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ABSTRACT

The dynamics of mechanical systems with dry friction ele-
ments, modelled by set-valued force laws, can be descriped b
differential inclusions. The switching and set-valuedunatof
the friction force law is responsible for the hybrid chaexabf
such models. An equilibrium set of such a differential irsidun
corresponds to a stationary mode for which the friction elets
are sticking. The attractivity properties of the equilibri set
are of major importance for the overall dynamic behaviour of
this type of systems. Conditions for the attractivity of dugui-
librium set of linear MDOF mechanical systems with multiple
friction elements are presented. These results are obtdipe
application of a generalisation of LaSalle’s principle @bffer-
ential inclusions of Filippov-type. Besides passive systealso
systems with negative viscous damping are considered.uebr s
systems, only local attractivity of the equilibrium set danas-
sured under certain conditions. Moreover, an estimateHer t
region of attraction is given for these cases. The resudtdlas-
trated by means of a 2DOF example.

INTRODUCTION

The presence of dry friction can influence the behaviour and
performance of mechanical systems as it can induce sevezal p
nomena, such as friction-induced limit-cycling, dampirfgrie
brations and stiction. Dry friction in mechanical system®i-
ten modelled using set-valued constitutive models (seekélo
(2001)), such as the set-valued Coulomb’s law. Set-valtied f
tion models have the advantage to properly model stictioees
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the friction force is allowed to be non-zero at zero relatigoc-
ity. The dynamics of mechanical systems with set-valuetim
laws are described by differential inclusions. We limit selves
to set-valued friction laws which lead to Filippov-type ®mss
(Filippov (1988)). Filippov systems, describing systemighw
friction, can exhibit equilibrium sets, which correspordthe
stiction behaviour of those systems.

The overall dynamics of mechanical systems is largely af-
fected by the stability and attractivity properties of trepidib-
rium sets. For example, the loss of stability of the equilibr set
can, in certain applications, cause limit-cycling. Moreguhe
stability and attractivity properties of the equilibriuetgan also
seriously affect the performance of control systems. Inafdz
et al. (2000); Shevitz and Paden (1994) and Bacciotti andder
0li (1999), stability and attractivity properties of (sef} equilib-
ria in differential inclusions are studied. More specifigah Al-
varez et al. (2000) and Shevitz and Paden (1994) the atfitgcti
of the equilibrium set of a passive, one-degree-of-freediion
tion oscillator with one switching boundary (i.e. one drigtion
element) is discussed. Moreover, in Shevitz and Paden J199:
and Bacciotti and Ceragioli (1999) the Lyapunov stabilityan
equilibrium point in the equilibrium set is shown. Howevagst
papers are limited to either one-degree-of-freedom systero
systems exhibiting only one switching boundary.

We will provide conditions under which the equilibrium
set is attractive for multi-degree-of-freedom mechanisygd-
tems with an arbitrary number of Coulomb friction elements
using Lyapunov-type stability analysis and a generatisatf
LaSalle’s invariance principle for non-smooth systems. ré4o
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over, passive as well as non-passive systems will be caeside
The non-passive systems that will be studied are linear areéch
cal systems with a non-positive definite damping matrix \aith
ditional dry friction elements. The non-positive-defimiéss of
the damping matrix of linearised systems can be caused lay flui
aeroelastic, control and gyroscopical forces, which carsean-
stabilities. It will be demonstrated in this paper that thiesp
ence of dry friction in such an unstable linear system can-(co
ditionally) ensure the local attractivity of the equilibm set of
the resulting system with dry friction. Moreover, an estienaf
the region of attraction for the equilibrium set will be giveA
rigid multibody approach is used for the description of naeh
ical systems with friction, which allows for a natural phyesli
interpretation of the conditions for attractivity.

In the next section, the equations of motion for linear me-
chanical systems with frictional elements are formulated the
equilibrium set is defined. Subsequently, the attractipityp-
erties of the equilibrium set are studied by means of a génera
sation of LaSalle’s invariance principle. An example isdétd
in order to illustrate the theoretical results and to inigege the
correspondence between the estimated and actual regian of a
traction. Finally, a discussion of the obtained results eoa-
cluding remarks are given.

MODELLING OF MECHANICAL SYSTEMS WITH
COULOMB FRICTION

In this section, we will formulate the equations of motion fo
linear mechanical systems with frictional translational joints.
These translational joints restrict the motion of the gyste a
manifold determined by the bilateral holonomic constraimia-
tions imposed by these joints (sliders). Coulomb’s frictiaw is
assumed to hold in the tangential direction of the manifold.

Let us formulate the equations of motions for such systems

by:

M4 +Cq+Kq—WrAr =0, 1)

in which q is a column of independent generalised coordinates,
M, C and K represent the mass-matrix, damping-matrix and
stiffness-matrix, respectively, ankly is a column of friction
forces in the translational joints. These friction forcéey the
following set-valued force law:

At € —ASignyy), (2)

with

A = diag( [pu[Any| - - Bl Angl])

and the set-valued sign function

-1, x <0,
Slgr(x) = [_17 1}7 X= 07 (3)
1, x> 0.
Herein, A\, and ;, i = 1,...,m, are the normal contact force

and the friction coefficient in translational joint Moreover,
W] = aaﬁ is a matrix reflecting the generalised force directions
of the friction forces. Hereiny; is a column of relative slid-
ing velocities in the translational joints. Equation (1)rfs,
together with a set-valued friction law (2), a differentiatlu-
sion. Differential inclusions of this type are called Fgipv sys-
tems which obey Filippov’s solution concept (Filippov'snvex
method). Consequently, the existence of solutions of ay$18
is guaranteed. Moreover, due to the fact fhat 0,i=1,...,m,
which excludes the possibility of repulsive sliding modémg
the switching boundaries, also uniqueness of solutiorarimdrd
time is guaranteed (see Leine and Nijmeijer (2004)).

Due to the set-valued nature of the friction law (2), the sys-
tem exhibits an equilibrium set. Since we assumeyhat wlgq,
=0 impliesy; = 0. This means that every equilibrium implies
sticking in all contact points and obeys the equilibriumliiiseon:

Kq+W+7ASign(0) > 0. 4)
The equilibrium set is therefore given by
£ = {(q,9) e R™(@=0)Aq e —K 'WrASign0)} (5)

and is positively invariant due to the uniqueness of thetsmnis
in forward time.

ATTRACTIVITY ANALYSIS OF THE EQUILIBRIUM SET

Let us now study the attractivity properties of this equi-
librium set. Hereto, we will use LaSalle’s principle (Khalil
(1996)), but applied to Filippov systems with uniquenessaf
lutions in forward time (Van de Wouw and Leine (2004)).

Let us consider the stability of linear systems with friatio
and positive definite matricdd, K and a non-positive damping
matrix C. Note that this implies that the equilibrium point of the
linear system without friction is either stable or unstalblat in
any case nocasymptoticallystable. In the following theorem we
state the condition under which (part of) the equilibriunh aie
the system with friction is locally attractive.

Theorem 1
Consider system (1) with friction law (2). Assume that thenna
cesM andK are positive definite and the matfxis not positive
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definite but symmetric. If the following condition is satésdi
Ug e spafWr} fori=1,...,nq, whereU. = {Ug,} is a matrix
containing theny eigencolumns corresponding to the eigenval-
ues ofC, which lie in the closed left-half complex plane, then a
convex subset of the equilibrium set (5) is locally attnazti

Proof: We consider a positive definite function

_Lomas LT
V= 3a'Ma+3a'Ka. (6)

Using friction law (2) and the fact thaly = W1gq, the time-
derivative ofV is

V=q"(-Cq—Kg+WrAr)+q'Kq
=—q'Cq-y;ASignyr)

T @)
=—q'Cq—p'ly|
=-q'Cq—p'|Wiq,
where the columng and|y;| are defined byp = {Aii}, |yr| =

{lg7|}, fori=1,....,m Equation (7) implies tha¥ is a contin-
uous single-valued function (efandq). It holds thatp > 0 and
that if = 0 theny; =0

We now apply a spectral decomposition®f= U.Q.U[,
whereU. is the orthonormal matrix containing all eigencolumns
and Q. is the diagonal matrix containing all eigenvaluesQf
which are real. Moreover, we introduce coordinajesuch that
q=Ucn. Consequentlyy satisfies

= _qTU chch pT|W$q|

. (8)
pTWiU.n|.

=-N"Qen -

The matrixC hasng eigenvalues in the closed left-half complex
plane; all other eigenvalues lie in the open right-half ctemp
plane. Consequently, obeys the inequality

Nq
VS_ )\r-]2_
20

where we assumed that the eigenvalues (and eigencolum@s) of
are ordered in such a manner thati = 1,...,nq, correspond

to the eigenvalues o€ in the closed left-half complex plane.
Assume thaBa > 0 such that

p'WIUcn| VA, )

Ng
_lem <ap'Wilcn| vA. (10)
1=

Herein, g is a unit-column with a non-zero element on tkth
position. Assuming that such @ancan be found, (9) results in

Ng Ng
V<—SANRP— Nil <0,
< i; ini Bi;m_

. 11
VniE{n.l B<n.<—f,}for>\i<0, -
vn € RforAj =0,
fori=1,...,ngwithf= % andn; = e'n. Let us now investigate

when3Ja > 0 such that (10) is satisfied. Note, hereto, that if

e € span{UWr}, Vi €[1,...,ng],

then 3v] such thate] = v/WIU.. It therefore holds that
le'n| = (VJWTUR| and |€'A| < [v]|IWTUR|. Choose the
smallestd; such that|v| < &;p", where the sign< has to
be understood component-wise. Then it holds teif)| <

& p'WiUcn| ¥R, Vi€ [l,...,ng. Note thata in (10) can
be taken ast = zi"ilc”xi. Finally, one should realise that if and
only if

Uce € span{Wr}, (12)

or, in other words, if the-th columnU, of U, satisfiedU, €
span{Wr} (note in this respect th&d is real and symmetric),
then it holds thag € span{UIWT}. Therefore, a sufficient con-
dition for the validity of (11) can be given by

Ug espaniWr}, Viell,...,ngl. (13)

Now, we apply LaSalle’s Invariance Principle. Let us, heret
define a set by

= {<q7q)| [(Uia)| < —%, i =1,...7nq}7 (14)

where (U[q), denotes thei-th element of the column
Ulgq. Moreover, let us define a set, such thati, =
{(q,9) |V(g,q) <p} and choose the constamt such that
Ip C ¢c. Moreover, we define a se§ C I, by § =
{(9.4) € 1,: @=0}. Furthermore, the largest invariant set in
S is a subse£ of the equilibrium set, wherez = Nint(1p+)
and

*

p*= max p. (15)

{ppcc}
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Figure 1. 2DOF mass-spring-damper system with Coulomb friction.

Note thatV = 0 if and only if (q,¢) € s andV < 0 otherwise.
Application of LaSalle’s invariance principle concludesset
proof of the local attractivity ofc under condition (13). O

At this point several remarks should be made:

1. It should be noted that the proof of Theorem 1 provides us

with a conservative estimate of the region of attraction
of the locally attractive equilibrium set. The estimates

can be formulated in terms of the generalised displacements

and velocities: 8 = I+, wherep* satisfies (15), the set
is given by (14) an® is given by (6); In Van de Wouw and
Leine (2004), an explicit expression fot is provided which
allows to estimate the region of attraction of the equitibri

set:
pr= ”li,_r]nq Pi;
with (16)
P 1
T D2 el s T

whereSis the square root d@® (P = S'S) andP is given by

of Theorem 1, (13) is automatically satisfied gmdan be
taken arbitrarily large in that case.

ILLUSTRATING EXAMPLE

In this section, we will illustrate the results of the pravso
section by means of an example of a 2DOF mass-spring-damp
system, see Figure 1. The equation of motion of this system ca
be written in the form (1), witlg" = [x1 X2 and the generalised
friction forcesAt given by the Coulomb friction law (2). Herein
the matriceM, C, K, Wt andA are given by

_ my O _|ti+C —C
M__O mz}’c_{—Cz C:L+C2]7
. _k]_-l-kz —ko
K= | —ke k1+k2}’ (18)
10 mtmg O
W = A:
T pJ’ [0 me’

with my, mp, ki, ko > 0 andpy, b2 > 0. Moreover, the tangential
velocity y; in the frictional contacts is given by = [ XZ]T.
Let us first compute the spectral decomposition of the dagapin
matrix,C = U Q.U[, with (for non-singulaC):

Ulku. o
P—{ ‘0 UIMUJ' (7) b L1 o [a O 19
C_\ﬁll P MCT 0 426
2. The proof of Theorem 1 also shows that boundedness of so- o . o
lutions (starting in®) is ensured and that the equilibrium  The equilibrium setz, as defined by (5), is given by
point(q, ) = (0,0) is Lyapunov stable.
i T\WTw—T *
3. It can be shown that if it holds thaAt _WTK _WT_A < 2p_ , £ — {(X1, %, %1, %2) | %1 = OA %o — OA
thenz C Ip-. In that case the entire equilibrium setis
locally attractive. x| < (ki + kz)Lzllmlg + Kapompg
4. An important consequence of Theorem 1 is that when the kT + 2kiko (20)
damping-matrixC is positive definite, global attractivity of - (K + ko) ompg + ko g
the equilibrium set is assured. Note, hereto, that in thefpro ef < K2+ 2kky :

4
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Figure 2. Cross-section of the region of attraction 4 with the plane defined by X; = O and X = 0.

Let us now consider two different cases for the damping param
etersc; andcy:

Firstly, we consider the case that> 0 and ¢, > —c;/2. Note
thatC > 0 if and only ifc; > 0 andcy > —c; /2. Consequently,
the global attractivity of the equilibrium set is assured. It
should be noted that this is also the case when one or both o
the friction coefficientgy andp, vanish.

Secondly, we consider the case tbat- 0and ¢, < —¢;/2.
Clearly, the damping matrix is not positive definite in thése.
As a consequence, the equilibrium point of the system withou
friction is unstable. Still the equilibrium set of the systevith
friction can be locally attractive. Therefore, Theorem h t&
used to investigate the attractivity properties of (a stibfethe
equilibrium set. For the friction situation depicted in &ig 1,
condition (13) is satisfied ify > 0 andpp > 0. Namely,W+
spans the two-dimensional space and, consequently, tea-eig
column of the damping matrix corresponding to the unstable
eigenvaluec; + 2¢, namely[—l 1}T, lies in the space spanned
by the columns oW+.

Since the attractivity is only local, it is desirable to pias/
an estimates of the region of attractiom of (a subset of) the

5

equilibrium set. Here, we present a comparison betweenahe a
tual region of attraction (obtained by numerical simulajiand
the estimates for the following parameter setmy = m, = 1Kkg,
ki = ko = 1N/m,c; = 0.5Ns/m,c; = —0.375Ns/m,uy = o =
0.1 andg = 10m/2. The numerical simulations are performed
fusing an event-driven integration method as described aif-Pf
fer and Glocker (1996). The event-driven integration mettso
a hybrid integration technique that uses a standard ODEesolv
for the integration of smooth phases of the system dynamnids a
a LCP (Linear Complementarity Problem) formulation to dete
mine the next hybrid mode at the switching boundaries. Feseh
parameter settings; C int(1p+) and the local attractivity of the
entire equilibrium sek is ensured. In Figure 2, we show a cross-
section ofa with the planex; = 0 andx, = 0, denoted bya,
which was obtained numerically. Hereto, a grid of initiahdo
tions in the planey = X, = 0 was defined, for which the solutions
were obtained by numerically integrating the system ovéverg
time spanT. Subsequently, a check was performed to inspec
whether the state of the system at tifavas in the equilibrium
set£ . Initial conditions corresponding to attractive solusare
depicted with a light colour (set) and initial conditions corre-
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sponding to non-attractive solutions are depicted withrla geey Notes in Applied and Computational MechanicSpringer-

colour (set@) Moreover,z and3 are also shown in the figure, Verlag, Berlin.

where the” indicates that we are referring to cross-sestbthe Pfeiffer, F. and Glocker, Ch. . (1996Multibody dynamics with
sets. It should be noted that C 3. As expected the set is a unilateral contacts Wiley, New York.

conservative estimate for the region of attraction In Van de Shevitz, D. and Paden, B. (1994). Lyapunov stability of non-
Wouw and Leine (2004), more examples are discussed in which  smooth systems.[EEE Transactions on Automatic Contyol
the crucial condition for local attractivity (13) is not sdited. 39(9):1910-1914.

Van de Wouw, N. and Leine, R. I. (2004). Attractivity of eql
rium sets of systems with dry frictioninternational Journal
CONCLUSIONS of Nonlinear Dynamics and Chaos in Engineering Systems

Conditions for the (local) attractivity of (subsets of) dip 35(1):19-39.

rium sets of mechanical systems with friction are derivetle T
systems are allowed to have multiple degrees-of-freedoth an
multiple switching boundaries (friction elements). It isos/n
that the equilibrium set of a linear mechanical system, which
without friction exhibits a stable equilibrium poir, will al-
ways be attractive when Coulomb friction elements are added
Moreover, it has been shown that even if the system withaast fr
tion has an unstable equilibrium poiBt then (a subset of) the
equilibrium setz of the system with friction can under certain
conditions be locally attractive and the equilibrium pdint £
is stable. The crucial condition can be interpreted as Vi@lo
the space spanned by the eigendirections of the dampingxmatr
related to non-positive eigenvalues, lies in the spacersgghhy
the generalised force directions of the dry friction eletaen
Lyapunov stability of the equilibrium set of non-passive-sy
tems is not addressed, however, the combination of thectttra
ity property of the equilibrium set and the boundedness hf-so
tions within 8 can be a valuable characteristic when the equi-
librium set is a desired steady state of the system. Moreover
an estimate of the region of attraction of the equilibriurhise
provided.
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