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Prediction-Based Control for Mitigation of
Axial–Torsional Vibrations in a Distributed

Drill-String System
Shabnam Tashakori, Gholamreza Vossoughi , Hassan Zohoor, and Nathan van de Wouw , Fellow, IEEE

Abstract— This article proposes a control strategy to stabilize
the axial–torsional dynamics of a distributed drill-string system.
An infinite-dimensional model for the vibrational dynamics of
the drill string is used as a basis for controller design. In this
article, both the cutting process and frictional contact effects
are considered in the bit–rock interaction model. Moreover,
models for the top-side boundary conditions regarding axial
and torsional actuation are considered. The resulting model is
formulated in terms of neutral-type delay differential equations
that involve constant state delays, state-dependent state delays,
and constant input delays arising from the distributed nature
of the drill-string dynamics and the cutting process at the
bit. Using a spectral approach, the stability and stabilizability
of the associated linearized dynamics are analyzed to sup-
port controller design. An optimization-based continuous pole-
placement technique has been employed to design a stabilizing
controller. Since the designed state-feedback control law needs
state prediction, a predictor with observer structure is proposed.
Both the controller and the predictor only employ top-side
measurements. The effectiveness of the control strategy, in the
presence of measurement noise, is shown in a representative case
study. It is also shown that the controller is robust to parametric
uncertainty in the bit–rock interaction.

Index Terms— Continuous pole-placement method, distributed
dynamics, drill-string dynamics, neutral-type time-delay (NTD)
model, prediction-based control, spectral approach, stability
analysis.

I. INTRODUCTION

DRILLING systems are used for exploration and harvest-
ing of oil, gas, and geothermal energy and suffer from

complex coupled dynamics that involve axial, torsional, and
lateral vibrations. Point contact between the drill string and
the well-bore, mass imbalance, and downhole interactions are
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the main sources of these unwanted vibrations, which leads
to the reduction of drilling efficiency, system failure, and
rig downtime. The mitigation of these vibrations is hence of
utmost importance.

Different approaches have been employed to model these
vibrational phenomena: lumped-parameter models [1]–[3], dis-
tributed parameter models [4]–[6], and neutral-type time-delay
(NTD) models [7]–[9]. NTD models strike a favorable balance
between modeling accuracy and complexity of simulation,
analysis, and control. Namely, these models are more accurate
than lumped-parameter models since they do not neglect the
distributed nature of the drill-string dynamics. Moreover, for
such NTD models, a wide range of methods for stability analy-
sis and control are available, compared to models in terms of
partial differential equations (PDEs), while they involve less
complexity in control design than distributed parameter models
[10]. Such an internal NTD model is obtained directly from
the distributed parameter model by neglecting the damping
along the drill string. The NTD model was established in
[7], [8], where the bit–rock interaction is modeled as a mere
frictional contact, and modified in [9] with consideration of the
cutting process as well as the frictional contact in the bit–rock
interaction. A review of mathematical modeling of axial and
torsional self-excited drilling vibrations can be found in [11].

To study the bit–rock interaction in drilling systems, several
friction models have been employed [12], [13]. However, it has
been shown in [14] that the bit–rock interaction consists of
a cutting process and a frictional contact process, where the
interaction between the drill-string dynamics and the delay
nature of the cutting model leads to instability and self-
excited oscillations. This time-delay effect is known as the
root cause of such self-excited axial–torsional vibrations. The
aforementioned bit–rock interaction model has been employed
to study the drill-string vibrations in [5] and [15]–[19]. In
this article, we will combine the infinite-dimensional NTD
modeling approach with such bit–rock interaction model to
arrive at an NTD model capturing both the distributed nature
of the drill string and the cutting process at the bit.

The stability of vibrational models for drilling systems,
including the state-dependent delay (induced by the cutting
process in the bit–rock interaction), has been studied in [20]–
[25] for finite-dimensional models and in [5] and [26] for
distributed models. For NTD-type models, the exponential
stability is investigated in [27] for a torsional model with
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considering only the frictional contact in the bit–rock interface.
Here, we will pursue stability (and stabilizability) analysis for
the novel NTD model to be proposed.

Vibrations of the drilling system are usually suppressed by
adjusting surface-controlled variables (e.g., the hook force,
the top-drive torque, and the characteristics of the drilling
fluid). The controller design for mitigation of drilling tor-
sional vibrations has been studied in [28]–[31] for finite-
dimensional models and in [32]–[36] for infinite-dimensional
models. The suppression of drilling axial–torsional vibrations
has been studied in [17], [24], and [37] for lumped-parameter
models, in [38] for distributed parameter models, in [39] for
a coupled PDE-ordinary differential equation (ODE) model,
and in [40]–[42] for NTD models. The Z-torque system of
Shell [43] considers an infinite-dimensional model as a starting
point and implements impedance matching in a practical way,
but it still only considers the torsional dynamics. Besselink
et al. [17] and Liu et al. [24] considered both the axial and
torsional dynamics as a basis for controller design but employ
a simple lumped-parameter model and hence also ignore the
rich dynamics of the drill string. Vromen et al. [28], [29] took
multiple modes into account for the controller design but still
only consider the torsional dynamics and a finite-dimensional
(discretized) model. Regarding the control of NTD models,
a controller is designed in [40] based on the Lyapunov theory,
aiming at suppressing stick-slip vibrations. Then, based on
simulation results, it is concluded that it also mitigates the
axial vibrations. The design of a PID controller to avoid axial–
torsional vibrations is presented in [41]. Since the downhole
data are received with some time delay, a delayed feedback
controller is also designed. In [42], the flatness property of
the drilling system is used to design a feedback controller,
which eliminates both axial and torsional vibrations. Note
that the NTD models in [40]–[42] do not consider the bit–
rock interaction model mentioned in [14], which is considered
essential in the root cause for drill-string vibrations. It is worth
mentioning that employing NTD models for controller design
serves as a worst case scenario since in-domain damping,
which is neglected in these models, actually helps stabilization.
Summarizing, many existing control strategies consider finite-
dimensional models and hence ignore the inherent infinite-
dimensional nature of the dynamics (see [17], [24]) and
many control strategies consider only the stabilization of the
torsional dynamics. Some examples are [4], [28], [29], and
[36] and the industrial soft torque system [44].

In this article, an infinite-dimensional NTD model is
employed and extended to study coupled axial–torsional vibra-
tions. In comparison with previous studies, first, both the
cutting process and frictional contact effects are taken into
consideration in the bit–rock interaction model, and second,
realistic top-side boundary conditions are included. More
specifically, the high inertia of the torsional top drive is
considered to regard the reflection of torsional waves at the
top drive. Furthermore, instead of the hook load, the axial
actuation is considered in terms of the velocity of the traveling
block to which the drilling system is attached [45], [46].
Hence, this article presents a novel, extended NTD model
for coupled axial–torsional drill-string dynamics. The resulting

equations of motion are neutral-type delay differential equa-
tions (NDDEs) with constant input delays and constant state
delays (both related to the wave propagation speeds along
the drill string) and a state-dependent state delay (induced
by the bit–rock interaction). Then, a spectral approach is
employed to analyze the stability of the associated linearized
dynamics to study the root causes of the steady-state vibrations
and to serve as a basis for controller design. Moreover, with
an input transformation (i.e., precompensators), the system
is rendered to be “formally stable” and “spectrally stabiliz-
able” [47] such that the stabilizability (by state feedback)
of the system dynamics is guaranteed. Next, to design the
controller, the optimization-based continuous pole-placement
method [48] has been employed, aiming at eliminating both
axial and torsional vibrations. Then, to render the control
strategy causal, a predictor with observer structure is designed
to complement the state-feedback controller. Note that the
generic controller and predictor design methodologies have
been previously presented in the delay systems literature, but
in this article, they are employed for the first time to solve a
stabilization control problem for drilling systems.

The main contribution of this article is the design of
a prediction-based state-feedback controller, mitigating the
coupled axial–torsional drill-string vibrations while dealing
with the infinite-dimensional dynamics of the drill string
and the associated constant state delays and input delays
and the state-dependent delay effect induced by the bit–rock
interaction. Additional contributions of this article are that the
designed controller, first, guarantees asymptotic stability of the
desired solution, second, is compatible with the top-drive actu-
ator limitations, third, only employs top-side measurements,
fourth, is robust to measurement noise, and, fifth, is robust to
parametric uncertainty in the bit–rock interaction. Moreover,
an illustrative case study is presented to show the effectiveness
of both the controller and the predictor.

Existing control strategies come at many levels of com-
plexity (simple PI control, impedance matching, H∞-based
dynamic controllers, and other wave-based control approaches
[43], [49], [50]). Note that although the strategy introduced in
this article is more involved than some previously presented
controllers, it is still feasible for practical implementation. The
additional complexity is motivated by the fact that it provides
the possibility of dealing with the complex, coupled axial–
torsional and infinite-dimensional dynamics of the drill-string
system. This is important, first, as the interaction between the
axial and torsional dynamics is key in the stability of the
drilling system (see [14]) and, second, as higher order modes
can induce instability and a (simpler) control approach may
not be able to mitigate drill-string vibrations (see [29], [51]).

This article is organized as follows. Section II intro-
duces the distributed model describing the axial and torsional
drill-string dynamics. Subsequently, the associated linearized
dimensionless perturbation dynamics is presented. The sta-
bility properties of the open-loop system are analyzed in
Section IV. Moreover, the stabilizability of the system is
studied. Section V presents the controller design. To make
the resulting controller causal, a predictor is designed in
Section VI. Illustrative simulation results are presented in
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Section VII, where the robustness of the designed controller
against parametric uncertainties is also analyzed. Finally, con-
clusions are presented in Section VIII.

II. DISTRIBUTED DRILL-STRING MODEL

To the best of authors’ knowledge, expressing the oscillatory
behavior of the drilling system by using the following wave
equations was first presented in [52], [53]:

∂2U

∂s2
(s, t) = c2

a

∂2U

∂ t2
(s, t) (1a)

∂2θ

∂s2
(s, t) = c2

t

∂2θ

∂ t2
(s, t) (1b)

where U(s, t) and θ(s, t) are the axial and angular positions
along the drill string with the spatial variable s ∈ [0, L] (with
L the drill-string length) and time t (see Fig. 1), respectively.
The wave velocity constants in (1) are given by

ca =
√
ρ

E
, ct =

√
ρ

G
(2)

where ρ, E , and G are, respectively, the density, Young
modulus, and shear modulus of drilling pipes (see Table I).
Based on the above wave equation model, the following
relations between the downhole and top-side velocities hold
(see [54]):

∂Ub

∂ t
(t − τa) = 1

2

(
∂Utop

∂ t
(t)+ 1

ca

∂Utop

∂s
(t)+ ∂Utop

∂ t
(t − 2τa)

− 1

ca

∂Utop

∂s
(t − 2τa)

)
(3a)

∂θb

∂ t
(t − τt) = 1

2

(
∂θtop

∂ t
(t)+ 1

ct

∂θtop

∂s
(t)+ ∂θtop

∂ t
(t − 2τt)

− 1

ct

∂θtop

∂s
(t − 2τt)

)
(3b)

where

Utop(t) := U(0, t), Ub(t) := U(L, t) (4a)

θtop(t) := θ(0, t), θb(t) := θ(L, t). (4b)

The time delays in (3) (τa and τt ) are, respectively, the time
required for the axial and torsional waves to travel from one
extremity of the drill string to the other, which are defined as

τa = ca L, τt = ct L . (5)

These time delays can be assumed constant since the drill-
string length is quasi-constant on the relevant vibrational time
scale.

The boundary conditions for the axial and torsional dynam-
ics are given by

∂Utop

∂ t
(t) = VTB(t) (6a)

E�
∂Ub

∂s
(t) = −MB

∂2Ub

∂ t2
(t)− W (t) (6b)

and

G J
∂θtop

∂s
(t) = IT

∂2θtop

∂ t2
(t)+ β

∂θtop

∂ t
(t)− uT (t) (7a)

G J
∂θb

∂s
(t) = −IB

∂2θb

∂ t2
(t)− T (t) (7b)

Fig. 1. Schematic of the drill string.

TABLE I

MODEL PARAMETERS [14], [40], [42]

respectively, where � and J are, respectively, the drill pipe
cross-sectional area and polar moment of area, MB and IB

specify the bottom hole assembly (BHA) inertial character-
istics, IT is the top-drive moment of inertia, and α and β
characterize the viscous friction at the top drive (see Table I).

The traveling block is an arrangement of pulleys or sheaves,
whereby the drilling line is reeved. This block can move
(axially) up and down freely and, together with the crown
block and the drill line, facilitates lifting the drill string. The
axial velocity of the traveling block VTB (i.e., the feed rate)
[46] in (6a) and the top-drive torque uT in (7a) are the control
inputs, both exerted at the rig (see Fig. 1).

Let us introduce the following input transformation in
support of the stabilizing controller design, pursued in
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Section V:

u1(t) = αVTB(t)− E�
∂Utop

∂s
(t) (8a)

u2(t) = uT (t)− IT
∂2θtop

∂ t2
(t) (8b)

where u1(t) and u2(t) are the new control inputs and
E�(∂Utop)/(∂s)(t) and IT (∂

2θtop)/(∂ t2)(t) are precompen-
sators. The axial precompensator E�(∂Utop)/(∂s)(t) is avail-
able as a measured output by the saver sub force measure-
ment. The torsional precompensator IT (∂

2θtop)/(∂ t2)(t) is also
available as the top-side acceleration can be obtained by
differentiating the top-side velocity, which is itself available
by measurement. Given (8), the top-side boundary conditions
(6a) and (7a) can be rewritten in terms of new control inputs
as follows:

E�
∂Utop

∂s
(t) = α

∂Utop

∂ t
(t)− u1(t) (9a)

G J
∂θtop

∂s
(t) = β

∂θtop

∂ t
(t)− u2(t). (9b)

On the other extremity, i.e., at the bit, W and T are the
resistive force and torque applied from the formation to the
bit, called weight-on-bit (WOB) and torque-on-bit (TOB),
respectively (see Fig. 1). These are modeled by the following
bit–rock interaction law [9], [24]:

Wc = εaζR(d(t))H
(
θ̇b(t)

)
(10a)

W f = σalH(d(t))H
(
U̇b(t)

)
(10b)

Tc = 1

2
εa2R(d(t))H

(
θ̇b(t)

)
(10c)

T f = 1

2
μγ a2σ lSign

(
θ̇b(t)

)
H(d(t))H

(
U̇b(t)

)
(10d)

where the subscripts c and f denote the cutting compo-
nents and friction components of the bit–rock interaction,
respectively. The parameters ε, a, ζ, σ, l, μ, and γ in (10)
characterize bit and rock properties, defined in Table I. The
depth of cut d(t), used in (10), is given by

d(t) = n(Ub(t)− Ub(t − τn(t))) (11)

for a n-blade bit, where the state-dependent delay τn(t) is the
time that takes for the bit to rotate by the angle of 2π/n. The
delay τn(t) is state-dependent and governed by

θb(t)− θb(t − τn(t)) = 2π

n
. (12)

Nonlinear functions R(.),H(.), and Sign(.) in (10) are defined
as follows:

R(y) =
{

y, y ≥ 0

0, y < 0
(13a)

H(y) =
{

1, y ≥ 0

0, y < 0
(13b)

Sign(y) =
{

sign(y), y �= 0

[−1, 1], y = 0
(13c)

which describes the following cases of drilling [15].

1) Normal Cutting (d > 0, U̇b > 0, and θ̇b > 0): All
the cutting and friction components of the bit–rock
interaction are nonzero, which leads to the following
bit–rock interaction law:

W (t) = εaζd(t)+ σal (14a)

T (t) = 1

2
εa2d(t)+ 1

2
μγ a2σ l. (14b)

2) Bit Bouncing (d > 0, U̇b < 0, and θ̇b > 0): The friction
components of both WOB and TOB are zero since there
is no contact between the bit and well-bottom.

3) Reverse Rotation (d > 0, U̇b > 0, and θ̇b < 0): There
is no cutting although the bit is in contact with the
formation. Therefore, the cutting components are zero.

4) Bit Off-Bottom (d < 0): There is no contact between the
bit and the formation, which leads to W = T = 0.

The NTD model is obtained directly from the wave equation
model, given in (1), the top-side boundary conditions, given
in (9), and bottom-side boundary conditions, given in (6b) and
(7b), by employing Riemann variables, defined by

ϒa = t + cas, �a = t − cas (15)

for the axial dynamics and by

ϒt = t + ct s, �t = t − ct s (16)

for the torsional dynamics. Consequently, the solutions of
undamped axial and torsional wave equations are decomposed
as follows in these Riemann variables:

U(s, t) = fa(ϒa)+ ga(�a) (17a)

θ(s, t) = ft (ϒt )+ gt(�t ) (17b)

where fi and gi , i ∈ {a, t}, are arbitrary functions correspond
to uptraveling and downtraveling waves, respectively, with
subscripts a and t the axial and torsional dynamics. With the
use of (4), (5), and [15]–[17], the downhole velocities can be
expressed as

U̇b(t) = ∂fa

∂ϒa
(t + τa)+ ∂ga

∂�a
(t − τa) (18a)

θ̇b(t) = ∂ft

∂ϒt
(t + τt )+ ∂gt

∂�t
(t − τt). (18b)

Along the line of [9], the procedure of obtaining the axial and
torsional NTD models is explained in the following.

A. Axial NTD Model

The axial boundary conditions, (9a) and (6b), can be,
respectively, reformulated in terms of Riemann variables by
using (17a) as follows:

(E�ca −α) ∂fa

∂ϒa
(t)−(E�ca +α) ∂ga

∂�a
(t) = −u1(t) (19a)

E�ca

(
∂fa

∂ϒa
(t + τa)− ∂ga

∂�a
(t − τa)

)
= −MBÜb(t)−W (t).

(19b)
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Equations (19b) and (18a) can be solved for (∂fa)/(∂ϒa)(t +
τa) and (∂ga)/(∂�a)(t −τa). After time shifting, the following
equations hold:

∂fa

∂ϒa
(t)

= 1

2

(
− MB

E�ca
Üb(t − τa)+ U̇b(t − τa)− 1

E�ca
W (t − τa)

)
(20a)

∂ga

∂�a
(t)

= 1

2

(
MB

E�ca
Üb(t + τa)+ U̇b(t + τa)+ 1

E�ca
W (t + τa)

)
.

(20b)

Substituting (20) into (19a) ultimately leads to

Üb(t)− ĀÜb(t − 2τa) = −B̄U̇b(t)− ĀB̄U̇b(t − 2τa)

− 1

MB
W (t)+ 1

MB
ĀW (t − 2τa)

+ C̄u1(t − τa) (21)

where

Ā = α − ca E�

α + ca E�
, B̄ = ca E�

MB
, C̄ = 2B̄

α + ca E�
. (22)

Substituting the (linearized) bit–rock interaction law (14a),
which is valid as we aim to (locally) stabilize a nominal
drilling solution with the “normal cutting” regime, the depth
of cut (11) in (21) gives

Üb(t)− ĀÜb(t − 2τa)

= −B̄U̇b(t)− Ā B̄U̇b(t − 2τa)− 1

MB
σal

(
1 − Ā

)
− 1

MB
εaζn(Ub(t)− Ub(t − τn(t)))

+ 1

MB
Āεaζn(Ub(t − 2τa)− Ub(t − 2τa − τn(t − 2τa)))

+C̄u1(t − τa). (23)

B. Torsional NTD Model

Reformulating the torsional boundary conditions, (9b) and
(7b), in terms of Riemann variables (17b), respectively, gives

(G Jct − β)
∂ft

∂ϒt
(t)− (G Jct + β)

∂gt

∂�t
(t) = −u2(t) (24a)

G Jct

(
∂ft

∂ϒt
(t + τt)− ∂gt

∂�t
(t − τt )

)
= −IB θ̈b(t)−T (t).

(24b)

Solving (24b) and (18b) for (∂ft)/(∂ϒt )(t + τt) and
(∂gt )/(∂�t)(t − τt) and shifting time leads to the following
relations:

∂ft

∂ϒt
(t) = 1

2

(
− IB

G Jct
θ̈b(t − τt)+θ̇b(t − τt )− 1

G Jct
T (t−τt)

)
(25a)

∂gt

∂�t
(t) = 1

2

(
IB

G Jct
θ̈b(t + τt)+θ̇b(t + τt )+ 1

G Jct
T (t + τt )

)
.

(25b)

Substituting (25) into (24a) gives the NTD model for the
torsional dynamics as follows:

θ̈b(t)− Aθ̈b(t − 2τt) = −B θ̇b(t)− AB θ̇b(t − 2τt )

− 1

IB
T (t)+ 1

IB
AT (t − 2τt )

+ Cu2(t − τt) (26)

where

A = β − ct G J

β + ct G J
, B = ct G J

IB
, C = 2B

β + ct G J
. (27)

Substituting the (linearized) bit–rock interaction law (14b),
which is valid as we aim to (locally) stabilize a nominal
drilling solution with the “normal cutting” regime, the depth
of cut (11) in (26) gives

θ̈b(t)− Aθ̈b(t − 2τt)

= −B θ̇b(t)− AB θ̇b(t − 2τt)− 1

2IB
μγ a2σ l(1 − A)

− 1

2IB
εa2n(Ub(t)− Ub(t − τn(t)))

+ 1

2IB
Aεa2n(Ub(t − 2τt)− Ub(t − 2τt − τn(t − 2τt)))

+ Cu2(t − τt ). (28)

The NTD model, given in (23) and (28), is in the form of
an NDDE with several state delays and input delays.

Reformulating the PDE model into a DDE model benefits
the control design by opening up the opportunities for using
controller synthesis tools for delay systems [10].

C. Dimensionless Perturbation Dynamics

The steady-state response of the model in (23) and (28) for
nominal constant inputs, u1s and u2s , is defined as

Ub(t) = Us(t) := V0t + U0, U̇s = V0 (29a)

θb(t) = θs(t) := �0t + θ0, θ̇s = �0 (29b)

where V0 and �0 are the nominal penetration rate and nominal
rotational velocity of the bit, which physically represent the
desired drilling response without vibrations. Substituting (29)
into (23) and (28) gives the following relations between the
nominal speeds and nominal constant control inputs, associ-
ated with the steady-state response in (29):

V0 B̄
(
1 + Ā

) = − 1

MB
εaζn

(
1 − Ā

)
V0τn0

− 1

MB
σal

(
1 − Ā

) + C̄u1s (30a)

�0 B(1 + A) = − 1

2IB
εa2n(1 − A)V0τn0

− 1

2IB
μγ a2σ l(1 − A)+ Cu2s . (30b)

This condition also leads to a constant depth of cut d0 and
a constant delay τn0 [nominal value for τn in (23) and (28)]
satisfying

d0 = 2πV0

�0
(31)

τn0 = 2π

n�0
(32)
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which are obtained by substituting (29) into (11) and (12),
respectively.

In line with the model formulations in [14], [17], and [24],
the following scaled perturbed quantities are introduced by
using the characteristic time t∗ = ct L and characteristic length
L∗ = L:

u = Ub − Us

L∗
(33a)

ϕ = θb − θs (33b)

r1 = C̄c2
t L(u1 − u1s) (33c)

r2 = Cc2
t L2(u2 − u2s). (33d)

Subsequently, the dimensionless perturbation dynamics is
given by

u′′(t̂
) − Āu′′(t̂ − 2τ̂a

)
= −N̄u′(t̂

) − Ā N̄u′(t̂ − 2τ̂a
) − ψ̄

(
u
(
t̂
) − u

(
t̂ − τ̂n

(
t̂
)))

+ ψ̄ Ā
(
u
(
t̂ − 2τ̂a

) − u
(
t̂ − 2τ̂a − τ̂n

(
t̂ − 2τ̂a

)))
− ψ̄ν0

(
τ̂n

(
t̂
) − τ̂n0

) + ψ̄ Āν0
(
τ̂n

(
t̂ − 2τ̂a

) − τ̂n0
)

+ r1
(
t̂ − τ̂a

)
(34a)

ϕ ′′(t̂
) − Aϕ ′′(t̂ − 2τ̂t

)
= −Nϕ ′(t̂

) − ANϕ ′(t̂ − 2τ̂t
) − ψ

(
u
(
t̂
) − u

(
t̂ − τ̂n

(
t̂
)))

+ψA
(
u
(
t̂ − 2τ̂t

) − u
(
t̂ − 2τ̂t − τ̂n

(
t̂ − 2τ̂t

)))
−ψν0

(
τ̂n

(
t̂
) − τ̂n0

) + ψAν0
(
τ̂n

(
t̂ − 2τ̂t

) − τ̂n0
)

+ r2
(
t̂ − τ̂t

)
(34b)

where the scaled time and scaled time delays are defined as
follows:

t̂ = t

t∗
, τ̂a = τa

t∗
, τ̂t = τt

t∗
, τ̂n0 = τn0

t∗
(35)

and the dimensionless state-dependent delay τ̂n(t) in terms of
the perturbation coordinates can be obtained from

ϕ
(
t̂
) − ϕ

(
t̂ − τ̂n

(
t̂
)) + ω0τ̂n

(
t̂
) = 2π

n
. (36)

Moreover, in (34) and (36), ω0 and ν0 are the scaled nominal
velocities given by

ω0 = �0t∗, ν0 = ct V0. (37)

Note that the prime ()′ in (34) indicates differentiation with
respect to the scaled time t̂ and

N̄ = B̄ct L, N = Bct L

ψ̄ = 1

MB
εaζnc2

t L2, ψ = 1

2IB
εa2nc2

t L3. (38)

Motivated by [24], (36) can be rewritten as

τ̂n
(
t̂
) − τ̂n0 = −ϕ

(
t̂
) − ϕ

(
t̂ − τ̂n

(
t̂
))

ω0
(39)

since τ̂n0 = 2π/nω0. Substituting (39) into (34),
the dimensionless perturbation dynamics can be rewritten as

follows:

u′′(t̂
) − Āu′′(t̂ − 2τ̂a

)
= −N̄u′(t̂

) − Ā N̄u′(t̂ − 2τ̂a
) − ψ̄

(
u
(
t̂
) − u

(
t̂ − τ̂n

(
t̂
)))

+ ψ̄ Ā
(
u
(
t̂ − 2τ̂a

) − u
(
t̂ − 2τ̂a − τ̂n

(
t̂ − 2τ̂a

)))
− Q̄

(
ϕ
(
t̂
) − ϕ

(
t̂ − τ̂n

(
t̂
)))

+ Q̄ Ā
(
ϕ
(
t̂ − 2τ̂a

) − ϕ
(
t̂ − 2τ̂a − τ̂n

(
t̂ − 2τ̂a

)))
+ r1

(
t̂ − τ̂a

)
(40a)

ϕ ′′(t̂
) − Aϕ ′′(t̂ − 2τ̂t

)
= −Nϕ ′(t̂

) − ANϕ ′(t̂ − 2τ̂t
) − ψ

(
u
(
t̂
) − u

(
t̂ − τ̂n

(
t̂
)))

+ψA
(
u
(
t̂ − 2τ̂t

) − u
(
t̂ − 2τ̂t − τ̂n

(
t̂ − 2τ̂t

)))
− Q

(
ϕ
(
t̂
) − ϕ

(
t̂ − τ̂n

(
t̂
)))

+ Q A
(
ϕ
(
t̂ − 2τ̂t

) − ϕ
(
t̂ − 2τ̂t − τ̂n

(
t̂ − 2τ̂t

)))
+ r2

(
t̂ − τ̂t

)
(40b)

where

Q̄ = −ψ̄δ0/2π, Q = −ψδ0/2π (41)

with δ0 the dimensionless nominal depth of cut defined as

δ0 = d0

L∗
= 2πν0

ω0
. (42)

Note that (40) is preferred to (34) since the former equations
do not depend explicitly on the state-dependent delay τ̂n .

D. Associated Linearized System Dynamics

State-dependent delay differential equations (SD-DDEs),
such as those in (40) with (36), are nonlinear as the state
argument is a function of the state itself [55]. Therefore,
by linearization, we mean obtaining an associated linear DDE
with the same local stability features as the original nonlinear
system.

The linearization of neutral-type SD-DDEs has been studied
in [56], where it is shown that the exponential stability of the
trivial solution of the associated linearized equation implies
the exponential stability of a constant steady-state solution of
the original NDDE.

Introducing the state vector x T = [x1 x2 x3 x4] :=
[u u′ ϕ ϕ ′], (40) is rewritten as follows:

x ′(t̂
) − E1x ′(t̂ − τ̂1

) − E2x ′(t̂ − τ̂2
)

= f
(
x
(
t̂
)
, x

(
t̂−τ̂1

)
, x

(
t̂ − τ̂2

)
, x

(
t̂−τ̂3

)
, x

(
t̂−τ̂4

)
, x

(
t̂−τ̂5

))
+ B1r1

(
t̂ − ĥ1

) + B2r2
(
t̂ − ĥ2

)
(43)

where f = [ f1 f2 f3 f4]T with

f1 = x2
(
t̂
)

f2 = −N̄ x2
(
t̂
) − Ā N̄ x2

(
t̂ − τ̂1

) − ψ̄
(
x1

(
t̂
) − x1

(
t̂ − τ̂3

))
+ ψ̄ Ā

(
x1

(
t̂ − τ̂1

) − x1
(
t̂ − τ̂4

))
− Q̄

(
x3

(
t̂
) − x3

(
t̂ − τ̂3

))
+ Q̄ Ā

(
x3

(
t̂ − τ̂1

) − x3
(
t̂ − τ̂4

))
f3 = x4

(
t̂
)

f4 = −Nx4
(
t̂
) − ANx4

(
t̂ − τ̂2

) − ψ
(
x1

(
t̂
) − x1

(
t̂ − τ̂3

))
+ψA

(
x1

(
t̂ − τ̂2

) − x1
(
t̂ − τ̂5

))
− Q

(
x3

(
t̂
) − x3

(
t̂ − τ̂3

))
+ Q A

(
x3

(
t̂ − τ̂2

) − x3
(
t̂ − τ̂5

))
. (44)
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The matrices in (43) are defined as follows:

E1 =

⎡
⎢⎢⎣

0 0 0 0
0 Ā 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦, E2 =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 A

⎤
⎥⎥⎦

B1 =

⎡
⎢⎢⎣

0
1
0
0

⎤
⎥⎥⎦, B2 =

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦ (45)

and the time delays are given by

τ̂1 = 2τ̂a, τ̂2 = 2τ̂t , τ̂3 = τ̂n(xt)

τ̂4 = 2τ̂a + τ̂n(xt), τ̂5 = 2τ̂t + τ̂n(xt )

ĥ1 = τ̂a, ĥ2 = τ̂t . (46)

The notation τ̂n(xt) is simply indicating that τ̂n is a state-
dependent delay, where xt denotes the past function segment of
the state variables, defined as xt(s) := x(t +s), s ∈ [−τ̂n, 0].

Based on [56], the linearized system associated with the
constant solution x(t̂) = x0 = [0 0 0 0]T is given by

x ′(t̂
) − E1x ′(t̂ − τ̄1

) − E2x ′(t̂ − τ̄2
)

= D1f(x0, x0, x0, x0, x0, x0)x
(
t̂
)

+
5∑

i=1

Di+1f(x0, x0, x0, x0, x0, x0)x
(
t̂ − τ̄i

)
+ B1r1

(
t̂ − h̄1

) + B2r2
(
t̂ − h̄2

)
(47)

where

τ̄1 = τ̂1, τ̄2 = τ̂2, τ̄3 = τ̂n(x0)

τ̄4 = 2τ̂a + τ̂n(x0), τ̄5 = 2τ̂t + τ̂n(x0)

h̄1 = ĥ1, h̄2 = ĥ2. (48)

The constant delay τ̂n(x0) is obtained by substitution of
x(t̂) ≡ x0 in (36), which results in τ̂n(x0) = 2π/nω0. Note
that Di f in (47) indicates the derivatives of f with respect to
the ith argument of f. Finally, the linearized nondimensional
perturbation dynamics can be written in the following form:

x ′(t̂
) −

2∑
i=1

Ei x
′(t̂ − τ̄i

) = A0x
(
t̂
) +

5∑
i=1

Ai x
(
t̂ − τ̄i

)

+
2∑

i=1

Biri
(
t̂ − h̄i

)
(49)

where Ai := Di+1f(x0, x0, x0, x0, x0, x0) gives

A0 =

⎡
⎢⎢⎣

0 1 0 0
−ψ̄ − N̄ − Q̄ 0

0 0 0 1
−ψ 0 − Q − N

⎤
⎥⎥⎦

A1 =

⎡
⎢⎢⎣

0 0 0 0
ψ̄ Ā − Ā N̄ Q̄ Ā 0

0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

A2 =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
ψA 0 Q A −AN

⎤
⎥⎥⎦

A3 =

⎡
⎢⎢⎣

0 0 0 0
ψ̄ 0 Q̄ 0
0 0 0 0
ψ 0 Q 0

⎤
⎥⎥⎦

A4 =

⎡
⎢⎢⎣

0 0 0 0
−ψ̄ Ā 0 −Q̄ Ā 0

0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

A5 =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0

−ψA 0 −Q A 0

⎤
⎥⎥⎦. (50)

Summarizing, in this section, the associated linearized per-
turbation dynamics has been obtained. These dynamics [see
(49)] are formulated in terms of NDDEs with constant state
delays and constant input delays. The latter is important
in the context of control since it supports the application
of the continuous pole-placement method [48] for controller
synthesis, which is applicable on linear time-invariant time-
delay systems.

III. CONTROL PROBLEM FORMULATION

In the drilling industry, it is desired to realize constant axial
and angular velocities during operation. Therefore, we design a
state-feedback control law that drives the downhole velocities,
U̇b(t) and θ̇b(t), to constant (and positive) set-point values
V0 and �0, respectively. Note that this is achieved if the
equilibrium x = 0 of (49) is stabilized. Toward this goal,
we employ two control inputs, the dimensionless force r1(t̂)
and the dimensionless torque r2(t̂), which enter the dynamics
in a delayed fashion [see (49)].

For drilling systems, there are different methods of data
transmission from well-bottom to the top (mud-pulse teleme-
try, acoustic waves, and so on). These downhole sensing
methods introduce significant time delays and are subjected
to significant noise levels. Besides, the downhole sensors are
prone to failure due to harsh downhole conditions. Therefore,
in this article, we only employ the top-side measurements,
i.e., the rate of penetration and angular velocity measured
at the top-drive [(∂Utop)/(∂ t) and (∂θtop)/(∂ t), respectively]
and the data concerning the saver sub force and saver sub
torque [(∂Utop)/(∂s) and (∂θtop)/(∂s), respectively]. Conse-
quently, (∂Ub)/(∂ t)(t −τa) and (∂θb)/(∂ t)(t −τt) are available
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(indirectly) due to the use of relations (3a) and (3b), respec-
tively. Subsequently, the dimension-less measured output vec-
tor y(t̂)T = [y1 y2] := [u′(t̂ − τ̂a) ϕ ′(t̂ − τ̂t )] is expressed
as follows:

y
(
t̂
) = C1x

(
t̂ − τ̂a

) + C2x
(
t̂ − τ̂t

)
(51)

where

C1 =
[

0 1 0 0
0 0 0 0

]
, C2 =

[
0 0 0 0
0 0 0 1

]
. (52)

Note that u′(t̂ − τ̂D) and ϕ ′(t̂ − τ̂D) are also available for any
given τ̂D ≥ max(τ̂a, τ̂t ).

The main controller goal is to stabilize the linearized dimen-
sionless perturbation dynamics (49) by only using the available
measurements (the output y(t̂) (51) and its delayed versions).
To facilitate controller synthesis, the spectrum of the open-loop
system is analyzed in Section IV, which supports the stability
analysis and the assessment of stabilizability properties. The
controller design is pursued in Section V, under the premise
of stabilizability.

IV. STABILITY ANALYSIS AND STABILIZABILITY

In this section, a spectral approach [57] is employed to
analyze the stability of the presented linearized drilling dynam-
ics to study the root causes for drill-string vibrations and to
serve as a basis for controller design. Although the eigenvalue-
based framework presented in [57] is developed for a class of
DDEs called delay differential-algebraic equations (DDAEs),
NDDEs, such as those in (49), can also be analyzed in this
framework.

By introducing a new state vector X (t̂) = [z(t̂) x(t̂)]T ,
where the variable z(t̂) is expressed as

z
(
t̂
) = x

(
t̂
) −

2∑
i=1

Ei x
(
t̂ − τ̄i

)
. (53)

Equation (49) can be reformulated as a DDAE as follows:

E0 X ′(t̂
) = A0 X

(
t̂
) +

5∑
i=1

Ai X
(
t̂ − τ̄i

) +
2∑

i=1

Bi ri
(
t̂ − h̄i

)
(54)

where the matrices are defined as follows:

E0 =
[

I 0
0 0

]
, A0 =

[
0 A0

−I I

]

Ai =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
0 Ai

0 −Ei

]
, for i = 1, 2[

0 Ai

0 0

]
, otherwise

Bi =
[

Bi

0

]
, i = 1, 2.

(55)

The inverse transformation (from DDAE to NDDE) can take
place by differentiating the variable in (53). The equivalence
of the spectrum of an NDDE and its corresponding DDAE
depends on how one transforms from one description to
the other. When this operation involves differentiation of an
equation, additional dynamics is introduced, which is reflected
by additional characteristic roots at zero. However, one can

always transform an NDDE to DDAE, without introducing
any additional characteristic root. Hence, the analysis can be
done based on the NDDEs and the transformation to DDAEs
is performed whenever it is needed (e.g., when using TDS-
STABIL [58] MATLAB package to find the stability-relevant
characteristic roots).

A. Stability Analysis

The equilibrium x = 0 of (49) [or X = 0 for the equivalent
formulation (54)] is exponentially stable if and only if all the
characteristic roots are located in the left-half complex plane
(LHP) and away from the imaginary axis [59].

A retarded-type delay differential equation (RDDE) always
has a finite number of characteristic roots in the right-half
complex plane (RHP), whereas an NDDE may have an infinite
number of characteristic roots in the RHP or on the imaginary
axis [59]. Such properties can effectively be analyzed using
Proposition 1 below. In support of Proposition 1, the spectral
abscissa of the delay difference equation associated with (49)
and defined as follows:

x
(
t̂
) −

2∑
i=1

Ei x
(
t̂ − τ̄i

) = 0 (56)

is expressed as

cD := sup{Re(λ) : det�D(λ) = 0} (57)

where �D(λ) is the characteristic matrix of the delay differ-
ence equation, which is given by

�D(λ) := I −
2∑

i=1

Ei e
−λτ̄i

=

⎡
⎢⎢⎣

1 0 0 0
0 1 − Āe−λτ̄1 0 0
0 0 1 0
0 0 0 1 − Ae−λτ̄2

⎤
⎥⎥⎦. (58)

Proposition 1: [57] There exists a sequence {λk}k≥1 of
characteristic roots satisfying

lim
k→∞ Re(λk) = cD, lim

k→∞ Im(λk) = ∞. (59)

Remark 1: We observe that not only there exists a sequence
of characteristic roots with real parts converging to cD and
imaginary parts tending to infinity (see Proposition 1), but
also there exists such sequences for each member of the set
CD = {Re(λ) : det�D(λ) = 0}. Clearly, given (57), the one
mentioned in Proposition 1 is the right-most one.

Therefore, if cD < 0, all such sequences of characteristic
roots are located in the LHP, which ensures that only a
finite number of characteristic roots can potentially lie in the
RHP. This feature plays an important role in the analysis of
stabilizability of the system as pursued in Section IV-B.

B. Stabilizability

An NTD system is exponentially stabilizable by state feed-
back if and only if it is “formally stable” and “spectrally
stabilizable” [47]. A system is called “formally stable” if it
has at most a finite number of characteristic roots in the RHP,
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i.e., if cD < 0. The importance of the formal stability property
in the scope of the existence of a stabilizing state-feedback
controller can be understood as follows. Since a state-feedback
controller does not affect the delay difference equation in
(56), an open-loop system that is not formally stable leads
to an infinite number of unstable characteristic roots in the
closed-loop system. Note that the input transformation (8) was
introduced to render the system formally stable.

The property of “spectral stabilizability” of the system can
be investigated using the following proposition.

Proposition 2: [47] An NTD system of the form

q̇(t)−
F∑

i=1

Ei q̇(t − τi) =
F∑

i=1

Ai q(t − τi )+
F∑

i=1

Bi u(t − τi)

(60)

with the state vector q(t) ∈ Rn, input vector u(t) ∈ Rm , and
time delays

0 < τ1 < τ2 < · · · < τF

is spectrally stabilizable if

rank
[
λ
(
I − Ê(λ)

) − Â(λ), B̂(λ)
] = n ∀λ|Re(λ) ≥ 0 (61)

where

Ê =
F∑

i=1

Ei e
−λτi , Â =

F∑
i=1

Ai e
−λτi , B̂ =

F∑
i=1

Bi e
−λτi . (62)

For a system of the form (60) that is “formally stable” and
“spectrally stabilizable,” the stabilizability is assured by a
state-feedback control law of the following form [60]:

u(t) = −
H∑

i=1

Ki q(t − αi ) (63)

where Ki are the gain matrices and

αi =
F∑

j=1

mi jτ j , i = 1, . . . , H, mi j ∈ Z, H ∈ N. (64)

For the system under study, the spectral stabilizabilty can
be analyzed, using the rank condition given in (61) with the
following matrices:

Ê =
2∑

i=1

Ei e
−λτ̄i , Â = A0 +

5∑
i=1

Ai e
−λτ̄i , B̂ =

2∑
i=1

Bi e
−λh̄i .

(65)

A quantitative stability analysis and analysis of stabiliz-
ability are pursued for an exemplary drill-string system in
Section VII. Under the premise of stabilizability, we pursue the
design of a stabilizing state-feedback controller in Section V.

V. CONTROLLER DESIGN METHODOLOGY

In this section, the continuous pole-placement approach [48]
is employed to design a state-feedback controller, aiming at
stabilizing (49) and (50). In particular, the objective of this
state-feedback controller is to place all roots in the LHP,
which, in turn, results in an asymptotically stable closed-loop
system.

The state-feedback control law is designed as follows to
compensate for the input delays in (49):

r1
(
t̂
) = K11x

(
t̂ + h̄1

) + K12x
(
t̂ − τ̄1 + h̄1

)
+ K13x

(
t̂ − τ̄3 + h̄1

)
(66a)

r2
(
t̂
) = K21x

(
t̂ + h̄2

) + K22x
(
t̂ − τ̄2 + h̄2

)
+ K23x

(
t̂ − τ̄3 + h̄2

)
(66b)

with Ki j , i ∈ {1, 2} and j ∈ {1, 2, 3}, the gain matrices.
Note that in the proposed control law (66), both the axial
and torsional inputs, r1 and r2, are influenced by the related
axial and torsional time delays (or axial and torsional wave
speeds), respectively. Subsequently, the closed-loop tracking
error dynamics is given by

x ′(t̂
) −

2∑
i=1

Ei x
′(t̂ − τ̄i

) = A0 x
(
t̂
) +

5∑
i=1

Ai x
(
t̂ − τ̄i

)
(67)

where

A0 = A0 + B1 K11 + B2 K21, A1 = A1 + B1 K12

A2 = A2 + B2 K22, A3 = A3 + B1 K13 + B2 K23

A4 = A4, A5 = A5. (68)

The following structure is imposed on the gain matrices Ki j

to, first, alleviate the computational burden of the optimization-
based tuning of these gains and, second, avoid using delayed
downhole angular and axial positions that are not available
by measurement (note that there is no sensor at the bit that
measures the bit position):

K11 = [
k1 k2 k3 0

]
, K21 = [

k7 0 k8 k9
]

K12 = [
0 k4 0 0

]
, K22 = [

0 0 0 k10
]

K13 = [
k5 0 k6 0

]
, K23 = [

k11 0 k12 0
]

(69)

where ki , i = 1, . . . , 12, represent the nonzero gain elements.
With these gain matrices, the state-feedback control law (66)
can be written explicitly as follows:

r1
(
t̂
) = k1u

(
t̂ + h̄1

) + k2u′(t̂ + h̄1
) + k3ϕ

(
t̂ + h̄1

)
+ k4u′(t̂ − τ̄1 + h̄1

)
+ k5u

(
t̂ − τ̄3 + h̄1

) + k6ϕ
(
t̂ − τ̄3 + h̄1

)
(70a)

r2
(
t̂
) = k7u

(
t̂ + h̄2

) + k8ϕ
(
t̂ + h̄2

) + k9ϕ
′(t̂ + h̄2

)
+ k10ϕ

′(t̂ − τ̄2 + h̄2
)

+ k11u
(
t̂ − τ̄3 + h̄2

) + k12ϕ
(
t̂ − τ̄3 + h̄2

)
. (70b)

In (70), the terms with the argument t̂+h̄1 and t̂+h̄2 are future
states since h̄1, h̄2 > 0. The terms with the argument t̂−τ̄3+h̄1

and t̂ − τ̄3 + h̄2 are also future states because τ̄3, i.e., the
delay induced by the cutting process at the bit, is smaller than
h̄1 and h̄2, i.e., the delays induced by the axial and torsional
wave propagation in the drill string. These terms render the
control law noncausal. To arrive at a causal implementation,
this control law will be combined with a predictor, which
will be proposed in Section VI. Moreover, there are two other
delayed terms in (70), u′(t̂ − τ̄1 + h̄1) and ϕ ′(t̂ − τ̄2 + h̄2) (i.e.,
u′(t̂ − τ̂a) and ϕ ′(t̂ − τ̂t ), respectively), which are available by
top-side measurements, as discussed in Section III.
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Next, we design the control gains ki in (69) by an optimiza-
tion method for pole placement. The underlying optimization
problem is considered as a procedure of finding controller
gains for which the spectral abscissa (i.e., the real part of
the right-most characteristic root) of the closed-loop system is
strictly negative. Hence, the objective function is formulated
as follows:

F(ki ) = sup{Re(λ) : det�N (λ) = 0} (71)

where �N (λ) is the characteristic matrix of the closed-loop
system (67), which is which is founded defined as follows:

�N (λ) := λ

(
I −

2∑
i=1

Ei e
−λτ̄i

)
− A0 −

5∑
i=1

Ai e
−λτ̄i . (72)

Asymptotic stability is guaranteed when the objective function
(71) is negative. In particular, the continuous pole-placement
method aims at designing ki such that the optimization prob-
lem min

ki

F(ki) is solved with the stopping criterion F(ki) ≤ δ

for a given δ < 0.
Since the objective function in (71) is a nonsmooth function

of the controller parameters, common optimization algorithms
are not applicable [59]. Instead, the HANSO1 method [61] has
been employed, which is founded on the BFGS2 and gradient
sampling methods [62]. It is noteworthy to mention that in
this article, the PSO3 [63] method has been used in order to
search globally for a proper initial guess of the controller gains
in order to avoid convergence to local minima.

VI. PREDICTOR DESIGN METHODOLOGY

The designed feedback controller in (70), presented in
Section V, is noncausal as it requires the knowledge of future
states. To make such controller causal, the use of a proper
predictor is essential. The predictor design for linear time-
delay systems has been taken into consideration in the series of
studies [64]–[68] for systems, including different combinations
of state delays, (one or several) input delays, and neutral
terms. However, the implementation of such ideas includes
approximating some integral terms, which makes the closed-
loop system unstable, since the approximation introduces
new unstable eigenvalues. The implementation complexity is
explained thoroughly in [69] and [70], where the design of
a low-pass filter is suggested to overcome such a problem.
Another approach proposes to estimate the future states in
an asymptotic way, instead of approximation, by using an
observer-like structure (see [71]–[73]).

Here, based on the work in [71]–[73], a predictor with an
observer-like structure is presented to estimate the future states
asymptotically. The formulation presented in [71]–[73] can
be applied directly to systems that, first, have a single input
and, second, the prediction time is equal to the input delay.
However, the main underlying idea adapted to be applicable to
systems with several inputs and including state delays (which
may make the prediction time a combination of state delays
and input delays, like those in this article).

1Hybrid algorithm for nonsmooth optimization.
2Broyden–Fletcher–Goldfarb–Shanno.
3Particle swarm optimization.

Based on the closed-loop system dynamics in (67), the pre-
dictor is designed as follows:

ω′(t̂
) −

2∑
i=1

Eiω
′(t̂ − τ̄i

) = A0ω
(
t̂
) +

5∑
i=1

Aiω
(
t̂ − τ̄i

)
− P

(
ω

(
t̂ − τ̂p − τ̂m

)−x
(
t̂ − τ̂m

))
(73)

where ω(t̂) is the estimate of the future states x(t̂ + τ̂p) for
any given dimensionless time τ̂p with τ̂m = max(τ̂a, τ̂t ). As
discussed in Section III, only delayed downhole velocities are
available (by using top-side measurements). Thus, the follow-
ing structure is considered for the predictor gain matrix P (in
order to avoid using delayed downhole position measurements
that are not available in practice):

P =

⎡
⎢⎢⎣

0 p1 0 0
0 p2 0 0
0 0 0 p3

0 0 0 p4

⎤
⎥⎥⎦ (74)

where pi , i = 1, . . . , 4, are the nonzero elements. Intuitively
speaking, in (73) with the gain matrix (74), x(t̂ + τ̂p) is
estimated by ω(t̂) by using x2(t̂ − τ̂m) and x4(t̂ − τ̂m) (i.e.,
u′(t̂−τ̂m) and ϕ ′(t̂−τ̂m), respectively), which are both available
at time t̂ (see Section III).

Introducing the prediction error

e
(
t̂
) = ω

(
t̂
) − x

(
t̂ + τ̂p

)
(75)

the prediction error dynamics is given by

e′(t̂
) −

2∑
i=1

Ei e
′(t̂ − τ̄i

) = A0 e
(
t̂
) +

5∑
i=1

Ai e
(
t̂ − τ̄i

)
− Pe

(
t̂ − τ̂p − τ̂m

)
. (76)

By design of the predictor gain matrix P , the equilibrium
solution e = 0 of (76) can be rendered an asymptotically stable
solution of (76), which implies the asymptotic convergence of
ω(t̂) to x(t̂ + τ̂p).

The predictor gains pi in (74) can be designed by an
optimization-based method for pole placement. The underlying
optimization problem is considered as a procedure of finding
predictor gains for which the spectral abscissa of the predic-
tion error dynamics is strictly negative. Hence, the objective
function is formulated as follows:

FP (pi) = sup{Re(λ) : det�P(λ) = 0} (77)

where�P(λ) is the characteristic matrix of the prediction error
dynamics (76), which is defined as follows:

�P(λ) := λ

(
I −

2∑
i=1

Ei e
−λτ̄i

)
− A0

−
5∑

i=1

Ai e
−λτ̄i + Pe−λ(τ̂p+τ̂m). (78)

Asymptotic stability is guaranteed when the objective function
(77) is negative. In particular, the continuous pole-placement
method aims at designing pi such that the optimization
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Fig. 2. Series connection of the prediction error dynamics and the closed-
loop dynamics.

problem min
pi

FP (pi) is solved with the stopping criterion

FP (pi) ≤ δ for a given δ < 0.
Remark 2: Note that even for P = 0, (76) is asymptotically

stable. Hence, the design of P is geared toward rendering the
error dynamics in (76) faster than those in (67).

For nonzero prediction error, the state-feedback control law
(66) is given by

r1
(
t̂
) = K01ω1

(
t̂
) + K11x

(
t̂ − τ̄1 + h̄1

) + K31ω2
(
t̂
)

(79a)

r2
(
t̂
) = K02ω3

(
t̂
) + K22x

(
t̂ − τ̄2 + h̄2

) + K32ω4
(
t̂
)

(79b)

where ωi (t̂), i = 1, . . . , 4, are the estimates of the states x(t̂ +
τ̂pi) with prediction times

τ̂p1 = h̄1, τ̂p2 = h̄1 − τ̄3

τ̂p3 = h̄2, τ̂p4 = h̄2 − τ̄3. (80)

Given (75), (79) can be written as follows:

r1
(
t̂
) = K01x

(
t̂ + h̄1

) + K11x
(
t̂ − τ̄1 + h̄1

)
+ K31x

(
t̂ − τ̄3 + h̄1

) + K01e1
(
t̂
) + K31e2

(
t̂
)

(81a)

r2
(
t̂
) = K02x

(
t̂ + h̄2

) + K22x
(
t̂ − τ̄2 + h̄2

)
+ K32x

(
t̂ − τ̄3 + h̄2

) + K02e3
(
t̂
) + K32e4

(
t̂
)

(81b)

where ei , i = 1, . . . , 4, are the prediction errors at times t̂+τ̂pi .
Subsequently, the closed-loop dynamics is given by

x ′(t̂
) −

2∑
i=1

Ei x
′(t̂ − τ̄i

)

= A0 x
(
t̂
) +

5∑
i=1

Ai x
(
t̂ − τ̄i

)
+ B1K01e1

(
t̂ − h̄1

) + B1 K31e2
(
t̂ − h̄1

)
+ B2 K02e3

(
t̂ − h̄2

) + B2 K32e4
(
t̂ − h̄2

)
(82)

which is the dynamics in (67) with additional input terms
related to the prediction errors.

The following proposition states the conditions under which
the proposed predictor-based control strategy indeed stabilizes
the closed-loop system dynamics.

Proposition 3: Consider the drill-string dynamics in (49),
(50). Let the controller in (79) be designed such that F(ki) <
0, with F(ki) given in (71). Moreover, let the predictor in
(73) be designed such that FP (pi) < 0, with FP (pi) defined
in (77). Then, the closed-loop dynamics (76) and (82) is
asymptotically stable.

Proof: First, FP (pi) < 0 implies that the prediction error
dynamics (76) is asymptotically stable. Second, F(ki) < 0
implies that error dynamics in (67) (for zero prediction error)
is asymptotically stable. By the grace of linearity of (82)

Fig. 3. Open-loop spectrum.

and the fact that (82) is asymptotically stable for e = 0,
it holds that (82) is input-to-state stable with the prediction
error e as an input. Therefore, the total closed-loop dynamics
is asymptotically stable based on the fact that it consists of
a series connection of the asymptotically stable dynamics in
(76) and the input-to-state stable dynamics in (82) (see Fig. 2).

VII. ILLUSTRATIVE SIMULATION RESULTS

In this section, we present a representative case study to
illustratively show the effectiveness of the proposed con-
trol approach. In Section VII-A, the characteristics of the
open-loop dynamics are investigated (stability and stabi-
lizability properties), and in Section VII-B, the controller
design is performed and the resulting closed-loop performance
is analyzed.

A. Analysis of the Open-Loop Dynamics

For a 117-m long-drill-string with the parameter values
given in Table I, the TDS-STABIL MATLAB package [58] is
employed to find the stability-relevant characteristic roots of
the infinite-dimensional model in (49) for r1 = r2 = 0, using
(54) and (55). The open-loop spectrum is shown in Fig. 3,
which illustrates that the system is intrinsically unstable since
there are some characteristic roots in the RHP, depicted in red.
Similar results have been obtained in the literature (see [14],
[17], [20], [25] for lumped-parameter models and [5], [26]
for infinite-dimensional models), which show that for realistic
parametric settings, the nominal solution is generally unstable.

The behavior of the system (21) and (26) with the nonlinear
bit–rock interaction law (10) is shown in Fig. 4 when constant
control inputs, u1 = 16 × 103 N and u2 = 18 × 103 N·m, are
employed. As shown, in the absence of any controller, severe
stick-slip and bit-bouncing occur, which can lead to system
failure.

As explained in Section IV, it is essential to investigate
the exact place (i.e., real value) of the right-most vertical
asymptote of the spectrum, as shown in Fig. 3. The spectral
abscissa of the delay difference equation, given in (56),
is cD � −0.0022, which shows that the asymptote is located
in the LHP (see Proposition 1). The other asymptote, visible
in Fig. 3, is located on −0.1510, which is the other root

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on December 17,2021 at 08:14:59 UTC from IEEE Xplore.  Restrictions apply. 



288 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 30, NO. 1, JANUARY 2022

Fig. 4. Open-loop dynamics.

of det�D(λ) = 0 (see Remark 1). Now, we can conclude
that, first, there is only a finite number of characteristic
roots in the RHP and, second, the roots are not accumulated
on the imaginary axis. Therefore, the system is formally
stable [47]. It is worth restating that the formal stability
property is achieved as a result of the input transformation
(8). Moreover, the spectral stabilizability of the system can
be investigated based on Proposition 2. Since for all six
characteristic roots with positive real parts (see red dots
in Fig. 3), the rank condition in (61) holds, and it can be
concluded that the system is indeed spectrally stabilizable.
Therefore, the stabilizability of the presented drilling sys-
tem (49) is assured by delayed state feedbacks of the form
given in (63).

B. Controller Design and Closed-Loop Performance Analysis

The design procedure of the state-feedback controller, aim-
ing at stabilizing (49), has been presented in Section V.
In the following simulation study, we introduce the fol-
lowing smoothened references to deal with the actuator
limitations (in particular, high-frequency content and large
overshoots in the control inputs should be avoided in
practice):

(
U̇b

)
ref = V0

exp(0.5373t − 8)

1 + exp(0.5373t − 8)
(83a)

(
θ̇b

)
ref = (�0 − 2.35)

exp(0.5373t − 8)

1 + exp(0.5373t − 8)
+ 2.35. (83b)

Introducing such reference design has also been suggested
earlier in [28] and [33]. As shown in Fig. 5, the drill string
has been first accelerated to a constant angular velocity,
i.e., (θ̇b)ref(t = 0) = 2.35 rad/s, with the bit off bottom,
i.e., (U̇b)ref(t = 0) = 0 m/s. Then, both the axial and
angular velocities are increased simultaneously to the desired
operating conditions (V0 = 0.002 m/s and �0 = 10 rad/s,
respectively).

Remark 3: Although the references are time-varying, this
does not disqualify the control design methodology pre-
sented in Section V, which was designed for linear
time-invariant error dynamics, based on the following
facts.

Fig. 5. Velocity references.

Fig. 6. Variation of spectral abscissa for different time delays τ̂n . Note that
τ̂n ∈ [0.4220, 1.7956] for (θ̇b)ref ∈ [2.35, 10].

1) The system matrices of the error dynamics for time-
varying reference remain time-invariant as these are not
affected by the nominal solution.

2) Although the state-dependent delay τ̂n is time-varying
along the time-varying angular reference trajectory in
(83b), it can be shown that for any (constant) delay
τ̂n induced by the angular velocities in the reference,
the spectral abscissas of both the closed-loop dynamics
and prediction error dynamics are always negative (see
Fig. 6).

3) The reference (and hence also the state-dependent delay
along the nominal solution) evolves on a much slower
time scale than the dominant dynamics of the drill-string
system.

Therefore, the control design methodology presented
in V is extended as follows. With xref(t̂) :=
[uref(t̂) u′

ref(t̂) ϕref(t̂) ϕ ′
ref(t̂)] the desired reference trajectory,

the tracking error x̃ := [ũ ũ′ ϕ̃ ϕ̃ ′] is introduced as
follows:

x̃
(
t̂
) = x

(
t̂
) − xref

(
t̂
)
. (84)

The total control scheme is shown in Fig. 7. The control law
is composed of two terms as follows:

r1
(
t̂
) = r1c

(
t̂
) + r1 f

(
t̂
)

(85a)

r2
(
t̂
) = r2c

(
t̂
) + r2 f

(
t̂
)

(85b)
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Fig. 7. Total closed-loop block diagram.

where rif, i = 1, 2, are the feedforward terms to ensure that
the desired trajectory is a solution of the closed-loop system

r1 f
(
t̂
) = u′′

ref

(
t̂ + h̄1

) − Āu′′
ref

(
t̂ − τ̄1 + h̄1

)
+ ψ̄uref

(
t̂ + h̄1

) + N̄u′
ref

(
t̂ + h̄1

) + Q̄ϕref
(
t̂ + h̄1

)
− ψ̄ Āuref

(
t̂ − τ̄1 + h̄1

) + Ā N̄u′
ref

(
t̂ − τ̄1 + h̄1

)
− ψ̄uref

(
t̂ − τ̄3 + h̄1

) − Q̄ϕref
(
t̂ − τ̄3 + h̄1

)
+ ψ̄ Āuref

(
t̂ − τ̄4 + h̄1

)
(86a)

r2 f
(
t̂
) = ϕ ′′

ref

(
t̂ + h̄2

) − Aϕ ′′
ref

(
t̂ − τ̄2 + h̄2

)
+ψuref

(
t̂ + h̄2

) + Qϕref
(
t̂ + h̄2

) + Nϕ ′
ref

(
t̂ + h̄2

)
−ψAuref

(
t̂ − τ̄2 + h̄2

) + ANϕ ′
ref

(
t̂ − τ̄2 + h̄2

)
−ψuref

(
t̂ − τ̄3 + h̄2

) − Qϕref
(
t̂ − τ̄3 + h̄2

)
+ψAuref

(
t̂ − τ̄5 + h̄2

)
(86b)

which are designed such that⎧⎪⎪⎨
⎪⎪⎩

0
r1 f

(
t̂ − h̄1

)
0

r2 f
(
t̂ − h̄2

)
⎫⎪⎪⎬
⎪⎪⎭ = x ′

ref

(
t̂
) −

2∑
i=1

Ei x
′
ref

(
t̂ − τ̄i

)

− A0xref
(
t̂
) −

5∑
i=1

Ai xref
(
t̂ − τ̄i

)
. (87)

Note that we use the fact that xref(t̂) is known a priori, and
hence, the delays in the control inputs as in (49) can be
compensated for as far as the feedforward is concerned.

The terms ric, i = 1, 2, in (85) are given in (79), while
here, x̃ [defined in (84)] is used in the feedback actions, and
ω(t̂) is the estimate of the tracking error x̃(t̂ + τ̂p) [instead of
x(t̂ + τ̂p)].

Fig. 8 shows the spectrum of the prediction error dynamics
(76) with p1 = p2 = p3 = p4 = 0.01. As depicted, all the
characteristic roots lie in the LHP, which ensures the stability
of the prediction error dynamics (76).

The prediction errors are shown in Figs. 9 and 10 for
the axial and torsional dynamics, where eu(t̂), eu′(t̂), eϕ(t̂),
and eϕ ′(t̂) are the prediction errors of tracking errors ũ(t̂ +
τ̂p), ũ′(t̂ + τ̂p), ϕ̃(t̂ + τ̂p), and ϕ̃ ′(t̂ + τ̂p), respectively. These
figures depict an asymptotic convergence to zero prediction
error for all prediction times for a given initial condition of
the predictor [5% difference compared to x̃(0)]. Note that Figs.
9 and 10 are dimension-less.

By employing HANSO and PSO algorithms to design the
controller gains, given in (69), the following controller gains

Fig. 8. Spectrum of the prediction error dynamics.

Fig. 9. Axial prediction errors for different prediction times.

Fig. 10. Torsional prediction errors for different prediction times.

are obtained:

k1 = −994.4, k2 = −85.5, k3 = −6.4 × 10−6

k4 = 9, k5 = 342.5, k6 = 8.3 × 10−4

k7 = −9.1 × 107, k8 = −3.5, k9 = −78.7

k10 = −4.3, k11 = 4.2 × 107, k12 = 2.8 (88)

which leads to the closed-loop spectrum shown in Fig. 11. It
illustrates that the closed-loop system is exponentially stable
since all closed-loop characteristic roots lie in the LHP. Note
that the vertical asymptotes of the spectrum remain unchanged
since the controller does not affect the neutral terms. The latter
fact emphasizes the importance of the formal stability analysis
presented in Section IV.
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Fig. 11. Spectrum of the tracking error dynamics.

Fig. 12. Closed-loop axial behavior.

Fig. 13. Closed-loop angular behavior.

The closed-loop system behavior is shown in Figs. 12 and
13 for the axial and torsional dynamics, which shows that
indeed the bit velocities track the desired references. Here,
the bit is considered to have a zero axial velocity and 1.4 rad/s
angular velocity for −(2τt + τn) < t < 0. As it can be
seen in Figs. 12 and 13, the bit velocities are constant at
the beginning (U̇b = 0 m/s and θ̇b = 1.4 rad/s) since the
control input waves have not reached the bit yet due to wave
propagation delays. In particular, it takes time (equal to input
delays) for the input waves, initiating at the top, to reach the
bit at the bottom.

The physical control inputs, i.e., the velocity of the traveling
block VTB(t) and the top-drive torque uT (t), consist of trans-
formed control inputs u1(t) and u2(t), and the contributions

Fig. 14. Physical actuation variables.

Fig. 15. Closed-loop axial behavior of the nonlinear system.

from the precompensators, which can be computed using the
following relations:

∂Utop

∂s
(t) = ca

(
∂fa

∂ϒa
(t)− ∂ga

∂�a
(t)

)
(89)

where (∂fa)/(∂ϒa)(t) and (∂ga)/(∂�a)(t) are given in (20),
and

∂2θtop

∂ t2
(t) = ∂2ft

∂ϒ2
t
(t)+ ∂2gt

∂�2
t
(t) (90)

where (∂2ft )/(∂ϒ
2
t )(t) and (∂2ga)/(∂�

2
a)(t) can be obtained

by differentiating (25). As shown in Fig. 14, in the steady-state
motion, the feed rate VTB is equal to the rate of penetration,
i.e., 0.002 m/s. Moreover, the maximum value of the top-drive
torque uT (t) is around 2 × 104 N·m, which is an acceptable
value regarding the torque limitation of the top drive. Note
that with significantly heavier top-drives, either the maximum
value of the uT (t) may cross the acceptable limit or increased
high-frequency contents in uT (t) might be observed.

Next, the designed controller is applied to the nonlinear
system, given in (40). As it is shown in Figs. 15 and 16,
the controller is able to deal with the state-dependent delay as
well. The high-frequency behavior, which is observed in the
axial dynamics (see Fig. 15), stems from the excitations of
higher order modes of the axial drill-string dynamics that are
inherent to the infinite-dimensional nature of these dynamics.

Note that in this simulation study, a white Gaussian noise
has been added to the measured states, where the signal-to-
noise ratio (SNR) has been considered as SNR = 10. Based
on these results, it is concluded that the designed control
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Fig. 16. Closed-loop angular behavior of the nonlinear system.

Fig. 17. Robust behavior in the presence of parametric uncertainties.

approach is robust against the measurement noise. Another
source of uncertainty, which plays a role in the scope of the
current work, is the parametric uncertainty, which is studied
in Section VII-C.

C. Robustness Analysis Against Parametric Uncertainty

Drilling systems are subjected to different types of uncer-
tainties. In the scope of the current work, the most important
source of uncertainty is given by the parameters in the bit–
rock interaction model (due to uncertainties in rock properties
and bit wear) [74], [75]. Therefore, in this section, parametric
uncertainty in the bit–rock interaction is considered in order
to have a more realistic description of the system and to study
the robustness of the designed controller. For this purpose, ζ
(the cutter face inclination number) and ε (the rock intrinsic
specific energy) in (14) are considered uncertain.

The variation of the closed-loop spectral abscissa for dif-
ferent values of the parameters ε and ζ is shown in Fig. 17
(0 < ζ < 1 and ε > 0). As illustrated, the spectral abscissa
remains negative for a wide range of these parameters. This
feature, along with the formal stability of system, assures the
robustness of the designed controller in terms of stabilizing
the system while these parameters are uncertain. As shown
in Fig. 18, with fixed ε and ζ varying between 0 and 1,
the closed-loop spectral abscissa remains negative. However,
with fixed ζ , the closed-loop will be unstable when ε >
2.02 × 109 Pa which corresponds to an extremely hard rock
formation. Note that we took the range on ε larger in Fig. 18
in comparison to Fig. 17 to find the critical value of ε that
makes the closed-loop system unstable.

Fig. 18. Variation of spectral abscissa with (a) varying ζ and fixed ε and
(b) varying ε and fixed ζ .

VIII. CONCLUSION

A distributed model has been employed to study the coupled
axial–torsional vibrations in drilling systems. Here, first, both
the cutting process and frictional contact have been taken into
consideration in the bit–rock interaction, and second, realis-
tic top-side boundary conditions are included. The resulting
equations of motion are NDDEs with state-dependent state
delays, constant state delays, and constant input delays. For
the associated linear system, the stability has been analyzed
by using a spectral approach to study the root causes of the
steady-state vibrations and to serve as a basis for controller
design. It is shown that the drilling system is intrinsically
unstable but stabilizable by (delayed) state feedback. Under
the premise of stabilizability, the optimization-based contin-
uous pole-placement method has been employed to stabilize
both axial and torsional dynamics, using the velocity of the
traveling block and the top-drive torque as control inputs.
The designed state-feedback controller deals with several time
delays corresponding to the oscillatory behavior of the dynam-
ics, and the bit–rock interaction. Moreover, it only employs
top-side measurements. To make the controller causal, a state
predictor with observer structure has also been designed. The
effectiveness and robustness of both the controller and the
predictor have been shown by illustrative simulation results.
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