discharge coefficient of the bit nozzles, respectively.
In (4c), Jr represents the lumped flow exchange between the
reservoir and the wellbore, and it is governed by a linear
equation of the form [19]

Jr (ρ
a(t, 0), t) = −kr c2

l (ρ
a(t, 0) − ρr (t)) (6)

where kr is the production index and ρr (t) is the density
corresponding to the reservoir pressure pr (t) through (2). Note
that ρa(t, 0) is the downhole density ρdh(t), which is related
to the downhole pressure pdh(t) through (2).

Remark 4: Here, it is assumed that influx from the reservoir
has the same properties, for example density, as the drilling
mud. To be able to handle cases where this assumption
does not hold, multiphase flow models, such as the drift-
flux model [16], should be used for describing the flow in
the annulus. These models are, however, highly nonlinear.
Moreover, we note that the method proposed in this paper
can be used with more advanced reservoir models such as
Jr = −krc2

l

� ξ2

ξ1
(ρa(t, δ) − ρr (t, δ)) dδ, where ρr (t, ξ) is the

distributed reservoir density.
Remark 5: The max(·) operator in (5a) is used to model a

nonreturn value installed above the bit in the drillstring. This
valve is open only if pd(t, l) > pa(t, 0).

B. Finite-Dimensional Model

To derive a finite-dimensional approximate of the infinite-
dimensional model in (3), we use a first-order spatial dis-
cretization scheme known as Kurganov–Tadmor (KT) [20].
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The discontinuities in the cross-sectional area can significantly
contribute to the system behavior. At the location of these local
area variations, where the system behavior is described by (1),
the velocity and the pressure can experience rapid changes.
To incorporate effects of these variations into the numerical
scheme, we combine the KT scheme with the method proposed
in [21]. Hereto, the spatial domain is discretized into n cells
Ci = (ξi−1/2, ξi+1/2) of length �ξ , with ξi+1/2 = i�ξ called
the i th cell interface and ξi = (i − 1/2)�ξ marking the
middle point of this cell. We next make further simplifying,
but realistic, assumptions.

Assumption 2: The discontinuities in the area can occur
only at ξ = ξi+1/2, i ∈ {1, 2, . . . , n}.

Assumption 3: The change in the area at a discontinuity is
relatively small such that ν(t, ξ) � cl holds.

With these assumptions, the discretization of (3) leads to

Q̇i (t) = A1 M−
i−1 Qi−1(t) − Ai

2 Qi (t) + A3 M+
i+1 Qi+1(t) (7)

for i = 1, 2, . . . , n, and where Qi (t) is an approximate of
the spatial average of the vector q(ξ, t) over the cell Ci .
Also, A1 = λI2/2 + 
/(2�ξ), Ai

2 = F(ξi ) + λI2, A3 =
λI2/2 − 
/(2�ξ), with λ = cl/�ξ and Im the m × m
identity matrix. Moreover, M±

i = diag{1, φi/φi∓1}, with φ
the discretized cross-sectional area ϕ(ξ) of the flow path and
M−

0 = M+
n+1 = I2.

Remark 6: In (7), M±
i represents a type of local coordinate

transformation with respect to the geometry, which is inspired
by Kröner and Thanh [21]. To derive this transformation,
we used Assumption 2 and Assumption 3. Assumption 2
enables us to consider the conservation of mass over all the
interfaces and Assumption 3 makes changes in the density over
a discontinuity in the area negligible, which in turn makes local
nonlinearities due to the variations in the area negligible. Note
that the preservation of effects of the impulsive term pdϕ/dξ
in (1) (due to discontinuities in the area ϕ) in the finite-
dimensional model is enabled through this transformation.

Expanding (7) for i = 1 and i = n, one encounters depen-
dencies on Q0 and Qn+1. We consider these as approximations
of the boundary variables q(t, 0) and q(t, l), respectively.
Using the approach in [22], one arrives at

Q0 = awα + R1

φ1
J p

in, Qn+1 = −awβ + R2

φn
J p

o (8)

where J p
in and J p

o are the mass flow rates at the inlet and outlet
of the pipe, respectively, and α(t) and β(t) are the solutions
of

α̇(t) = −λα(t) − L2(F(x1) − λI2)Q1(t)

β̇(t) = −λβ(t) − L1(F(xn) − λI2)Qn(t) (9)

with λ = cl/�x , L1 = 0.5[cl, 1], L2 = 0.5[−cl, 1], aw =
[−2/cl, 0]T , R1 = [1/cl, 1]T and R2 = [−1/cl, 1]T . In view
of their fast dynamics, the equations in (9) are assumed
to be always in their steady states, that is, α̇(t) = 0 and
β̇(t) = 0, for all t ≥ 0. Therefore, we can solve (9) in terms
of Q and plug the solution into (8) to eliminate dependencies
on α and β.

Finally, with these explanations, combining (7)–(9), we
write the hydraulics model describing the flow behavior in
a pipe in a state–space form as�

ẋp(t) = Apxp(t) + Bp
u up(t) + Bp

wwp(t)

vp(t) = Cp
v xp(t)

(10)

where xp = [(Q1)
T
, . . . , (Qn)T ]T ∈ R

2n is the state vector
and up = J p

in, wp = J p
o are the inputs. Moreover, we define

the boundary densities as the outputs, that is,

vp := [vp
1, v

p
2]T = 

Q0
1, Qn+1

1

�T ∈ R
2 (11)

where the approximations J p
in ≈ φ1 Q0

2 and J p
o ≈ φn Qn+1

2 have
been used in the derivation of the output equations in (10) to
avoid the occurrence of feedthrough terms.

Next, we consider one model of the form (10) for the
annulus and one for the drillstring. By a suitable combination
of those, we derive a finite-dimensional model for the entire
system, for which we define x := [x T

d , x T
a ]T ∈ R

nc , nc = 4n,
as the state vector. The definition of vp and the boundary con-
ditions (4) leads to the following nonlinear finite-dimensional
model for a single-phase MPD process

�lin :

⎧⎪⎨
⎪⎩

ẋ(t) = Āx(t) + B̄uu1(t) + B̄ww(t)

v(t) = C̄v x(t)

vr (t) = C̄vr x(t)

(12)

�nl : w(t) = h(v(t), u2(t)) (13)

where vT = [v1, v2], containing the density drop over the bit
v1 := vd

2 − va
1 and density at the choke v2 := va

2, is a vector
of internal outputs, and vT

r = [vd
1 , v

a
1] contains densities at

the pump and downhole. Here, we consider a vector of the
densities at the pump, downhole and choke as the output of
the system and define yT := [vT

r , v2]. The exogenous inputs to
the system are the pump flow Jp(t), the choke openings, the
density downstream the choke ρco(t), and the reservoir density
ρr (t)

uT
1 := 

Jp, kr c2
l ρr

�
uT

2 := 
cl�

nz
i=1kc,i Gi (zc,i), ρco

�
. (14)

Moreover, we have

hT (v, u2) = [ fb(v1), u21 fc(v2, u22)] (15)

where the nonlinearities fb and fc are the result of the
nonlinear boundary conditions, see (4).

Remark 7: The model in (12) and (13) is in the form of
a feedback interconnection of a linear subsystem �lin and a
nonlinear, but low-dimensional, mapping �nl. This intercon-
nection is represented by � = (�lin,�nl).

Remark 8: In general, the flow in the drillstring is turbulent
for normal mud flow rates. Although we have considered a
linear friction model in this paper, effects of turbulent flow
in the drillstring can be partially captured in the model by
considering a lumped local nonlinear function. In particular,
we lump these effects in the bit equation (5a) through Anz.
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III. NONLINEAR MODEL ORDER REDUCTION

To effectively preserve properties such as the wave propa-
gation effect of a drilling system in a finite-dimensional model
�, the discretization should be performed over a fine spatial
grid. However, fine gridding results in a high-order ODE
model which is too complex for the design and implementation
of pressure controllers. Model order reduction methods can
address this issue by obtaining a low-order approximation of
a high-order model while preserving key system properties.
In �, the nonlinearities appear only locally, enabling us to
exploit linear model reduction techniques to reduce system
complexity by reducing only its linear part �lin, as explained
in the sequel, after some model reformulation.

A. Model Reformulation

To facilitate the model order reduction procedure and the
involved analyses, we first need to transform the model into
a suitable form by performing some loop transformations.
To this end, it is reasonable to change the origin of the
system to an equilibrium point x∗ and denote the transformed
system by �∗ = (�∗

lin,�
∗
nl). Note that x∗ corresponds to the

nominal inputs u∗
1 and u∗

2. The linear subsystem �lin, and
naturally �∗

lin, is not asymptotically stable as it has one pole
at zero, modeling physics of scenarios with unequal incoming
and outgoing mass flow rates. Therefore, we perform a loop
transformation that acts as an output feedback on the linear
subsystem and stabilizes the linear subsystem �∗

lin, resulting
in a closed-loop linear subsystem �̄lin, and subsequently �̄nl.
It is noted that this stabilizing output feedback Hv , see Fig. 2,
is designed based on the properties of the nonlinear mapping
�∗

nl because an MPD process is open-loop stable [23] due
to the choke valve. We note that the reservoir can also have
stabilizing effects. After performing this loop transformation
and stabilizing the linear subsystem, we can guarantee the
stability of the origin of the interconnected system �∗ by
showing that the interconnection satisfies some small-gain
condition. However, this condition is often a conservative
one. To further alleviate the conservatism associated with the
small-gain condition, given that the internal connections are
multidimensional, we use a scaling matrix S. After performing
these loop transformations, the block diagram in Fig. 2 is
obtained. In this block diagram, Cy is a matrix that extracts
y from the vector [vT

r , vT ]T . We pursue the reduction by
considering the reformulated model �∗ = (�c

lin,�
c
nl) which

reads as

�c
lin :

⎧⎪⎨
⎪⎩

ż = Az + Buũ1 + Bww̃s

ṽs = Cv z(t)

ṽr = Cvr z(t)

(16)

�c
nl : w̃s = h̃c(ṽs, ũ2) (17)

where z = x − x∗, vs = S−1v and ws = Sw − SHvv. A
tilde “ ˜ ” indicates the difference between a variable and its
operational value denoted by ∗, and

h̃c(ṽs , ũ2) = hc
�
ṽs + v∗

s , ũ2 + u∗
2

� − hc
�
v∗

s , u∗
2

�
with

hc(vs, u2) = Sh(Svs , u2) − SHv Svs . (18)

Fig. 2. Block diagram of the system with the loop transformations.

In the next section, we describe the proposed model reduc-
tion procedure.

B. Model Order Reduction Procedure

The particular structure of �∗ enables us to reduce the
model complexity by only reducing the linear subsystem using
existing model order reduction techniques for linear systems.
We require such a reduction procedure to have two main
properties: 1) stability properties of �∗ should be preserved
in the reduced system, indicated by �̂∗, regardless of the
reduction order k, that is, the order of �̂∗. The benefit of
this property is that the user can freely select the reduced-
order model to tradeoff between accuracy and complexity,
and 2) the reduction method should well preserve the low-
frequency behavior of the system, especially the steady-
state response, which becomes important when the reduced
hydraulics model is to be used for estimation. In addition to
these two main properties, a model order reduction method
should also preserve the feedback interconnection structure of
� such that all the inputs and outputs keep their physical
interpretations.

The so-called balanced singular perturbation method [24] is
perhaps the most popular model reduction method for linear
systems that preserves the steady-state response and can well
approximate the low-frequency behavior of a system. There is
another model reduction method that preserves the bounded
realness property of a bounded real system [15]. As shown in
[25], if this method is combined with a singular perturbation
model approximation, the overall reduction technique, called
bounded real singular perturbation (BRSP), remains bounded-
real preserving. In this paper, we use the BRSP technique for
reducing the linear subsystem in line with the above reduction
objectives. Consider hereto the following definition.

Definition 1 ([15]): An asymptotically stable linear system
with matrix transfer function G(s) is said to be strictly
bounded real if GT (− jω)G( jω) < I , for all ω ∈ R.

Remark 9: The H∞-norm of strictly bounded real systems
is smaller than one.

Lemma 1 ([25]): The asymptotically stable, minimal real-
ization in (16) is strictly bounded real if and only if the
algebraic Riccati equation

AP + P AT + B BT + PCT C P = 0 (19)
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with B = [Bu, Bw] and CT = [CT
v , CT

vr ], possesses two
symmetric and positive-definite solutions P = Pmin ∈ R

nc×nc

and P = Pmax ∈ R
nc×nc such that Pmax > Pmin > 0.

Next, we define a bounded real balanced realization [15].
Definition 2: A strictly bounded real system is said to be

in a bounded real balanced realization if

Pmin = P−1
max = diag{σ1, σ2, . . . , σnc } (20)

where 1 > σ1 ≥ σ2 ≥ · · · ≥ σnc > 0 are the bounded real sin-
gular values of �c

lin.
Given that Pmax and Pmin are positive-definite and symmetric
matrices, there exists a nonsingular coordinate transformation
z = T ζ , with T ∈ R

nc×nc , for which the transformed system in
ζ -coordinates satisfies (20). The existence of T follows from
basic results in linear algebra on simultaneous diagonalization
of matrices (see [26]).

Model reduction of the bounded real balanced system via a
singular perturbation method preserves the bounded realness
as well as the steady-state solution. In particular, we have the
following lemma based on a result in [25].

Lemma 2: Let the linear subsystem �c
lin be asymptotically

stable, minimal, and strictly bounded-real. Then, the reduced-
order model

�̂c
lin :

⎧⎪⎨
⎪⎩

˙̂ζ = Âζ̂ + B̂uũ1 + B̂w ˆ̃ws

ˆ̃v s = Ĉv ζ̂ + D̂vu ũ1 + D̂vw ˆ̃ws

ˆ̃vr = Ĉvr ζ̂ + D̂yuũ1 + D̂yw ˆ̃ws

(21)

with ζ̂ ∈ R
k , the reduction order k such that 1 ≤ k < nc,

ˆ̃vs , ˆ̃vr ∈ R
2, obtained by model order reduction of �c

lin via
BRSP is asymptotically stable, minimal, and strictly bounded
real. Moreover, the H∞-norm of the error system �c

lin −�̂c
lin is

bounded by the gain εlin = 2
�n

j=k+1 σ j . In addition, both �c
lin

and �̂c
lin have the exact same frequency response functions at

zero frequency.
Remark 10: It should be noted that even though there are

no feedthrough terms in the output equations of the linear
model �c

lin, such terms appear in the reduced model �̂c
lin to

enforce the preservation of the steady-state response.
Finally, the interconnection of the original nonlinear map-

ping �c
nl and the reduced linear subsystem �̂c

lin leads to the
total (nonlinear) reduced-order system �̂∗ = (�̂c

lin,�
c
nl). Next,

we discuss the properties of this system.

C. Properties of Original and Reduced-Order Systems

Under certain conditions, it can be guaranteed that the
described model order reduction technique preserves stability
properties and provides a computable bound on the reduction
error in terms of the L2-induced system norm for the reduced-
order nonlinear system �̂∗ (see [14] for properties of this norm
and also the notion of incremental L2 gain). These properties
will be stated formally in the form of a lemma and theorem
in this section.

Lemma 3: Let �c
lin in (16) be an asymptotically stable,

minimal, and strictly bounded-real realization. Moreover, let
the interconnection �∗ = (�c

lin,�
c
nl) satisfy the small-gain

condition, that is,

μwv < 1 (22)

with μwv an upper bound for the incremental L2-gain of �c
nl

from ṽs to w̃s . Then, the origin of �∗ is asymptotically stable,
and it has a bounded incremental L2-gain (from input ũ =
[ũ1, ũ2]T to ỹ) with bound

γyu = √
2 max

�
γ̄yu1 , γ̄yu2

�
. (23)

Here, γ̄yu1 = γyu1 + γywμwv/(1 − μwv) and γ̄yu2 =
γywμwu2/(1−μwv) are the incremental L2-gains of the overall
system from ũ1 and ũ2 to ỹ, respectively. The (incremental)
L2-gains through �c

lin from w̃s and ũ1 to ỹ are indicated by
γyw and γyu1 , respectively. Finally, μwu2 is the incremental
L2-gain of �c

nl from ũ2 to w̃s .
Proof: The proof is found in Appendix A.

Theorem 1: Let �c
lin be asymptotically stable, minimal, and

strictly bounded-real, and �̂c
lin an approximate of �c

lin obtained
via the BRSP model reduction with the error bound εlin in
Lemma 2. Moreover, assume that the feedback interconnection
�̂∗ = (�̂c

lin,�
c
nl) is well-posed, that is, the equation ˆ̃vs =

Ĉv ζ̂ + D̂vu ũ1 + D̂vw h̃c( ˆ̃vs, ũ2) exhibits a unique solution with
respect to ˆ̃vs for every ζ̂ ∈ R

k , ũ1 ∈ R
2 and ũ2 ∈ R. In

addition, let (22) hold. Then, the following statements hold.

1) The system �̂∗ has a bounded incremental L2-gain and
its origin is asymptotically stable for ũ = 0.

2) For trajectories with zero initial condition, the output
error ỹ − ˆ̃y = δ ỹ is bounded as �δ ỹ�2 ≤ ε�ũ�2, with
� · �2 denoting the L2-signal norm and the gain

ε =
√

2εlinγyv max(1, μwu2)

(1 − μwv)
2 (24)

where γyv is the 2-norm of Cyblkdiag{I2, S}.
Proof: The proof is found in Appendix B.

Remark 11: As mentioned before, the loop transformations
and the change of coordinate of � have been used to ease the
analyses of this section. Basically, after we have computed
the balancing transformation T , we can ignore all the scaling
matrices involved in the loop transformations and directly
reduce the linear subsystem. Afterward, to recover the original
structure of the interconnection, we can apply an output
feedback-like loop transformation for −Hv , resulting in the
reduced-order system �̂ = (�̂lin,�nl).

D. Designing the Loop Transformations

Due to the square roots in fc(·) and fb(·), see (5), the
function h(·, ·) in (15) and, thus, h̃c(·, ·) in (17), are Lipschitz
only locally. Therefore, we restrict our analysis to a particular
region R of the domain of h(·, ·) where μwv is bounded. We
define

R := �
v ∈ R

2, u2 ∈ R
2
�� pc ∈ [p

c
, p̄c], Jb ∈ [J b, J̄b]

u21 ∈ [u21, ū21], pco ∈ [p
co

, p̄co]
�

(25)

where pc is the flow pressure upstream the choke, which is
related to the choke density v2 through (2). It is recalled that Jb

is related to v via the bit equation (4d). Moreover, the upper
and lower bars in (25) are used to denote, respectively, the
upper and lower limits of a variable. The region R corresponds
to a region Rc in the input space of h̃c(·, ·). It is remarked that
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all properties of the reduced model �̂ hold locally and those
can be guaranteed provided v and u2 remain in R, which is
the case in many MPD scenarios for a large enough region R.

The matrices Hv and S should be designed in such a way
that �c

lin is strictly bounded-real and, additionally, the small-
gain condition (22) is satisfied over Rc. Considering the error
bound (24), a smaller μwv leads to a smaller error bound ε.
However, a small μwv results in larger L2-gains for the linear
system. This, in general, leads to larger εlin, as the quality
of BRSP model reduction is generally decreasing for systems
with increasing gains. Here, as a tradeoff, we design these
parameters such that μwvγvw , with γvw the (incremental) L2-
gain of �c

lin from w̃s to ṽs , is minimized for μwv = γvw in Rc.
We take a two-step approach which provides a heuristic for this
minimization problem. In the first step, we consider a relatively
small initial set R and design Hv such that h − Hvv has the
smallest Lipschitz gain over R. Next, noting that hc(·, ·) is
a multi-input–multi-output mapping, S is designed such that
diagonal elements of ∇vhc, the gradient of hc with respect to
vs , have equal Lipschitz gains. To this end, we design

S = �
μ∗

vw(∇v h̄ − Hv)
−1/2 (26)

for μ∗
wv = 1, where μ∗

wv is a desirable value for μwv . This
choice of S ensures that μwv ≤ μ∗

wv . Afterward, if �c
lin is

strictly bounded-real, R can be enlarged. After designing R
and ensuring that �c

lin is still bounded-real, we set μ∗
wv =

(μwvγvw)1/2 and use (26) to design the final S.

IV. MODEL VALIDATION AND ILLUSTRATIVE CASE

STUDIES

In this section, the validity of the hydraulics model is
assessed by comparing it with measured data obtained from
real-world MPD operations in Section IV-A. After model
validation, the quality of the reduced-order model is illus-
trated by means of industry-relevant simulation case studies
in Section IV-B. Four models M1–M4 are considered in this
section: M1 is the high-order model � and is used as the
reference model, M2 is the proposed reduced-order model
�̂ of order k, M3 is a finite-dimensional model of order k
which is obtained in a similar way as M1, that is, using direct
discretization, but with n = k/4, and M4 is a commonly used,
third-order hydraulics model obtained from a physics-based
model complexity reduction [3].

A. Model Validation

We evaluate the accuracy of the high-order model M1 by
comparing it to field data obtained from a drilling well in Asia
with the geometry reported in Fig. 3 and parameters presented
in Table I. It is noted that depending on �ξ , the geometry of
the flow path which is used to construct the high-order finite-
dimensional model can be slightly different form the original
geometry of the well. This difference is due to the limited
resolution of discretizations.

We have discretized the geometry such that the volume of
the flow path is preserved in each grid element. The average
inclination of the well is 63.4◦. The lumped parameters μ and
Anz are determined by minimizing steady-state errors between

Fig. 3. Geometry of the drillstring and annulus of the well used in model
validation: (thin black lines) real geometry, (thick lines) geometry of the finite-
dimensional model.

TABLE I

PARAMETER VALUES USED FOR MODEL VALIDATION

the simulated and measured pump pressures for a scenario
with significant changes in the pump flow rate. Furthermore,
cl is determined by using knowledge on the length of the well
l and the measured time difference �t f between the onset
of fluctuations in the measured pressure signals at the choke
and pump and using the formula cl ≈ 2l/�t f . The drilling
system has two parallel chokes, that is, nz = 2. Here, instead
of identifying the choke characteristics Gi(·), i = 1, 2, we
compute the implicit combined choke characteristic G(t) from
the measurements. In particular, we use the choke equation
(4e) to approximate G(t) as follows:

G(t) =
2�

i=1

kc,i Gi(zc,i ) � Jc(t)√
2ρc(t)r(pc(t) − pco(t))

(27)

where all the variables on the right-hand side in (27) are mea-
sured signals. We have considered a scenario which consists
of 1) changes in the setpoint for the choke pressure of the
MPD system, and 2) changes in the pump mass flow rate.
We note that the data set used for this scenario is different
from the one used for identifying the model parameters μ,
Anz and cl . The data sets belong to commissioning tests of
an MPD operation at a well length of 1647 m, after running a
casing and before resuming drilling ahead. The inputs to this
scenario are reported in Fig. 4. In the considered scenario, the
drillstring is stationary and the MPD control system regulates
the choke pressure to a given setpoint, see Fig. 5 (bottom).

In Fig. 5, we report on the measured and simulated pump
pressure pp and choke pressure pc. It is noted that the
simulated pump pressure is obtained from vr1 through (2).
We can observe a good agreement between the measurements
and simulation results during both transients and the steady
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Fig. 4. Choke signals and the pump mass flow rate (input variables) from
measurements used in model validations.

Fig. 5. Comparison between measurements and simulations: (top) pump
pressures, and (bottom) choke pressures, the pressure downstream the choke
pco and the setpoint for the choke pressure.

state. In particular, we observe that even though the distributed
nonlinearities due to friction in the drillstring are lumped
into the parameter Anz, the model still accurately predicts the
pump pressure for a significant range in the pump flow rate.
A careful observation of Fig. 4 reveals that at around t = 529 s

Fig. 6. Comparison between measurements and simulations: zoomed-in view
of the pc data in Fig. 5 showing the staircase-like pattern in the choke pressure
due to the wave propagation effect.

some error occurs in the control system that causes an abrupt
decrease in zc,2. This abrupt change initiates a sharp pressure
front that keeps propagating along the annulus for some time,
generating a staircase-like pattern in the choke pressure, which
has been magnified in Fig. 6 for better illustration. Indeed, the
effect of such wave propagation is also captured by the model.
Even though the model shows high capability in capturing the
wave propagation effect, there are still discrepancies between
the model and the system, especially in terms of accurately
capturing the pressure fronts. Reasons for such discrepancies
can be, for instance, unmodeled phenomena in the hydraulics
of a drilling system or inaccuracies in the choke flow mea-
surements which translates into a less accurate choke charac-
teristic G(s). We observe that the model M1 also exhibits a
good accuracy in capturing the delay �t f between pressure
fluctuations at the choke and pump sides of the system. The
measured and simulated mass flow rates Jc are plotted in
Fig. 7, in comparison to the measured pump mass flow rate
Jp. Fluctuations in the choke flow for a fixed pump flow rate
are due to the liquid compressibility and the flexibility of the
well structures. The good match between these fluctuations in
the measured and simulated flows illustrates the fact that M1
also captures these phenomena, which are all lumped into cl ,
with good accuracy.

B. Simulations for Model Reduction Results

After validating the accuracy of the high-order model M1,
the focus of this part is on the performance evaluation of the
proposed model order reduction method. Here, we consider
an MPD-operated drilling system with the parameters and
geometry reported in Table II and Fig. 8, respectively. We
consider a spatial grid for the discretization of the PDE of
n = 150, leading to nc = 600. The nominal inputs are
taken as J ∗

p = 51 kg/s, z∗
c = 0.33, where nz = 1, and the

nominal reservoir density ρ∗
r is designed such that J ∗

r = 0,
that is, ρ∗

r = ρ∗
dh. The region R corresponds to pc ∈ [2, 40]

bar, Jb ∈ [10.2, 62] kg/s, and zc ∈ [0.1, 0.36]. We consider
ρco(t) = ρ0, which allows us to treat ρco as a parameter,
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Fig. 7. Comparison between measurements and simulations: choke and pump
mass flow rates.

TABLE II

SIMULATION PARAMETERS USED FOR MODEL REDUCTION

Fig. 8. Geometry of the drillstring and annulus of the well used in the model
reduction simulations.

thereby reducing the dimension of u2 in (14) to one, that is,
u2 = clkczc, where G1(zc) = zc has been assumed.

With this choice of R, and the corresponding design for Hv

and S, μwv = 0.83 and �c
lin has a Hurwitz A matrix and H∞-

norm less than one, implying the strict bounded realness of this
system. Therefore, we can apply the described nonlinear model
order reduction procedure of Section III to our system while
locally guaranteeing stability properties of the reduced-order
model and providing an error bound. The resulting bounded
real singular values are plotted in Fig. 9. The error bounds εlin

and ε as functions of the reduction order k are plotted in the
same figure. We observe that for reduction orders larger than
20, the error bound becomes comparatively small, meaning
that an approximate model of order k = 20 can result in a
sufficiently accurate model approximation. However, stability
properties of �̂ and the boundedness of the error bound can

Fig. 9. Bounded real singular values and error bounds versus reduction order.

Fig. 10. Comparison between the magnitude of frequency response function
of �̂c

lin in M2 with those of �c
lin in M1 and M3 without scaling matrices (only

from the first three inputs to the first three outputs for a better visibility).

still be guaranteed for arbitrarily smaller reduction orders
1 ≤ k, which is not the case with the reduction approach
in [13]. It should also be noted that the error bound ε can
be conservative, as in its computation we have made several
conservative approximations on L2 gains.

Next, we perform comparative studies. We have performed
in Fig. 10 a comparison between the frequency response
functions of �c

lin in M1 and M3 and of �̂c
lin in M2. We

observe a good match between the high-order model M1
and the reduced-order model M2 up to medium frequencies
and it is able to partially preserve the oscillatory behavior
of the frequency response function, which is exactly related
to the wave propagation effects and the distributed nature of
the system. Contrary to this, while having the same order as
M2, the model M3 preserves the frequency properties of M1
only in low-frequency ranges. This shows that M3 is incapable
of reproducing the wave propagation effects.

1) Open-Loop Simulations: For further comparisons, we
perform time-domain simulations for realistic scenarios, where
events of choke plugging and loss of suction are studied.
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Fig. 11. Inputs to the system for the time domain simulations.

Choke plugging is a critical event that occurs during MPD
operations due to cuttings blocking (partially or fully) the
choke. In practice, there are strategies to handle a choke
plugging event. It is common practice to equip an MPD system
with a stand-by choke installed in parallel with the main choke
and to perform a choke swapping operation. Given that the
detection of a plugged choke and then performing a choke
swapping takes some time, a choke plugging event is usually
followed by some pressure fluctuations in the wellbore. Loss
of suction refers to an event where the pump flow drops from
its normal rate. The drop is typically followed by a decrease in
the choke opening to prevent a large decrease in the downhole
pressure. In this event, there can also be rapid changes in
the pump flow rate which can also cause fluctuations in the
pressure profile of a drilling system. The inputs corresponding
to these scenarios in the simulations are shown in Fig. 11.
For the choke plugging scenario, the simulation results for
the choke pressure pc and pump pressure pp are reported in
Fig. 12. We clearly observe that the reduced-order nonlinear
model M2 provides a highly accurate response approximation
of the original nonlinear model M1 both during transients and
in the steady state. To more thoroughly study the capability
of M2 in capturing the wave propagation effect, we consider
a spike in the choke opening, as shown in Fig. 11. This
spike is to model fluctuations in the choke opening due to,
for instance, saturations in the control system and mistakes
by human operators. This causes a sequence of dissipative
spike-like fluctuations in the pressures which is a phenomenon
exactly due to the wave propagation effect. We observe that
M2 well captures this effect, whereas M3, in spite of having
the same order as M2, does not reconstruct this important
effect.

The results of the second scenario are shown in Fig. 13. The
reduced model provides an accurate approximation of M1 also
in this scenario. We have also considered a spike in the pump
flow rate, given that fluctuations in the pump flow rate occur
quite often in the field. We observe that this spike in the flow
leads to subsequent fluctuations in the pressures due to the
wave propagation effect, which is well preserved in M2 but
not in M3, as observed form Fig. 13.

Fig. 12. Comparison between time domain responses of the high-order model
M1 and the low-order models M2 and M3: a choke plugging event followed
by a spike in the choke opening.

Fig. 13. Comparison between time domain responses of the high-order model
M1 and the low-order models M2 and M3: a loss of suction event followed
by a spike in the pump flow.

2) Closed-Loop Simulations: Closed-loop simulation results
are presented in this section to further illustrate the importance
of preserving the wave propagation effect in a control-oriented
hydraulics model. The control system is based on [19]. We
apply this control system to M1, M2 and, in addition, to
M4, in which the wave propagation effects are compromised
in exchange for simplicity. In this section, we intend to
illustrate that as long as the control objective is to provide a
relatively slow closed-loop system (to have a small bandwidth
in a linear context), the controller design can be performed
based on low-order models similar to M4. However, when
the controller should be faster, in terms of recovering from
disturbances and tracking references, it becomes crucial to use
more accurate hydraulics models such as M2 where the wave
propagation effect is, at least in approximation, preserved.
If such effects are not accounted for during the controller
design stage, instability of the closed-loop system may result.
The simulations are first performed for a low-gain control
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Fig. 14. Comparison between M1, M2, and M4 in a closed-loop setting: the
downhole pressure pdh responses for low- and high-gain controllers.

Fig. 15. Comparison between M1, M2, and M4 in a closed-loop setting:
flow exchange between the formations and wellbore for low- and high-gain
controllers.

system which provides a slow control response. Then, the
simulations are repeated with a high-gain controller, which
improves (i.e., makes faster) the closed-loop response with
the design model M4. We consider ρr (t) as a disturbance
and increase it linearly from ρ∗

dh by 5% (resulting in 5%
increase in the reservoir pressure pr ) in three seconds, starting
at t = 80 s. The choke opening zc is the control input and the
pump flow Jp is kept fixed at J ∗

p . From Fig. 14, where the
downhole pressure is plotted, we observe that with the low-
gain controller, the closed-loop responses with M1 and M2
are very close and similar to that with M4. However, with the
high-gain controller, although the closed-loop response with
M4 has improved, those of M1 and M2 have significantly
degraded compared to the previous case with the low-gain
controller. This analysis shows that if model M4 would be
used for controller design, and one would apply it to a realistic
model (or the real system) in which the wave propagation
effect is present, a very undesirable response may result. This
further demonstrates the need for more accurate (though still
simple enough to serve as basis for controller design) models,

such as model M2. We observe a similar behavior for these
models in Fig. 15, where the flow exchange is plotted. In
particular, we observe that the performance of the high-gain
control in terms of stopping the flow exchange is improved
compared to the low gain control, while it drops when the
same high-gain controller is applied to either M1 or M2. From
these simulations, we conclude that to be able to design high-
performance MPD controllers, it is crucial that the distributed
aspects of the system are reflected in the design model and
the control system is accommodated for these aspects.

V. CONCLUSION

A nonlinear model order reduction technique has been
presented for control-oriented modeling for managed pressure
drilling automation. By using a high-resolution discretization
scheme, a finite-dimensional, though high-order, model has
been derived for this system. The resulting finite-dimensional
model can be decomposed into a feedback interconnection of
a high-order linear and low-dimensional nonlinear mapping.
The good accuracy of this model, especially in terms of
capturing the wave propagation effect, has been verified by
comparing it against data from real-world MPD operations.
The particular structure of this model permits a nonlinear
model reduction procedure that guarantees the preservation of
key system (stability) properties and provides a computable
reduction error bound in L2-norm for any order of the reduced
model. Moreover, closed-loop simulations with a flow control
system have illustrated the importance of preserving the wave
propagation effect in a control-oriented hydraulics model.
Furthermore, simulation results illustrate the effectiveness of
the presented model order reduction approach for managed
pressure drilling automation.

APPENDIX A: PROOF OF LEMMA 3

To prove the first statement of this lemma, we use the theory
of dissipative systems. Given that �c

lin is asymptotically stable
with an H∞-gain smaller than one, see Remark 9, there exists
a Lyapunov function V (z) ≥ 0 such that

V̇ ≤ |w̃s |2 − |ṽs |2 (28)

for ũ1 = 0. Now, considering (22), which implies |w̃s | ≤
μwv |ṽs |, for ũ2 = 0, we obtain

V̇ ≤ �
μ2

wv − 1
�|ṽs |2. (29)

Because the linear subsystem �c
lin is not necessarily minimal

from w̃s to ṽs , V̇ (z) is only negative semi-definite. However,
the result in (29) implies, following LaSalle’s invariance
principle [27], that the trajectories of the system for ũ = 0
approach the invariant set {z ∈ R

nc | V̇ (z) = 0}, which is
contained within the set {z ∈ R

nc | w̃s = 0} (note that w̃s = 0
follows from ṽs = 0), because V̇ = 0 implies w̃s = 0.
Given the minimality of �c

lin, this invariant set contains only
the origin, that is, z = 0. This implies that �∗ has a locally
asymptotically stable origin for z(0) ∈ R

nc and ũ = 0. Next,
we prove the second statement; for �c

nl, we have

δw̃s = hc(ṽs , ũ2) − hc( ˆ̃vs , ˆ̃u2)
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which leads to

δw̃s = hc(ṽs, ũ2) − hc( ˆ̃vs, ũ2) + hc( ˆ̃vs , ũ2) − hc( ˆ̃vs , ˆ̃u2).

As a result

�δw̃s�2 = �hc(ṽs, ũ2) − hc( ˆ̃vs , ũ2)�2

+ �hc( ˆ̃vs, ũ2) − hc( ˆ̃vs , ˆ̃u2)�2.

Given the definition of incremental L2 gains for the nonlinear
mapping, we can write

�δw̃s�2 ≤ μwv�δṽs�2 + μwu2�δũ2�2. (30)

Next, we show a similar inequality for the linear system �c
lin.

Given the asymptotic stability of �c
lin, we can define the input-

output operator Fv : L2
2 ×L2

2 → L2
2 such that ṽs = Fv (ũ1, w̃s)

for zero initial condition. Using this operator, we can show as
before that

�δṽs�2 ≤ �δw̃s�2 + �δũ1�2 (31)

where the bounded realness of the system has been exploited.
The use of the inequality (31) in (30) reveals that

�δw̃s�2 ≤ μwv(�δw̃s�2 + �δũ1�2) + μwu2�δũ2�2.

As a result

�δw̃s�2 ≤ μwv

1 − μwv
�δũ1�2 + μwu2

1 − μwv
�δũ2�2. (32)

As before, we can show that

�δ ỹ�2 ≤ γyw�δw̃s�2 + γyu1�δũ1�2

which, when combined with result (32), returns

�δ ỹ�2 ≤ γ̄yu1�δũ1�2 + γ̄yu2�δũ2�2 (33)

with γ̄yu1 = γyu1 + (γywμwv)/(1 − μwv), γ̄yu2 =
(γywμwu2)/(1 − μwv) the incremental L2-gains of the
total system �∗, which are bounded due to (22). Next, we
find an upper bound in terms of �δũ�2 for the term on the
right-hand side of (33). We can show that

(γ̄yu1�δũ1�2+γ̄yu2�δũ2�2)
2 ≤ 2

�
γ̄ 2

yu1
�δũ1�2

2+γ̄ 2
yu2

�δũ2�2
2

�
.

Clearly,

2
�
γ̄ 2

yu1
�δũ1�2

2 + γ̄ 2
yu2

�δũ2�2
2

�
≤ 2 max

�
γ̄ 2

yu1
, γ̄ 2

yu2

���δũ1�2
2 + �δũ2�2

2

�
.

Given the equality �δũ1�2
2 +�δũ2�2

2 = �δũ�2
2, we finally arrive

at the desirable relation

�δ ỹ�2 ≤ √
2 max(γ̄yu1

, γ̄yu2
)�δũ�2.

This completes the proof.

APPENDIX B: PROOF OF THEOREM 1

The subsystem �̂c
lin is asymptotically stable, minimal, and

strictly bounded real as a result of Lemma 2. This, with the
fact that (22) holds, implies, due to Lemma 3, that the reduced
order system �̂∗ has a bounded incremental L2 gain and an
asymptotically stable origin for zero input ũ = 0. This proves
the first statement. To prove the second statement, for the
initial condition ζ̂ (0) = 0 of �̂c

lin, we define the input-output
operators F̂v : L2

2 × L2
2 → L2

2 such that ˆ̃vs = F̂v (ũ1, ˆ̃ws). The
definition of this operator is allowed by asymptotic stability
of �̂c

lin. Now, we have

δṽs = Fv (ũ1, w̃s)− F̂v(ũ1, ˆ̃ws). (34)

Therefore,

δṽs = Fv (ũ1, w̃s) − F̂v (ũ1, w̃s) + F̂v (ũ1,w̃s) − F̂v (ũ1, ˆ̃ws) (35)

which leads to

�δṽs�2 = �Fv (ũ1, w̃s) − F̂v (ũ1, w̃s)�2

+ �F̂v (ũ1, w̃s) − F̂v (ũ1, ˆ̃ws)�2. (36)

Lemma 2 implies that

�Fv (ũ1, w̃s) − F̂v (ũ1, w̃s)�2 ≤ εlin�ũ1�2 + εlin�w̃s�2. (37)

This with �F̂v (ũ1, w̃s) − F̂v (ũ1, ˆ̃ws)�2 < �δw̃s�2 (recall that
�̂c

lin is strictly bounded real) results in

�δṽs�2 ≤ εlin�ũ1�2 + εlin�w̃s�2 + �δw̃s�2. (38)

Using �δw̃s�2 ≤ μwv�δṽs�2 (note that δũ = 0), we further
obtain

�δṽs�2 ≤ εlin�ũ1�2 + εlin�w̃s�2 + μwv�δṽs�2 (39)

which if used along with (32) and, again, �δw̃s�2 ≤ μwv�δṽs�2

results in

�δw̃s�2 ≤ μwvεlin

1 − μwv

�
1

1 − μwv
�ũ1�2 + μwu2

1 − μwv
�ũ2�2

�
.

Now, for δ ỹ, we can also write

�δ ỹ�2 ≤ γyv(εlin�ũ1�2 + εlin�w̃s�2 + �δw̃s�2). (40)

Next, using (32) and (39) in (40) returns

�δ ỹ2� ≤ γ̂yu1�ũ1�2 + γ̂yu2�ũ2�2

where γ̂yu1 = (εlinγyv)/((1 − μwv)
2), γ̂yu2 = μwu2 γ̂yu1 . There-

fore,

�δ ỹ2�2 ≤
√

2εlinγyv max(1, μwu2)

(1 − μwv)
2 �ũ�2

which completes the proof.
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