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ABSTRACT
The dynamics of mechanical systems with dry friction ele-

ments, modelled by set-valued force laws, can be describedy
differential inclusions. The switching and set-valued nature of
the friction force law is responsible for the hybrid character of
such models. An equilibrium set of such a differential inclusion
corresponds to a stationary mode for which the friction elements
are sticking. The attractivity properties of the equilibrium set
are of major importance for the overall dynamic behaviour o
this type of systems. Conditions for the attractivity of theequi-
librium set of linear MDOF mechanical systems with multiple
friction elements are presented. These results are obtained by
application of a generalisation of LaSalle’s principle fordiffer-
ential inclusions of Filippov-type. Besides passive systems, also
systems with negative viscous damping are considered. For such
systems, only local attractivity of the equilibrium set canbe as-
sured under certain conditions. Moreover, an estimate for the
region of attraction is given for these cases. The results are illus-
trated by means of a 2DOF example.

INTRODUCTION
The presence of dry friction can influence the behaviour an

performance of mechanical systems as it can induce several phe-
nomena, such as friction-induced limit-cycling, damping of vi-
brations and stiction. Dry friction in mechanical systems is of-
ten modelled using set-valued constitutive models (see Glocker
(2001)), such as the set-valued Coulomb’s law. Set-valued fric-
tion models have the advantage to properly model stiction, since
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the friction force is allowed to be non-zero at zero relativeveloc-
ity. The dynamics of mechanical systems with set-valued friction
laws are described by differential inclusions. We limit ourselves
to set-valued friction laws which lead to Filippov-type systems
(Filippov (1988)). Filippov systems, describing systems with
friction, can exhibit equilibrium sets, which correspond to the
stiction behaviour of those systems.

The overall dynamics of mechanical systems is largely af-
fected by the stability and attractivity properties of the equilib-
rium sets. For example, the loss of stability of the equilibrium set
can, in certain applications, cause limit-cycling. Moreover, the
stability and attractivity properties of the equilibrium set can also
seriously affect the performance of control systems. In Alvarez
et al. (2000); Shevitz and Paden (1994) and Bacciotti and Ceragi-
oli (1999), stability and attractivity properties of (setsof) equilib-
ria in differential inclusions are studied. More specifically, in Al-
varez et al. (2000) and Shevitz and Paden (1994) the attractivity
of the equilibrium set of a passive, one-degree-of-freedomfric-
tion oscillator with one switching boundary (i.e. one dry friction
element) is discussed. Moreover, in Shevitz and Paden (1994)
and Bacciotti and Ceragioli (1999) the Lyapunov stability of an
equilibrium point in the equilibrium set is shown. However,most
papers are limited to either one-degree-of-freedom systems or to
systems exhibiting only one switching boundary.

We will provide conditions under which the equilibrium
set is attractive for multi-degree-of-freedom mechanicalsys-
tems with an arbitrary number of Coulomb friction elements
using Lyapunov-type stability analysis and a generalisation of
LaSalle’s invariance principle for non-smooth systems. More-
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over, passive as well as non-passive systems will be considered.
The non-passive systems that will be studied are linear mechani-
cal systems with a non-positive definite damping matrix withad-
ditional dry friction elements. The non-positive-definiteness of
the damping matrix of linearised systems can be caused by fluid,
aeroelastic, control and gyroscopical forces, which can cause in-
stabilities. It will be demonstrated in this paper that the pres-
ence of dry friction in such an unstable linear system can (con-
ditionally) ensure the local attractivity of the equilibrium set of
the resulting system with dry friction. Moreover, an estimate of
the region of attraction for the equilibrium set will be given. A
rigid multibody approach is used for the description of mechan-
ical systems with friction, which allows for a natural physical
interpretation of the conditions for attractivity.

In the next section, the equations of motion for linear me
chanical systems with frictional elements are formulated and the
equilibrium set is defined. Subsequently, the attractivityprop-
erties of the equilibrium set are studied by means of a generali-
sation of LaSalle’s invariance principle. An example is studied
in order to illustrate the theoretical results and to investigate the
correspondence between the estimated and actual region oft-
traction. Finally, a discussion of the obtained results andcon-
cluding remarks are given.

MODELLING OF MECHANICAL SYSTEMS WITH
COULOMB FRICTION

In this section, we will formulate the equations of motion for
linear mechanical systems withm frictional translational joints.
These translational joints restrict the motion of the system to a
manifold determined by the bilateral holonomic constraintequa-
tions imposed by these joints (sliders). Coulomb’s friction law is
assumed to hold in the tangential direction of the manifold.

Let us formulate the equations of motions for such system
by:

MMMq̈qq+CCCq̇qq+KKKqqq−WWWTλλλT = 000, (1)

in which qqq is a column of independent generalised coordinates
MMM, CCC and KKK represent the mass-matrix, damping-matrix and
stiffness-matrix, respectively, andλλλT is a column of friction
forces in the translational joints. These friction forces obey the
following set-valued force law:

λλλT ∈ −ΛΛΛSign(γγγT), (2)

with

ΛΛΛ = diag
([

µ1|λN1| . . . µm|λNm|
])
2
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and the set-valued sign function

Sign(x) =











−1, x < 0,

[−1,1], x = 0,

1, x > 0.

(3)

Herein, λNi and µi , i = 1, . . . ,m, are the normal contact force
and the friction coefficient in translational jointi. Moreover,
WWWT

T =
∂γγγT
∂q̇qq is a matrix reflecting the generalised force directions

of the friction forces. Herein,γγγT is a column of relative slid-
ing velocities in the translational joints. Equation (1) forms,
together with a set-valued friction law (2), a differentialinclu-
sion. Differential inclusions of this type are called Filippov sys-
tems which obey Filippov’s solution concept (Filippov’s convex
method). Consequently, the existence of solutions of system (1)
is guaranteed. Moreover, due to the fact thatµi ≥ 0, i = 1, . . . ,m,
which excludes the possibility of repulsive sliding modes along
the switching boundaries, also uniqueness of solutions in forward
time is guaranteed (see Leine and Nijmeijer (2004)).

Due to the set-valued nature of the friction law (2), the sys-
tem exhibits an equilibrium set. Since we assume thatγγγT =WWWT

T q̇qq,
q̇qq= 000 impliesγγγT = 000. This means that every equilibrium implies
sticking in all contact points and obeys the equilibrium inclusion:

KKKqqq+WWWTΛΛΛSign(000) ∋ 000. (4)

The equilibrium set is therefore given by

E =
{

(qqq, q̇qq) ∈ R
2n|(q̇qq = 000)∧qqq∈ −KKK−1WWWTΛΛΛSign(000)

}

(5)

and is positively invariant due to the uniqueness of the solutions
in forward time.

ATTRACTIVITY ANALYSIS OF THE EQUILIBRIUM SET
Let us now study the attractivity properties of this equi-

librium setE . Hereto, we will use LaSalle’s principle (Khalil
(1996)), but applied to Filippov systems with uniqueness ofso-
lutions in forward time (Van de Wouw and Leine (2004)).

Let us consider the stability of linear systems with friction
and positive definite matricesMMM, KKK and a non-positive damping
matrixCCC. Note that this implies that the equilibrium point of the
linear system without friction is either stable or unstable, but in
any case notasymptoticallystable. In the following theorem we
state the condition under which (part of) the equilibrium set of
the system with friction is locally attractive.

Theorem 1
Consider system (1) with friction law (2). Assume that the matri-
cesMMM andKKK are positive definite and the matrixCCC is not positive
Copyright  2005 by ASME



definite but symmetric. If the following condition is satisfied:
UUUci ∈ span{WWWT} for i = 1, . . . ,nq, whereUUUc = {UUUci} is a matrix
containing thenq eigencolumns corresponding to the eigenval-
ues ofCCC, which lie in the closed left-half complex plane, then a
convex subset of the equilibrium set (5) is locally attractive.

Proof: We consider a positive definite function

V =
1
2

q̇qqTMMMq̇qq+
1
2

qqqTKKKqqq. (6)

Using friction law (2) and the fact thatγγγT = WWWT
T q̇qq, the time-

derivative ofV is

V̇ = q̇qqT (−CCCq̇qq−KKKqqq+WWWTλλλT)+ q̇qqTKKKqqq

= −q̇qqTCCCq̇qq− γγγT
TΛΛΛSign(γγγT)

= −q̇qqTCCCq̇qq− pppT|γγγT |
= −q̇qqTCCCq̇qq− pppT|WWWT

T q̇qq|,

(7)

where the columnsppp and|γγγT | are defined byppp = {Λii}, |γγγT | =
{|ġTi |} , for i = 1, . . . ,m. Equation (7) implies thaṫV is a contin-
uous single-valued function (ofqqq andq̇qq). It holds thatppp≥ 000 and
that if q̇qq = 000 thenγγγT = 000.

We now apply a spectral decomposition ofCCC = UUUcΩΩΩcUUUT
c ,

whereUUUc is the orthonormal matrix containing all eigencolumns
andΩΩΩc is the diagonal matrix containing all eigenvalues ofCCC,
which are real. Moreover, we introduce coordinatesηηη such that
qqq = UUUcηηη. Consequently,̇V satisfies

V̇ = −q̇qqTUUUcΩΩΩcUUU
T
c q̇qq− pppT|WWWT

T q̇qq|
= −η̇ηηTΩΩΩcη̇ηη− pppT|WWWT

TUUUcη̇ηη|.
(8)

The matrixCCC hasnq eigenvalues in the closed left-half complex
plane; all other eigenvalues lie in the open right-half complex
plane. Consequently,̇V obeys the inequality

V̇ ≤−
nq

∑
i=1

λi η̇2
i − pppT|WWWT

TUUUcη̇ηη| ∀ η̇ηη, (9)

where we assumed that the eigenvalues (and eigencolumns) ofCCC
are ordered in such a manner thatλi , i = 1, . . . ,nq, correspond
to the eigenvalues ofCCC in the closed left-half complex plane.
Assume that∃α > 0 such that

nq

∑
i=1

|eeeT
i η̇ηη| ≤ αpppT|WWWT

TUUUcη̇ηη| ∀ η̇ηη. (10)
3

Herein,eeei is a unit-column with a non-zero element on thei-th
position. Assuming that such anα can be found, (9) results in

V̇ ≤−
nq

∑
i=1

λi η̇2
i −β

nq

∑
i=1

|η̇i | ≤ 0,

∀ η̇i ∈
{

η̇i |
β
λi

≤ η̇i ≤− β
λi

,

}

for λi < 0,

∀ η̇i ∈ R for λi = 0,

(11)

for i = 1, . . . ,nq with β = 1
α andη̇i = eeeT

i η̇ηη. Let us now investigate
when∃α > 0 such that (10) is satisfied. Note, hereto, that if

eeei ∈ span
{

UUUT
cWWWT

}

, ∀ i ∈ [1, . . . ,nq] ,

then ∃νννT
i such thateeeT

i = νννT
i WWWT

TUUUc. It therefore holds that
|eeeT

i η̇ηη| = |νννT
i WWWT

TUUUcη̇ηη| and |eeeT
i η̇ηη| ≤ |νννT

i ||WWWT
TUUUcη̇ηη|. Choose the

smallestα̃i such that|νννT
i | ≤ α̃i pppT, where the sign≤ has to

be understood component-wise. Then it holds that|eeeT
i η̇ηη| ≤

α̃i pppT|WWWT
TUUUcη̇ηη| ∀ η̇ηη, ∀ i ∈ [1, . . . ,nq]. Note thatα in (10) can

be taken asα = ∑
nq
i=1 α̃i . Finally, one should realise that if and

only if

UUUceeei ∈ span{WWWT} , (12)

or, in other words, if thei-th columnUUUci of UUUc satisfiesUUUci ∈
span{WWWT} (note in this respect thatUUUc is real and symmetric),
then it holds thateeei ∈ span

{

UUUT
cWWWT

}

. Therefore, a sufficient con-
dition for the validity of (11) can be given by

UUUci ∈ span{WWWT} , ∀ i ∈ [1, . . . ,nq] . (13)

Now, we apply LaSalle’s Invariance Principle. Let us, hereto,
define a setC by

C =

{

(qqq, q̇qq) | |
(

UUUT
c q̇qq

)

i | ≤ − β
λi

, i = 1, . . . ,nq

}

, (14)

where
(

UUUT
c q̇qq

)

i denotes the i-th element of the column
UUUT

c q̇qq. Moreover, let us define a setIρ such that Iρ =
{(qqq, q̇qq) |V(qqq, q̇qq) ≤ ρ} and choose the constantρ such that
Iρ ⊂ C . Moreover, we define a setS ⊂ Iρ by S =
{

(qqq, q̇qq) ∈ Iρ : q̇qq = 000
}

. Furthermore, the largest invariant set in
S is a subset̃E of the equilibrium setE , whereẼ = E

⋂

int(Iρ∗)
and

ρ∗ = max
{ρ:Iρ⊂C }

ρ. (15)
Copyright  2005 by ASME



Figure 1. 2DOF mass-spring-damper system with Coulomb friction.
Note thatV̇ = 0 if and only if (qqq, q̇qq) ∈ S andV̇ < 0 otherwise.
Application of LaSalle’s invariance principle concludes the
proof of the local attractivity of̃E under condition (13). �

At this point several remarks should be made:

1. It should be noted that the proof of Theorem 1 provides u
with a conservative estimate of the region of attractionA
of the locally attractive equilibrium setE . The estimateB
can be formulated in terms of the generalised displacemen
and velocities:B = Iρ∗ , whereρ∗ satisfies (15), the setC
is given by (14) andV is given by (6); In Van de Wouw and
Leine (2004), an explicit expression forρ∗ is provided which
allows to estimate the region of attraction of the equilibrium
set:

ρ∗ = min
i=1,...,nq

ρi ,

with

ρi =
β2

2λ2
i

1

‖eeeT
n+iSSS

−1‖2
,

(16)

whereSSS is the square root ofPPP (PPP = SSSTSSS) andPPP is given by

PPP =

[

UUUT
c KKKUUUc 000

000 UUUT
c MMMUUUc

]

. (17)

2. The proof of Theorem 1 also shows that boundedness of s
lutions (starting inB ) is ensured and that the equilibrium
point (qqq, q̇qq) = (000,000) is Lyapunov stable.

3. It can be shown that if it holds thatΛΛΛTWWWT
TKKK−TWWWTΛΛΛ < 2ρ∗,

thenE ⊂ Iρ∗ . In that case the entire equilibrium setE is
locally attractive.

4. An important consequence of Theorem 1 is that when th
damping-matrixCCC is positive definite, global attractivity of
the equilibrium set is assured. Note, hereto, that in the proof
4
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of Theorem 1, (13) is automatically satisfied andρ can be
taken arbitrarily large in that case.

ILLUSTRATING EXAMPLE
In this section, we will illustrate the results of the previous

section by means of an example of a 2DOF mass-spring-damper
system, see Figure 1. The equation of motion of this system can
be written in the form (1), withqqqT =

[

x1 x2
]

and the generalised
friction forcesλλλT given by the Coulomb friction law (2). Herein
the matricesMMM, CCC, KKK, WWWT andΛΛΛ are given by

MMM =

[

m1 0
0 m2

]

, CCC =

[

c1 +c2 −c2

−c2 c1 +c2

]

,

KKK =

[

k1 +k2 −k2

−k2 k1 +k2

]

,

WWWT =

[

1 0
0 1

]

, ΛΛΛ =

[

µ1m1g 0
0 µ2m2g

]

,

(18)

with m1,m2,k1,k2 > 0 andµ1,µ2 ≥ 0. Moreover, the tangential
velocity γγγT in the frictional contacts is given byγγγT =

[

ẋ1 ẋ2
]T

.
Let us first compute the spectral decomposition of the damping-
matrix,CCC = UUUcΩΩΩcUUUT

c , with (for non-singularCCC):

UUUc =
1√
2

[

1 −1
1 1

]

, ΩΩΩc =

[

c1 0
0 c1 +2c2

]

. (19)

The equilibrium setE , as defined by (5), is given by

E = {(x1,x2, ẋ1, ẋ2) | ẋ1 = 0∧ ẋ2 = 0∧

|x1| ≤
(k1 +k2)µ1m1g+k2µ2m2g

k2
1 +2k1k2

∧

|x2| ≤
(k1 +k2)µ2m2g+k2µ1m1g

k2
1 +2k1k2

}

.

(20)
Copyright  2005 by ASME



Figure 2. Cross-section of the region of attraction A with the plane defined by ẋ1 = 0 and ẋ2 = 0.
Let us now consider two different cases for the damping param-
etersc1 andc2:

Firstly, we consider the case thatc1 > 0 and c2 > −c1/2. Note
thatCCC > 0 if and only if c1 > 0 andc2 > −c1/2. Consequently,
the global attractivity of the equilibrium setE is assured. It
should be noted that this is also the case when one or both
the friction coefficientsµ1 andµ2 vanish.

Secondly, we consider the case thatc1 > 0 and c2 < −c1/2.
Clearly, the damping matrix is not positive definite in this case.
As a consequence, the equilibrium point of the system withot
friction is unstable. Still the equilibrium set of the system with
friction can be locally attractive. Therefore, Theorem 1 can be
used to investigate the attractivity properties of (a subset of) the
equilibrium set. For the friction situation depicted in Figure 1,
condition (13) is satisfied ifµ1 > 0 andµ2 > 0. Namely,WWWT

spans the two-dimensional space and, consequently, the eigen-
column of the damping matrix corresponding to the unstab
eigenvaluec1 + 2c2, namely

[

−1 1
]T

, lies in the space spanned
by the columns ofWWWT .

Since the attractivity is only local, it is desirable to provide
an estimateB of the region of attractionA of (a subset of) the

5
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equilibrium set. Here, we present a comparison between the ac-
tual region of attraction (obtained by numerical simulation) and
the estimateB for the following parameter set:m1 = m2 = 1kg,
k1 = k2 = 1N/m, c1 = 0.5Ns/m,c2 = −0.375Ns/m,µ1 = µ2 =
0.1 andg = 10m/s2. The numerical simulations are performed
using an event-driven integration method as described in Pfeif-
fer and Glocker (1996). The event-driven integration method is
a hybrid integration technique that uses a standard ODE solver
for the integration of smooth phases of the system dynamics and
a LCP (Linear Complementarity Problem) formulation to deter-
mine the next hybrid mode at the switching boundaries. For these
parameter settings,E ⊂ int(Iρ∗) and the local attractivity of the
entire equilibrium setE is ensured. In Figure 2, we show a cross-
section ofA with the plane ˙x1 = 0 andẋ2 = 0, denoted byÂ ,
which was obtained numerically. Hereto, a grid of initial condi-
tions in the plane ˙x1 = ẋ2 = 0 was defined, for which the solutions
were obtained by numerically integrating the system over a given
time spanT. Subsequently, a check was performed to inspect
whether the state of the system at timeT was in the equilibrium
setE . Initial conditions corresponding to attractive solutions are
depicted with a light colour (set̂A ) and initial conditions corre-

Copyright  2005 by ASME
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sponding to non-attractive solutions are depicted with a dark grey
colour (setD̂ ). Moreover,Ê andB̂ are also shown in the figure,
where theˆ indicates that we are referring to cross-sections of the
sets. It should be noted thatÊ ⊂ B̂ . As expected the setB is a
conservative estimate for the region of attractionA . In Van de
Wouw and Leine (2004), more examples are discussed in whic
the crucial condition for local attractivity (13) is not satisfied.

CONCLUSIONS
Conditions for the (local) attractivity of (subsets of) equilib-

rium sets of mechanical systems with friction are derived. The
systems are allowed to have multiple degrees-of-freedom and
multiple switching boundaries (friction elements). It is shown
that the equilibrium setE of a linear mechanical system, which
without friction exhibits a stable equilibrium pointE, will al-
ways be attractive when Coulomb friction elements are added.
Moreover, it has been shown that even if the system without fric-
tion has an unstable equilibrium pointE, then (a subset of) the
equilibrium setE of the system with friction can under certain
conditions be locally attractive and the equilibrium pointE ⊂ E
is stable. The crucial condition can be interpreted as follows:
the space spanned by the eigendirections of the damping matrix,
related to non-positive eigenvalues, lies in the space spanned by
the generalised force directions of the dry friction elements.

Lyapunov stability of the equilibrium set of non-passive sys-
tems is not addressed, however, the combination of the attractiv-
ity property of the equilibrium set and the boundedness of solu-
tions within B can be a valuable characteristic when the equi-
librium set is a desired steady state of the system. Moreove,
an estimate of the region of attraction of the equilibrium set is
provided.
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