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ABSTRACT
Friction-induced limit cycling deteriorates system perfor-

mance in a wide variety of mechanical systems. In this paper,we
study the way in which essential friction characteristics affect the
occurrence and nature of friction-induced limit cycling inflexi-
ble rotor systems. This study is performed on the level of both
numerical and experimental bifurcation analyses. Hereto,an ex-
perimental drill-string set-up is used. The synthesis of these nu-
merical and experimental results confirms that friction-induced
limit cycling is due to a subtle balance between a velocity weak-
ening characteristic of the friction (Stribeck effect) at lower ve-
locities and viscous friction at higher velocities. Moreover, it
is shown how these essential friction characteristics depend on
physical conditions such as temperature and normal forces in the
frictional contact in the experimental set-up.

INTRODUCTION
Friction-induced limit cycling often limits the performance

and can also endanger the safety of operation of a wide rangef
mechanical systems. In this paper, we focus on friction-induced
limit cycling in mechanical systems with friction and flexibili-
ties. In this context, one can think of drilling rigs, printers, pick
and place machines, industrial and domestic robots, simpleearth-
quake models, accurate mirror positioning systems on satellites
and many more. In these systems, the combination of frictionand
∗Part of this work was done while working at the TU/e.
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flexibility can give rise to limit cycling. This paper aims atre-
vealing the dependency of limit cycling on the friction character-
istics through both numerical and experimental studies. Inorder
to perform experimental validation of the results, an experimen-
tal drill-string system is built in which both flexibility and fric-
tion are present. This experimental setup will support the study
of friction-induced limit-cycling in general mechanical systems
with friction and flexibilities and the study of friction-induced
limit-cycling in drill-string systems in particular. The particular
interest for drill-string systems is motivated by the presence of
unwanted vibration in oil-drilling rigs.

Namely, for the exploration and production of oil and gas
deep wells are drilled with a rotary drilling system. A rotary
drilling system creates a borehole by means of a rock-cutting
tool, called a bit. The torque driving the bit is generated atthe
surface by a motor with a mechanical transmission box. Via the
transmission, the motor drives the rotary table: a large disc that
acts as a kinetic energy storage unit. The medium to transport
the energy from the surface to the bit is a drill-string, mainly
consisting of drill pipes. The lowest part of the drill-string is
the Bottom-Hole-Assembly consisting of drill collars and the
bit. The drill-string undergoes various types of vibrations dur-
ing drilling: torsional (rotational) vibrations caused byinterac-
tion between the bit and well, bending (lateral) vibrationscaused
by pipe eccentricity, axial (longitudinal) vibrations dueto bounc-
ing of the bit and hydraulic vibrations in the circulation system,
stemming from pump pulsations. Drill-string vibrations are an
Copyright c© 2005 by ASME



Upper part

Lower part

Computer,
power amplifier
and additional
electronics

Low stiffness
string

Figure 1. EXPERIMENTAL DRILL-STRING SET-UP.

important cause for premature failure of drill-string components
and drilling inefficiency. In this paper, torsional drill-string vi-
brations are investigated. Drill rigs should generally operate at
constant down-hole velocities (realized by a constant torque at
the rotary table); therefore, the focus of this investigation is on
the steady-state behavior of drill-string systems.

Extensive research on the subject of torsional vibrations has
already been conducted [1–6]. According to some of those r
sults, the cause for torsional vibrations is the stick-slipphe-
nomenon due to the friction force between the bit and the we
[3; 5; 6]. Moreover, according to some other results, the cause
of the torsional vibrations is velocity weakening in the friction
force (Stribeck effect) present due to the contact between the
bit and the borehole [2; 4]. Friction-induced limit cyclingis a
performance limiting factor in many other types of mechanical
systems. Survey papers on friction-induced limit cycling can be
found in [7–10], in which specific friction characteristicsare cou-
pled to the existence of such limit cycling. Moreover, in [11; 12]
causes for friction-induced limit cycling, such as the Stribeck ef-
fect and fluctuating normal forces, are discussed. However,a
limited amount of experimental work on friction-induced limit
cycling in non-controlled systems is available [13].

In order to gain improved understanding of the causes fo
torsional vibrations, an experimental drill-string set-up is built,
see figure 1. This experimental set-up consists of two discs,con-
nected by a string. The upper disc is driven by a motor and
the lower disc a brake is implemented to exert a friction force
2
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on the disc. In this paper, we investigate along several routes
how the occurrence and nature of the friction-induced vibrations
depend on specific friction characteristics. Firstly, an extensive
numerical bifurcation analysis is performed for changing fric-
tion characteristics. Secondly, such bifurcation analysis is also
performed on an experimental level to confirm the validity of
the model-based results. Moreover, physical conditions, such as
temperature and normal forces applied to the brake, are changed
in the experiments to illuminate the influence of such changes on
the friction and on the vibrations induced by the friction. The
numerical and experimental results jointly constitute a clear and
coherent view on the way in which friction-induced limit cycles
arise and change under changing frictional conditions. More-
over, a specific contribution of this work is on how and when
non-smooth bifurcations induce vibrations in such a system; both
in simulations and experiments.

In the next section, the experimental set-up is introduced.
Subsequently, the model of the set-up and the estimates for its
parameters are discussed. Next, the dependency of the friction-
induced limit cycling on specific friction characteristicsis stud-
ied on a model level by means of an extensive numerical bifurca-
tion analysis. The model-based results are compared to experi-
mental results and the dependency of the occurrence of torsional
vibrations on certain physical frictional conditions is investigated
on an experimental level. Finally, a discussion of the obtained re-
sults and concluding remarks are presented.

THE EXPERIMENTAL SET-UP
The experimental drill-string set-up is shown in figure 1 (for

a schematic representation of the set-up see figure 4). The set-up
consists of a power amplifier, a DC-motor, two rotational (upper
and lower) discs, a low-stiffness string and an additional brake
applied to the lower disc. The input voltage from the computer
is fed into the DC-motor via the power amplifier. The DC-motor
is connected to the upper steel disc via the gear box, see figure 2.
The upper disc and the lower disc are connected through a low
stiffness steel string. Both discs can rotate around their respective

Motor
encoder

DC motor

Gear box

Upper disc

Low stiffness string

Figure 2. THE UPPER PART OF THE EXPERIMENTAL DRILL-STRING

SET-UP.
Copyright c© 2005 by ASME
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Figure 3. THE LOWER PART OF THE SET-UP.
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Figure 4. SCHEMATIC REPRESENTATION OF THE DRILL-STRING

SET-UP.

geometric centers and the related angular positions are measured
using incremental encoders (see figure 2 for the encoder at te
upper disc).

A brake and a small oil-box with felt stripes are fixed to the
upper bearing housing of the lower part of the set-up, see figure
3. With the brake, a range of normal forces can be applied b
loosening or tightening the screw on the brake, see figure 3(a).
The contact between the brake and the brake disc produce
friction force exerted on the brake disc. This friction force can
induce torsional vibrations in the set-up. The brake contact ma-
terial is bronze. The steel brake disc is connected to the lower
brass disc via a very stiff shaft. The oil-box with the felt stripes
is constructed in order to add oil (ondina oil 68) to the brakedisc
in a reproducible way. Note, moreover, that the disc are fixedin
lateral direction; consequently, no-whirl type motion canoccur.

MODEL OF THE SET-UP
In this section, we introduce a dynamic model of the expe

imental drill-string set-up which is used throughout the paper.
The system is depicted schematically in figure 4.
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By θu and θl we denote the angular displacements of the
upper and lower disc, respectively. Moreover,ωu = θ̇u andωl =
θ̇l represent the angular velocities of the upper and lower disc,
respectively. Furthermore,α = θl − θu is the relative angular
displacement of the lower disc with respect to the upper disc. In
the sequel, we will use a state vectorxxx defined byxxx=

[

α ωu α̇
]T

.
The equations of motion of the system are given by:

Juω̇u−kθα+Tf u(ωu) = kmu,

Jl (α̈+ ω̇u)+Tf l (ωu + α̇)+kθ α = 0,
(1)

whereJu andJl are the moments of inertia of the upper and lower
discs about their respective centers of mass,kθ is the torsional
spring stiffness andkm is the motor constant. The input voltage
for the motor is denoted byu. It should be noted that the friction
torque at the upper discTf u(ωu) is due to friction in the bear-
ings of the upper disc and due to the electro-magnetic effectin
the DC-motor and the friction torque at the lower discTf l (ωl )
comprises the friction in the bearings of the lower disc and the
friction induced by the brake-mechanism. Both friction torques
are modeled using set-valued force laws:

Tf u(ωu) ∈

{

Tcu(ωu)sgn(ωu) for ωu 6= 0,
[−Tsu, Tsu] for ωu = 0,

Tf l (ωl ) ∈

{

Tcl(ωl )sgn(ωl ) for ωl 6= 0,
[−Tcl(0−), Tcl(0+)] for ωl = 0,

(2)

where the velocity dependency of the friction at the upper disc is
expressed throughTcu(ωu), with

Tcu(ωu) = Tsu+bu|ωu|, (3)

and the velocity dependency of the friction at the lower discis
expressed throughTcl(ωu), consisting of a Stribeck model with
viscous friction:

Tcl(ωl ) = Tcl +(Tsl −Tcl)e
−|ωl /ωsl|

δsl
+bl |ωl |. (4)

Equation (3) expresses the fact that we model the friction atthe
upper disc as a combination of static friction and viscous fric-
tion. Herein,Tsu represents the maximum value of the friction
torque for zero angular velocities andbu is the viscous friction
coefficient. In (4),Tcl andTsl represent the Coulomb friction and
static friction levels, respectively,ωsl is the Stribeck velocity,δsl

the Stribeck shape parameter andbl the viscous friction coeffi-
cient. The choice for a static, as opposed to a more involved
dynamic friction model, is motivated by, firstly, the fact that in
Copyright c© 2005 by ASME



Parameter Estimated value

Ju [kg m2/rad] 0.4765

km [Nm/V] 4.3228

Tsu [Nm] 0.37975

bu [Nms/rad] 2.4245

kθ [Nm/rad] 0.0775

Jl [kg m2/rad] 0.0414

Tsl [Nm] 0.2781

Tcl [Nm] 0.0473

ωsl [rad/s] 1.4302

δsl [-] 2.0575

bl [Nms/rad] 0.0105

Table 1. PARAMETER ESTIMATES.
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(a) Friction model at the upper disc.
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Figure 5. ESTIMATED FRICTION MODELS.

experiments hysteretic effects and pre-sliding appeared to neg-
ligible and, secondly, the fact that a simple model is beneficial
from an analysis point of view. The validation results discussed
in this paper will support the validity of this approach.

The parameters of the model are estimated using a nonl
ear least-squares technique. Hereto, persistently exciting input
voltage signals are taken as inputs for the experimental system
and the angular positions of both discs are measured. Next,he
response of the model to such inputs is simulated and an optimal
set of parameter estimates is calculated based on matchinghe
measurements and simulations in a least-squares sense. Formore
detailed information on the identification procedure and the vali-
dation results we refer to [14; 15]. Here, we summarize the result
of this extensive identification procedure in Table 1. In there-
mainder of this paper this parameter set will be referred to as the
’nominal’ set of parameters. In particular the friction situation
at the lower disc is varied, with respect to this nominal situation,
in order to investigate its influence on the friction-induced limit-
cycling. Figure 5 shows the identified friction models, which
indicates a pronounced Stribeck effect in the friction at the lower
disc. It should be noted that here a normal force of 20.5 N is a-
plied to the brake. In figure 5, we can recognize different friction
regimes as depicted schematically in figure 6, see also [16].
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Figure 6. DIFFERENT REGIMES IN THE FRICTION FORCE.

STEADY-STATE ANALYSIS OF THE DYNAMICS
In this section, we study the steady-state behavior of the

drill-string system for constant values of the input voltageu= uc

on a model level. Such steady-state behavior is of particular in-
terest in drill-string systems since these types of systemsare gen-
erally driven by a constant torque while aiming at a constantve-
locity at the lower part of the set-up. Such constant-velocity con-
dition reflects equilibria of (1). These equilibria involveisolated
equilibria (in whichωu = ωl 6= 0) and equilibrium sets (in which
ωu = ωl = 0). In such an equilibrium set the deformation of the
drill-string α can attain values in a set due to the set-valued nature
of the friction force laws. For analytical expressions for these
equilibria and both local and global (Lyapunov-based) stability
analyses of the equilibria, see [15; 17]. Firstly, the bifurcation
diagram with the constant input voltage as a bifurcation parame-
ter is presented for the nominal friction model at the lower disc,
as introduced in figure 5(b). Secondly, the dependency of the
steady-state behavior on the friction characteristics at the lower
disc is investigated.

Bifurcation Diagram (Nominal Case)
Here we analyze the steady-state behavior (equilibria and

limit cycles) of the estimated model, with parameters as in Ta-
ble 1. More specifically, a bifurcation diagram withuc as a bi-
furcation parameter is constructed. In this bifurcation diagram,
branches of equilibria and branches of limit cycles is depicted.
Using a path following technique in combination with a shooting
method [18; 19], these limit cycles are computed numerically.
Herein, the so-called switch model [20] is used to properly deal
with the discontinuities in the dynamics, related to the set-valued
nature of the friction models.

The results of an extensive bifurcation analysis are shown
in a bifurcation diagram in figure 7, withuc as a bifurcation pa-
rameter. In those figures, the maximal and minimal values ofωl

are plotted when a limit cycle is found. Floquet multipliers, cor-
responding to these limit cycles, are computed numericallyand
used to determine the local stability properties of these limit cy-
cles. With respect to the obtained results, the following remarks
Copyright c© 2005 by ASME
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Figure 7. BIFURCATION DIAGRAM OF SYSTEM (1) WITH PARAME-

TERS AS IN TABLE 1.

can be made.
For uc < uE , an equilibrium set exists, indicated by branch

e1, which condenses to an equilibrium point at pointA and pro-
gresses as an equilibrium branche2 of isolated equilibria. Point
B (uc = uh1) represents a subcritical Hopf bifurcation point. For
uc > uh1 an unstable equilibrium branche3 exists and from point
B an unstable periodic branchp1 consisting of limit cycles with-
out stick-slip arises, see figure 7(b). The unstable periodic branch
p1 is connected to a locally stable periodic branchp2 at the point
D, which represents a fold bifurcation point. Since the periodic
branchp2 consists of limit cycles which represent torsional vi-
brations with stick-slip, pointD represents a discontinuous fold
bifurcation. Periodic branchp2 consists only of locally stable
limit-cycles with stick-slip, due to the non-smooth nonlinearities
in the friction torque at the lower disc. For some higher constant
input voltageuc (pointE in figure 7(a)) the locally stable periodic
branchp2 disappears through another discontinuous fold bifur
cation. At this fold bifurcation point, the stable periodicbranch
p2 merges with an unstable periodic branchp3. The unstable pe-
riodic branchp3 is connected to the equilibrium branchese3 and
5

-

e4 in the subcritical Hopf bifurcation pointC (uc = uh2).
In [15; 17], on the basis of a theoretical stability analysisit is

concluded that the presence of velocity weakening in the friction
at the lower disc induces the Hopf bifurcation pointB leading to
limit cycling. More specifically, a local stability condition for the
isolated equilibria (e2, e3 ande4) can be formulated by:

dTcl

dωl

∣

∣

∣

∣

ωl =ωeq

> d, (5)

whereωeq is the value ofωl in equilibrium andd is given by

d =
−J2

ukθ − (bu +△bu)
2Jl

2Ju(bu +△bu)

+

√

(J2
ukθ +(bu +△bu)2Jl )2−4JuJ2

l kθ(bu +△bu)2

2Ju(bu +△bu)
.

(6)

Note that for the friction model in figure 5(b), this condition is
not satisfied for branche3, so for equilibrium values of the an-
gular velocity of the lower disc in the set[0.0610,2.830] rad/s.
Clearly, the second Hopf bifurcation pointC occurs whenωeq is
approximately at the minimum ofTf l (ωl ) (for ωl > 0), i.e. when
the viscous friction start to dominate over velocity weakening
effects in the friction.

So, the range (in terms ofuc) for which limit cycling occurs
is limited by the presence of viscous damping at higher angular
velocities. Moreover, there exists a range of input voltages for
which both stable equilibria and stable limit cycles exist.This
co-existence can be explained by the fact that the viscous friction
is only dominant in a neighborhood (in state-space) of the equi-
libria and outside this neighborhood the Stribeck effect comes
into play once more giving rise to limit cycling. On this limit
cycle a steady-state balance between the ’stabilizing’ effect of
viscous friction (at higher velocities) and the ’destabilizing’ ef-
fect of the Stribeck effect (at lower velocities) is attained. The
magnitude of the range of angular velocities is determined by a
balance between the level of this velocity weakening effectand
viscous damping. The fact that such subtle balance between ve-
locity weakening and viscous friction is a crucial factor inthe
qualitative steady-state behavior will be confirmed in the next
section, in which the dependency of this behavior on these fric-
tion characteristics is studied.

Changes in the Friction Characteristics
The previous section shows that the friction characteristics

largely determine whether or not limit cycling occurs. Now,we
discuss the influence of these characteristics of the friction at
the lower disc on the steady-state behavior of the system. In
Copyright c© 2005 by ASME



doing so, we use the friction model in figure 5(b) and the re-
sulting bifurcation diagram, see figure 7, as a reference situa-
tion (i.e. the nominal case). The study of the stability of the
equilibria in [15; 17] shows that these stability properties are
closely connected to two specific friction characteristics: firstly,
the Stribeck-effect and, secondly, the presence of viscousfriction
at higher velocities. Therefore, in this section we explicitly in-
vestigate the influence of these two friction characteristics on the
steady-state behavior (bifurcation diagram). In order to isolate
the influence of these two friction characteristics, we firstchange
the friction model such that the level of the velocity weaken-
ing changes while the viscous damping level remains the sam.
Next, the friction model will be changed such that the viscous
damping level changes, while the level of velocity weakening re-
mains unchanged.

Changes in the Velocity Weakening Characteristic
In order to analyze the influence of various levels of the velocity
weakening inTf l (ωl ) on the steady-state behavior of the drill-
string system (1), we consider two friction situations thatdiffer
from the nominal case, see figure 8(a). In all cases, both the static
friction levelTsl and the viscous damping coefficientbl coincide.
The adapted friction models are such that the minimum of th
friction curve (forωl > 0) occurs at the same angular velocity for
all friction models. Consequently, Hopf bifurcation points (B, B′,
B′′′ andC, C′, C′′) appear at approximately the same input volt-
agesuh1 anduh2, respectively, for all friction models, see figure
8(b). However, in one friction situation the velocity weakening
effect is stronger (dark-grey line in figure 8(a)) and in the second
friction situation the velocity weakening effect is weaker(black
line in figure 8(a)) than in the nominal friction model (light-grey
line in figure 8(a)). The related bifurcation diagrams are shown
in figure 8(b).

When we compare these bifurcation diagrams the following
conclusions can be drawn. Firstly, equilibrium branchese1, e′1
ande′′1 are identical for all friction situations. Secondly, if theve-
locity weakening effect is lower (black line in figure 8(a)),then
torsional vibrations disappear for lower constant input voltages
(compare discontinuous fold bifurcation pointsE′ andE′′ in fig-
ure 8(b)). In other words, if the velocity weakening in the friction
torque at the lower disc is lower, then torsional vibrationscan ap-
pear for smaller range of input voltagesuc. This is due to the fact
that the region of coexistence of stable equilibria and stable limit
cycles decreases in such a case. Finally, from figure 8(b), w
can conclude that a lower velocity weakening level causes lower
amplitudes of the torsional vibrations in the drill-stringsystem.
Indeed, such an effect causes the friction force to be higher(see
figure 8(a)), the dissipation of the energy due to such friction is
higher, which in turn leads to a lower amplitude of the torsional
vibrations.
6

e

e

e

−15 −10 −5 0 5 10 15

−0.4

−0.2

0

0.2

0.4

0.6
estimated friction
higher velocity weakening
lower velocity weakening

T
fl
(ω

l)
[N

m
]

ωl [rad/s]

(a) Friction torques for various levels of the
velocity weakening effect.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

2

4

6

8

10

12

14

16

18
estimated friction
higher velocity weakening (‘)
lower velocity weakening (‘‘)

•

•

••

•

ω
l
[r

ad
/s

]

uc [V]

e′1 = e1

e′′1 = e1

e′3

e′4

p′2
p′3

E′

C′
C′′

e′′3

e′′4

p′′2

p′′3

E′′

(b) Bifurcation diagrams.

Figure 8. FRICTION TORQUES FOR VARIOUS LEVELS OF VELOC-

ITY WEAKENING AND RELATED BIFURCATION DIAGRAMS.

Changes in the Viscous Friction In order to discuss
the influence of various viscous friction levels inTf l (ωl ) on the
steady-state behavior of the drill-string system (1), we consider
two friction situations in comparison with the nominal friction
torque, see 9(a). In all friction situations, the static friction level
Tsl is the same and the friction torques differ only for high angu-
lar velocitiesωl . For small velocities (approximately up to veloc-
ities where the friction curve reaches a minimum (forωl > 0)) the
friction models coincide. As a consequence, the Hopf bifurca-
tion points coincide. In one friction situation, the viscous friction
level is higher (dark-grey line in figure 9(a)) and, in the second
friction situation, the viscous friction level is lower (black line in
the same figure) than in the nominal friction torque (light-grey
line). The related bifurcation diagrams are shown in figure 9(b).
When we compare the obtained bifurcation diagrams, the fol-
lowing conclusions can be drawn. Firstly, equilibrium branches
e1, e′1 ande′′1 are identical for all friction situations. Secondly, if
the viscous friction level is lower, then the fold bifurcation point
E′′ appears for higher constant input voltages; i.e. in such cases
Copyright c© 2005 by ASME
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Figure 9. FRICTION TORQUES FOR VARIOUS VISCOUS FRICTION

LEVELS AND RELATED BIFURCATION DIAGRAMS.

torsional vibrations can appear for a larger range of input volt-
agesuc (compare discontinuous fold bifurcation pointsE′ and
E′′ in figure 9(b)). In other words, for a lower viscous dampin
level torsional vibrations can appear in a larger range of input
voltages, due to the fact that the region of coexistence of stable
equilibria and stable limit cycles increases. In figure 9(b), we ob-
serve that a lower viscous friction level causes higher amplitudes
of the torsional vibrations in the system. Namely, when the vis-
cous friction level is lower, then the friction torque is also lower
(see figure 9(a)); hence, the dissipated energy is lower andhe
amplitude of torsional vibrations is higher.

When comparing figures 8(b) and 9(b) we can conclude th
a change in level of velocity weakening and a change in the v-
cous friction level can have a qualitatively similar effecton the
friction-induced limit cycling. Therefore, we can conclude that
a balance between the velocity weakening effect and the viscous
friction levels determines the range (in terms ofuc) in which limit
cycling occurs. This effect will be illustrated in experiments in
the next section. It should be noted that besides the levelsf
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the velocity weakening effect and the viscous damping also the
velocity at which the friction attains its minimum is important.
Namely, if this velocity increases the second fold bifurcation
(point E in figure 7(a)) and the second Hopf bifurcation point
(point C in figure 7(a)) will shift to higher input voltages in the
bifurcation diagram.

EXPERIMENTS
In this section, the steady-state behavior (for constant input

voltages) of the experimental drill-string system is studied and
compared to the model-based results. Firstly, the bifurcation di-
agram of estimated (nominal) case is compared to an experimen-
tally constructed bifurcation diagram. Secondly, in analogy to
the previous section, the dependency of the steady-state behavior
on the friction characteristics is studied experimentally.

Bifurcation Diagram (Nominal Case)
In order to check the validity of the obtained model of the

drill-string set-up when ondina oil 68 is used as a lubrication fluid
and a 20.5N normal force is applied at the brake, experimental
results are compared with the model-based results. As already
mentioned earlier, the predictive quality of the estimatedmodel
in steady-state is of great interest. Therefore, when a constant
voltage is applied at the input of the set-up, each experiment lasts
long enough to guarantee that all transient effects have disap-
peared and the last part of the measurement signals are recorded.

The same type of bifurcation diagram, as shown in figure 7,
is constructed experimentally. In order to construct such ex-
perimental bifurcation diagram, a range of constant input volt-
ages are applied to the set-up. When no torsional vibrations are
observed (the system is in equilibrium), the mean value of the
recorded angular velocity is computed and the obtained dataare
plotted using the symbol ”x”. When torsional vibrations are ob-
served at the lower disc, the mean value of local maxima and
the mean value of local minima of the vibrations are computed.
Then, these experimentally obtained data are plotted usingthe
symbol ”o”. Such experimental results, together with the bifur-
cation diagram obtained by a numerical analysis of the estimated
model, are shown in figure 10. These results illustrate the pre-
dictive quality of the obtained model.

Both in the numerical and the experimental bifurcation di-
agram we notice qualitatively different behavior of the system
when the constant input voltage is changed. Firstly, for very low
input voltages the system exhibits an equilibrium set (i.e.the sys-
tem is in the sticking phase). Secondly, if the input voltageis in-
creased, the system enters the region where only torsional vibra-
tions (i.e. stable limit cycles) appear. Thirdly, if the input voltage
is even higher, then the input voltage is in the region where tor-
sional vibrations (stable limit cycles) and a constant angular ve-
locity at the lower disc (stable equilibrium points) co-exist in the
Copyright c© 2005 by ASME
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Figure 10. COMPARISON OF THE SIMULATED AND EXPERIMENTAL

BIFURCATION DIAGRAM.

set-up. Finally, if the input voltage is high enough (uc > 3.8V),
the system enters the region where no torsional vibrations can
appear in the system in steady-state.

In order to show that the experimental behavior indee
matches well with the model behavior, a comparison betwe
the experimentally and numerically obtained time-series is pro-
vided in figure 11. In this figure, the experimental angular veloc-
ity (solid black line) and the angular velocity obtained using the
estimated model (dashed grey line) in steady-state are shown for
different constant input voltages. Namely, the signals presented
in figures 11(a), 11(b) and 11(c) represent stick-slip limit-cycling
(torsional vibrations) and figure 11(d) represents an equilibrium
point. Clearly, the combination of figure 11(c) and figure 11(d)
confirms that in the experiments a region exists for which boh
stable equilibria and stable limit cycles exist. From the compar-
ison between simulation and experimental results, it can becon-
cluded that with the suggested model the steady-state behaior
of the set-up is modeled accurately. Small deviations from peri-
odicity of the experimental stick-slip motions are due to a slight
position-dependency in the friction at the lower disc.

Changes in the Friction Characteristics
We have already analyzed how various changes in the fr

tion characteristics can influence torsional vibrations indrill-
string systems on a model level. Here, we investigate the wayin
which various friction conditions influence torsional vibrations
in the experimental set-up.

Changes in the Applied Normal Force In order to
analyze how changes in the normal force, which is applied to the
brake, influence the steady-state behavior of the set-up, weapply
a 18N and a 12.2N normal force to the brake. Next, the param
eters of the model of the obtained friction torques are estimated,
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Figure 11. EXPERIMENTAL AND SIMULATED ANGULAR VELOCITY

AT THE LOWER DISC FOR VARIOUS CONSTANT INPUT VOLTAGES

AND VARIOUS INITIAL CONDITIONS.
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AT THE BRAKE.

using the same identification procedure used to identify thenom-
inal model. The obtained models are validated and numerical
and experimental bifurcation diagrams are constructed forboth
normal force levels. The estimated friction modelsTf l (ωl ) are
shown in figure 12. The related bifurcation diagrams are shown
in figure 13. Again, the experimental and model-based results
correspond well.

When a lower normal force is applied to the brake, the static
friction level is lower, the sticking region decreases and the lower
disc starts to rotate for lower input voltages. Furthermore, for
lower normal force levels, the separation process between the
contacting surfaces (brake disc and the brake blocks) and, there-

Copyright c© 2005 by ASME
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fore, the full fluid lubrication regime occur for lower velocities,
see figure 6). As mentioned before, the position of the se
ond Hopf bifurcation point is determined approximately by the
point where the friction curveTf l (ωl ) reaches its minimum (for
ωl > 0). This, in fact, corresponds to the point where the full fluid
lubrication appears (see figure 6). Consequently, for lowernor-
mal force levels, the Hopf bifurcation pointsC′ andC′′ in figure
13 appear for lower input voltages and the region increases,in
which a constant velocity at the lower disc (a stable equilibrium)
can appear.

Figure 12 indicates that the main result of lowering the nor
mal force is a lower level of velocity weakening. As a conse
quence, the region of coexistence of stable equilibria and stable
limit cycles decreases, see figure 13.

Temperature Changes The experimental results corre-
sponding to the nominal case are obtained when the temperatre
in the laboratory, where the set-up is placed, is between 25◦C
and 30◦C. The same results are collected when the temperatu
in the laboratory is between 17◦C and 22◦C, for the same nor-
mal force applied at the brake (20.5N). The parameters of the
obtained friction torque are estimated, the obtained modelis val-
idated and both the numerical and experimental bifurcationdia-
grams are constructed. The estimated friction torque at thelower
part of the set-up is shown in figure 14(a). The related bifurcation
diagrams are shown in figure 14(b) and the experimental resuts
are once more predicted accurately by the model.

When the temperature is lower, the viscosity of the oil be
comes higher. With such oil, the separation between the co
tacting surfaces (brake disc and the brake blocks in the exper-
imental set-up) and the full fluid lubrication process occurfor
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Figure 14. DEPENDENCY OF THE FRICTION CHARACTERISTICS

AND THE BIFURCATION DIAGRAM ON TEMPERATURE CHANGES:

T ∈ [17◦C, 22◦C] and Tre f ∈ [25◦C, 30◦C].

lower velocities. We have concluded that the position of thesec-
ond Hopf bifurcation point is determined approximately by the
angular velocityωl for which the friction forceTf l (ωl ) reaches
its minimum (forωl > 0), which corresponds to the point where
full fluid lubrication appears (see figure 6). Consequently,the
Hopf bifurcation pointC′, in figure 14(b), appears for lower in-
put voltages than it does in the set-up when the temperature in
the laboratory is higher.

Due to the fact that the viscous friction increases for lower
temperatures the region of coexistence of stable equilibria and
stable limit cycles decreases. Moreover, previously we have con-
cluded that a higher viscous friction level causes the decrease of
the amplitude of torsional vibrations and that the range of volt-
ages in which torsional vibrations can appear is smaller (compare
figure 9 with figure 14).

CONCLUSIONS
In this paper, we investigate the way in which the occur-

rence and nature of friction-induced limit cycling in flexible me-
Copyright c© 2005 by ASME



chanical systems (e.g. a drill-string system) depends on essential
friction characteristics. This study is performed on the level of
both model-based and experimental bifurcation analyses. The
striking similarity of the model-based and experimental results
confirms the quality of the model. The main conclusion, which
is based on these combined results, is that a subtle interplay of
velocity weakening characteristics at low velocities and viscous
friction at higher velocities determines the occurrence and nature
of the friction-induced limit cycling and the range of parameters
for which these limit cycles sustain. Moreover, results on both
levels confirm that discontinuous bifurcations play a crucial role
in the creation and destruction of these limit cycles.

The way in which such friction characteristics are influenced
by physical conditions such as temperature and normal forces on
the frictional contact is studied experimentally. An important ob-
servation is that the normal force in the frictional contactinflu-
ences the friction force in a rather complex way and can induce
a higher level of velocity weakening (for higher normal forces),
which in turn can give rise to limit cycles of higher amplitudes
for a larger range of the constant input voltage.

It should be noted that the configuration of the experimen
tal set-up (two masses, coupled by a flexibility, of which oneis
subject to friction and the other is driven by an actuator) can be
recognized in many other mechanical systems, in which friction
deteriorates the system performance by the induction of vibra-
tions. In this context, one can think of printers, pick and place
machines, industrial and domestic robots, simple earth-quake
models, accurate mirror positioning systems on satellites, drilling
systems and many more. Finally, the insight gained by this work
can very well be used to steer research on controller design for
such systems aiming at the avoidance of friction-induced limit
cycling.
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of Applied Mathematics and Mechanics / Zeitschrift fuer
Angewandte Mathematik und Mechanik, 76(10):547–557,
1996a.

[5] R. I. Leine, D. H. van Campen, and W. J. G. Keultjes. Stick-
10
-

t

-

slip whirl interaction in drillstring dynamics.ASME Jour-
nal of Vibrations and Acoustics, 124:209–220, 2002.

[6] L. Van den Steen.Suppressing Stick-Slip-Induced Drill-
string Oscillations: a Hyper Stability Approach. PhD the-
sis, University of Twente, 1997.

[7] C. A. Brockley, R. Cameron, and A. F. Potter. Friction-
induced vibrations.ASME Journal of Lubrication Technol-
ogy, 89:101–108, 1967.

[8] C. A. Brockley and P. L. Ko. Quasi-harmonic friction-
induced vibrations.ASME Journal of Lubrication Technol-
ogy, 92:550–556, 1970.

[9] R. A. Ibrahim. Friction-induced vibration, chatter, squeal,
and chaos: Mechanics of contact and friction.Applied Me-
chanical Reviews: ASME, 47(7):209–226, 1994a.

[10] R. A. Ibrahim. Friction-induced vibration, chatter, squeal,
and chaos: Dynamics and modeling.Applied Mechanical
Reviews: ASME, 47(7):227–253, 1994b.

[11] K. Popp and P. Stelter. Stick-slip vibrations and chaos.
Philosophical Transactions of the Royal Society of London,
332:89–105, 1990.

[12] K. Popp, M. Rudolph, M. Kr̈oger, and M. Lindner. Mecha-
nisms to generate and to avoid friction induced vibrations.
VDI-Berichte 1736, VDI-Verlag Dsseldorf 2002, pages 1–
15, 2002.

[13] A. I. Krauter. Generation of squeal/chatter in water-
lubricated elastomeric bearings.ASME Journal of Lubri-
cation Technology, 103:406–413, 1981.
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