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ABSTRACT

Common robotic tracking tasks consist of motions along pre-
defined paths. The design of time-optimal path-constraireed
jectories for robotic applications is discussed in this papTo
increase industrial applicability, the proposed method@mts
for robot kinematics together with actuator velocity, decation
and jerk limits instead of accounting for the generally mooen-
plex dynamic equations of a manipulator with actuator t@qu
and torque-rate limits. Besides actuator constraints atsn-
straints acting on process level are accounted for. Theltiegu
non-convex optimization problem is solved using a cascdde o
genetic algorithms and Nelder-Mead’s method. Simulatjmers
formed on a Puma 560 manipulator model show that for a proper
choice of the kinematic constraints results can be obtathad
match the quality of those obtained using the more complex dy
namic constraint approach.

1 INTRODUCTION

One of the main issues in developing autonomous robots is
robot motion planning. Robot motion planning consists dhpa
planning and trajectory planning. Path planning handlepthn-

ning of a spatial path from the robot’s initial configuratimnthe

*Corresponding author (email: N.J.M.v.Dijk@tue.nl).
The work presented in this paper is part of the Wtion project, that is sup-
ported by Stimulus.

W.C.M. Pancras
Bosch Rexroth Electric Drives and Controls B.V.
Product area semiconductor and medical
P.O. Box 7170, 5605 JD Eindhoven
The Netherlands

robot’'s goal configuration, while trajectory generatiomsigts

of deciding on the velocity, acceleration and jerk profilemg
the planned path as a function of time. Considering rob@jidia
cations, two major tasks can be distinguished, namely (&-pi
and-place motions (e.g. component mounting applicatiansl)
(2) motions for which the path is fully known in advance, also
termed path-constrained motion, (e.g. laser weldingfayitp-
plications). Here, we will only address industrial appiicas
for which a path is fully known in advance.

A common performance criterion to increase productivity
and to lower cost prices of (industrial) robots is time-oylity.
The problem of finding path-constrained time-optimal trége
ries for industrial applications has received a lot of dttsmin
literature. The problem was firstly solved in the mid 80's whe
Bobrow et al. 1], Shin and McKay 2] and Pfeiffer and Jo-
hanni B] independently have presented algorithms for determin-
ing path constrained time-optimal motions including rodgt
namics. In their approach, actuator torque constraintseavet-
ten to constraints in terms of the path parameter. Planndjec:
tories by accounting only for actuator torque constraiesilts
in motions that are not second-order continuous. Instaari@hs
in desired torque levels cannot be generated by an actuagor d
to its electrical dynamics. This implies that from the stafra
trajectory a difference between the desired joint posiéind the
actual joint position will exist. Furthermore, instant olgas in
torque level introduce a considerable amount of wear ofthe a
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ator [4], and causes excessive vibrations. This limits the praktic
usability of time-optimal trajectory planning algorithrtisat re-
sult in bang-bang motion$]. Different solutions are proposed
to account for discontinuous torque levels, S&&]7].

All of the methods discussed above incorporate actuator
torque limits (and possibly also torque rate or jerk limés)con-
straints for the trajectory generation problem. This ireplihat
the equations of motion of the manipulator under considmrat
must be known. From a practical point of view this is not desir
able. Deriving the equations of motion asks for specific Khow
edge on multi-body dynamics, that may not be available ina in
dustrial environment. Furthermore, in most algorithms/aan-
straints on joint/actuator level are taken into accountijevor
certain industrial applications (such as e.g. welding @nid/ser
cutting applications) also constraints in the workspaddeima-
nipulator can limit the motion of the end-effector. Zlajg&hand
Dong and Stori9] explicitly limit maximum velocities acting on
the process. However, for some applications next to maximum
process velocity also maximum acceleration and jerk of the m
nipulator’s end-effector should be limited.

As shown in 7], the path-constrained motion planning prob-
lem can be written as a Time-optimal Control (TOC) problem
with constraints on states and input. Time-optimal corrob-
lems with bounded controls, have been solved analyticaly u
ing Pontryagin’s minimum principle[10]. Despite the research
done in the field of time-optimal control, time-optimal caitfor
high-order systems is still an open issdd][ Numerical meth-
ods can be used to solve the problem. A method which uses
a combination of a genetic algorithm and a local optimizatio
method can be used for several classes of linear systhse-
cently, Chettibi L3] presented an optimization strategy for path
constrained motions using genetic algorithms.

In this paper, a method is presented for determining time-
optimal path-constrained motions subjected to velocitgeter-
ation and jerk constraints acting on both the manipulattuaac
tors and the process it is performing. Using the path detsonip
the manipulator’s kinematic relations and the defined cairgs,

a non-convex optimization problem is defined that is solved u
ing a hybrid optimization strategy. The applicability ofgtap-
proach in an industrial environment is highly increasedtdiutbe
fact that the approach presented here only uses the mataipsila
kinematic relations which are easy to determine (compar#ukt
generally complex equations of motion needed by the alyost
discussed above). This approach will result in a somewhat co
servative solution due to the fact that the constraints anstant
over the entire workspace. For the remainder of this pager it
assumed that obstacle avoidance is satisfied during thelpéth
nition and is therefore not considered explicitly.

This paper is organized as follows. In Sect@nthe path-

1in Russian literature it is referred to as Pontryagin’s maxinminciple due
to a different sign convention.

constrained motion planning problem is defined and the deriv
tion of both process and actuator constraint limitationgeims
of the path parameter will be discussed. Sec8atescribes the
hybrid optimization strategy for determining time optinialjec-
tories. Simulation results using the presented strategdlybe
presented in SectioA. Finally, conclusions and an outlook on
future work are given in Sectidh

2 PATH CONSTRAINED MOTIONS BASED ON KINE-
MATIC CONSTRAINTS
2.1 Problem formulation
As discussed in the previous section, the overall problem is
to find time-optimal trajectories, i.e. to minimize the tirsgan
T = t; —to of the total motion, i.e. mi = min ;' dt, sub-
jected to manipulators kinematicB,= R(q(t)), constraints on
the pathP = P(s), with sthe so-called path parameter; actuator
constraints,

1G] < Gimax |Gil < Gi max |q|| < .q.i.,max; fori= 1L....n;, (1)
and process constraints,
|X|| < Xi,maXa |X|‘ < Xi,max; |X|| < X.i,mam fori=1,...,6. (2)

Herein, the path, that must be followed by the manipulatmg-
effector, is represented by a six-dimensional veBtarhich con-
sists of a translational compond®t(with three translational co-
ordinates) and an angular componBgt(with three angular co-
ordinates), relative to some reference frathe (P{,P!)T. Fur-
thermore q; is the displacement of jointandn; the number of
joints @" = (qy,... ,0n;)), X% componenti of the end-effector’s
pose vectoX andR(q(t)) represents the manipulator’s forward
kinematics. It is assumed that a joint only allows a rotation
translation in one degree-of-freedom. Since the totalondime

is unknown, the problem is to find a mapping from time onto the
path parameter (i.es(t)), while respecting the constraints as de-
fined above. Constraints are given as function of time. So a
transformation from time to the path parameter must be de&fine
This is discussed in the following sections. First, the attiu
constraint transformation will be discussed. Second, thegss
constraints will be treated and finally the results will bentzined

to derive the set of constraints on the path parameter.

2.2 Constraint formulation

2.2.1 Actuator constraints The actuator limitations
can be e.g. determined using the actuator data sheet or by per
forming some experiments. The path, definedPy: P(s) can
be written in terms of the joint displacememjsising the kine-

matic relations of the manipulat®(s(t)) = R(q(t)) with R(q) =

Copyright © 2007 by ASME



[Ri(0),...,Rs(q)]. In order to determine the constraints on the Herein, the subscripic stands for actuator constraints. Next,

path veIOC|tys induced by the actuator constrainB(s(t)) =

R(q(t)) is differentiated with respect to time. When the inverse of
) exists and the manipulator is non-redundant

the Jacoblaqu
we can determine the joint velocity angles as

4= (Ry(@) P9 ©)

with (Rq(q))” :wandp s(s) = aé),forlfl ,6 and

i=1....n;. Usmg the actuator velocity constraints ij,(the

whens’ 0 the limitation ons’is determined by

§ acmin <8< § acmax | =1,...,nj,where 9)
§ - —Gi max+- ‘Bﬂ@)_l(Ess(S) *Q)MSZ
e Ry(@)TPy(9)] !
g G [Ry(@ Pls) - QI
o Ry(@)~Py(s);

(10

(11)

constraint ors depending on actuator velocity constraints can be As can be seen fron8j, (10) and (L1) the constraints oadepend

determined by,

: Qi,max .
S Acvmax< W =1,...,n. 4)

As a consequence, the constraintsgt) depends ors(t) (and
thus also omg(t). DifferentiatingP(s(t)) = R(q(t)) twice with
respect to time results in

With R ss(S) = 28 and (R, gq(a)) j = ‘f,qfo(q> Combining @) and

(5), we obtain

=R, (0) [(Pss(s) — Q)F +Py(9)4] , (6)

| ©:

with Q = {Qi} and Qi = PL(R; " (A)Raq
i=1...,6.

(DR (q)P(s) for

For the case in whicls = 0, i.e. when the acceleration

capacity is available for centripetal acceleration, festns

are posed ors. " Usings'= 0 and substituting the acceleration

constraints on joint level (i. eqma 0 i =1,...,n;) into (6), the
limitation ons due to maximum acceleration is given as

Qmax| .
S yfori=1,....n;. (7
ACamaxi — \/|Rq 9)|I ] ( )

Consequently, usingd) and (/) the overall admissible due to
actuator velocity and acceleration constraints, can beraéted

by,

Smaxac = ie{r:lT]in (SACamaxi ) SACvmaxi)- (8)

on the maximum joint acceleration levels, the path parantete
and the pseudo-velocity. ‘"The limits ons"are determined by
evaluating 9) at each point along the path, for pseudo-velocities
varying from 0< $ < §yax Wheresyay Will be defined later on
when the limits due to actuator constraints and process con-
straints will be combined. So, at each point along the path wi
a certain pseudo-velocitya maximum and minimum pseudo-
acceleration can be determined.

Finally, the constraints due to the jerk limitations on tlee a
tuator need to be determined. Differentiatifiy With respect to
time results in

Riqqq(9, 94+ 34" R qq()q+Rig(q) 4 = w2
F)I,SSS(S).S3+3P|735(S>§+ =3 ( )S fori=1,. nj,

whereq andd 'can be determined using)(and @), respectively,
and

(R‘@(Q@) =GR qqqi ()8 (13)

. #BRi(g .
with (Ri’%j (g))kl W From (12) we can derive the fol-

lowing limitations on's

*|Ri‘q'qi.max+zi‘ |R| qlmax+ || .
It — = with 14
RO © 0 |Rs TR
Z =R qquq Ss+3 [Rﬂ (B9 -Q&+ (o
45 ,quq — 3P 55— Plsssss

fori=1,...,n;

with Q as similar defined in@). At this point, it assumed that
the influence of the jerk joint constraints on the limitatioh
pseudo-velocitys and pseudo-acceleratiancan be neglected.
This is done to simplify the constraint evaluation. Furthere,
in practice jerk limitations are used as a smoothing facod

Copyright © 2007 by ASME



are therefore relatively large in comparison to velocityd an
acceleration limits such that the influence on pseudo-itgloc
and acceleration is generally not critical.

2.2.2 Process constraints The process constraints

acting on the path can be determined in the same manner as the

actuator constraints. Since the path is defined in the wadespf

a manipulator, the kinematics of the manipulator are notlade
for this transformation. The path in the workspace is defied
X(t) =P(s(t)) with X(t) the predefined path of the robot hand as
a function of time. Differentiating this expression wittspect to
time and by using the process constraif®s (ve can determine
the maximum admissible value stlue to the maximum velocity
allowed in the workspace,

Xi.max .
. i f P 0
Spcvmaxi = { |Pis(S)|’ it Ris(s) #
007 |f Ps|(s) = 0,

fori=1,...,6. By differentiatingX(t) = P(s(t)) twice with re-
spect to time and regarding the case for whsch 0, the maxi-
mum pseudo-veloCitgmaypc due to the maximum process accel-
eration can be determined as

(16)

. Xi max .

i = : fori=1,...,6 17
SpCamaxi EE] yee s O, (17)
S = min (S i) S i). 18
Smaxpc ie{lvﬂe}(SPCvmaxl75PCama>;|) (18)

Herein, the subscrigi; stands for process constraints. The max-
imum pseudo-acceleratiGhaxpc iS determined as

—>'<i7max+ |P|.ss(3) |32

<$
[Ps(s)] -
Kima R o
ST URsel T

Finally, the limitations on the third derivative of the path
parameteis with respect to time, induced by jerk process con-
straints are defined as follows

_(xli,max— |&545)§ + 3Ess(s)§|i) <
IPs(9)] -

< (Xi.max— |PssdS)$° + 3Pso(5)88)1) .

- IPLs(s)| ’

2.2.3 Combining actuator and process con-
straints Here, the constraints on the pseudo-velocity, -
acceleration and -jerk determined using the actuator caings
and process constraints are gathered such that one canstrai
definition is obtained. For the pseudo-velocity this resurt
0 < $ < MiN(Smaxac; Smaxpc), WhereSmaxac and Smaxpc are de-
fined in @) and (L8), respectively.

Similarly, the  pseudo-acceleration constraint s
formulated as a(s;s) < 8§ < b(ss), with a(ss) =
maXe{l, N ke{d,. 76}(aacl(s SE ap&k(s s)) and b(ss) =

Paci, aka andbpcyk deflned as

. -G, ;max T ‘Rq l(Pss(S 9)|I52 (21)
aan - |Rq 1ES S || )
Gi,max— |Rq “H(Psd(s) — Q)i &
Daci = Ji=1,...,nj (22
- Ry@B:(S)] &
X max+ |Peg(9) [k
Apck = ,meH( s|(5§|5( Sl ; (23)
X max— |Pso(S) k&
Dok = — . k=1,....6. 24
T Rl 9
The total pseudo-jerk limitation S is defined

as follows, c(ss$9% < § < d(ss$85 with c(s$8) =
and d(s,s8) =
MiNicqa,... n]}ke{l 6}(daq.,dpck). The variablescaci, dac;,
Cpck, dpck are defined by,

Caci = W (25)
daqi—W,i—l,...,nj (26)
S ) on
e = Remex— |Eslsé2(sz)|+3p&‘>(s)$|k), k=1,...6 (28)

wherez; is defined by 15).

3 TIME OPTIMAL TRAJECTORY GENERATION

In principle, the problem of path-constrained motion plan-
ning is to find a functiors(t) satisfying the constraints, as de-
fined in the previous section, and the requirement that the mo
tion is time-optimal. This problem can be written as a Time-
optimal Control (TOC) problem as shown by Constantinescu an
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Croft [7]. The system can be formulated as

010 0
x=|001|x+|0|u, (29)
000 1

with the states of the system definedsas [s, , §', and in-
put u =S, and fulfilling the performance criterion mih=
minftgf dt. The problem is now to find inputsuch thafl is min-
imized, subject to the dynamics defined 12g), with boundary
conditions X, = [0, S0, %] andx; = [st, S, S¢], while respect-
ing the constraints on the stategi.e. velocity and acceleration
constraints), and on the control saturation levg|s < U < Umax
(i.e. jerk constraints), both derived in Secti@n In order to
solve the problem, an optimization problem needs to be dolve
Here, instead of solving the time-optimal control problem d
rectly, we opt to solve the trajectory planning problem ie th

The optimization problem is defined as

min f(0), O R", (30)

where O represents the set of optimization variables such that
fitness functionf (O) is minimized. The Fitness function deter-
mines the total motion time. The input to the function ard-opt
mization variable®. The optimization variables are interpolated
using cubic splines. First, it is checked whether the cairsis

on pseudo-velocity, -acceleration and -jerk are violat&tien a
constraint is violated the motion time for the set of optiatian
variables is set tol = 1-10°°, with T the total motion time. The
optimization variables to this optimization problem are ha-
rameters for determining a cubic spline. The variables aeng

as
ds\ . ACE
Q: [<“>07517...,Sp, (ds) f‘| .

(31

(s,8)—plane. The same approach as presented by Constantinescu

and Croft [] is followed, however a different optimization algo-
rithm is applied. The goal of the optimization strategy igital

a set of points in thés, s)—plane that are interpolated using cu-
bic splines. Cubic splines are chosen because these reptlese
lowest degree polynomials which results in a smooth motien,
continuous and differentiable everywherg [The points that are
interpolated using cubic splines are the switching pointthe
case that no jerk constraints (or torque rate constraintage

of Constantinescu and Croft) are taken into account. In com-
parison, the algorithm used by Constantinescu and Crofies t
Flexible Tolerance method f]] that is based on the Nelder-Mead
method [L5]. A disadvantage of this optimization algorithm is
that it can converge to local minima in case of non-convex op-
timization problems. Constantinescu and Croft try to overe
this disadvantage by running the optimization four timesie T
best solution is then used as initial estimation for a findl-op
mization run. However, this approach still does not guaant
that a global optimum is found. Since it is not guaranteed tha
the remaining solution space of the trajectory plannindem

is convex, the obtained solution may represent a local mimm
Therefore, here a different approach is proposed.

An overview of the optimization strategy is depicted in Fig-
urel. As can be seen from this figure, the chosen optimization
strategy is a hybrid optimization strategy that determipgists
in the (s,$)—plane which are interpolated using cubic splines.

Herein,p indicates the number of intermediate switching points.
As can be seen from the optimization variables, here a dtreait
cubic spline is used instead of a natural cubic spline. Aalisu
ization of the optimization variables for a case wjih= 2 can

be found in Figure2. The variables($), and (§), represent
the slope of the directional cubic spline at the start:(sy) and
end point § = s¢), respectively. The slopes are part of the op-
timization variables for two reasons. First, often a begid/ar
end pseudo-velocity is required, so these pseudo-vedsaitin-
not be part of the set of optimization variables. Second, the
start and end slopes represent the velocity at which thextetu
torques leave or approach the static equilibrium valuesrdh
fore, steeper slopes represent faster moti@hs [

The intermediate knotpoint positions for cubic spline inte
polation, are determined using a strategy discussed by&siun
McKay [2] and Pfeiffer and JohannB]. The knotpoints could
also be included as optimization parameters in the globtd op
mization algorithm. However, this will increase the conmgut
tional time and is therefore not considered.

After the intermediate points are determined, the global op
timization strategy is performed. Several global optirtica
algorithms are available. Here the global optimization hodt
suggested by Sim et all®], namely a genetic algorithm ap-
proach, is used. Genetic algorithms are search algoritfassd
on the mechanics of natural selection and natural genett}s [

Such strategy is chosen since the solution space may be non-and are often used in solving path planning problems see e.g.

convex. A global optimization strategy is proposed. Sinte i
general the outcome of a global optimization strategy dads n
give the optimum solution, the global optimization strateg
followed by a local optimization strategy to obtain a moretwac
rate optimum solution.

[17, 18].Genetic algorithms are in principle composed of three
operators, namely reproduction (or sometimes called setg¢c
crossover and mutation. During reproduction, a selectidrob

an initial population of solutions is made. Once a solutien i
selected for reproduction, it enters a tentative new pdjmua
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Figure 1. Optimization strategy to solve the path-consgditra-
jectory planning. problem

A Boundary curve g(s

$1

Interpolated cubic spline

5ol 51 Sy Sf s

Figure 2: Visualization of optimization strategy.

Crossover proceeds by randomly mating two tentative swoisti

Table 1: Genetic algorithm parameters.
Parameter Value
Population size 500
Maximum number of generations 60
Reproduction Uniform selection

Crossover rate 80%
Mutation rate 25%
Mutation distribution Gaussian

constrained, path-constrained motion planning stratesipgu
torque and torque-rate constraints (for which a dynamicehod
for the manipulator is needed). For each approach, i.egusin
kinematic or dynamic constraints, the optimization sggtere-
sented in SectiorB is used to generate trajectories. The pa-
rameters for the genetic algorithm optimization can be fbun
in Tablel. The parameter settings are verified by performing
reproducibility simulations (i.e. the parameters of thérojza-
tion strategy are chosen such that the outcome of the ogtimiz
tion reproduces). In simulations only actuator constsaimil

be taken into account, although with the developed stratiegy
is also possible to account for process constraints. Faulaim
tion purposes we consider a PUMA 560 manipulator, see Figure
3. This type of robot resembles a typical industrial manipula
tor. Here, we will only consider positional degrees of fregl

so the wrist (i.e. joints 4, 5 and 6) is fixed. The dynamic model
of the robot and its parameters are given in the appendixgFor
6 DOF dynamic model of the PUMA 560 manipulator we refer
to [19]). Friction in the joints is modeled using Coulomi. (

Each of the mated solutions undergoes a crossover by exchang for joint i) and viscous frictionTy; for joint i), with related pa-

ing solution substrings of two mated solutions. Finally tation

is a random walk through the string space. When a solutiamgstri

is binary coded, this means changing a 1 to a 0 and vice versa.
The outcome of the global optimization strategy is a set of

optimization variables which in general will not result hretop-

timum solution. This fact and in order to speed up the optimiz

tion process, an optimization algorithm is used that isadulé

for local optimization problems. Here, the Nelder-Mead moeit

is chosen 15. The Nelder-Mead method is chosen above the

Steepest-Descent and line search methods. In comparison th

latter methods are computationally more efficient, howehey
show slow convergence near the optimum solution.

The outcome of the local optimization strategy is interpo-
lated using cubic splines, see FigureThis completes the opti-
mization strategy.

4 SIMULATIONS

The strategy for determining path-constrained time ogdtima
motions with kinematic constraints presented above islagdid
by simulations. The strategy is compared with a dynamically

6

rametersl; = [6.3, 5.5, 2.6] NmandT, = 0.1T; (in Nmg. The
robot is controlled using independent joint PD-controhngtav-

ity compensation where the parametefs (and Ky; for joint

i), with K, = [700, 600, 340 Nmy/rad andK, = [70, 102 27|
Nmg/rad, by tuning for a rise time of @ seconds and an over-
shoot of maximally 5%. The simulations are performed using

Figure 3: The PUMA 560 manipulator in zero position with at-
tached coordinate frames using modified DH-conventid8, [
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MATLAB/Simulink [ 20].
Three simulation case studies are considered, where jerk 04l
limits (in case of kinematic constraints) and torque-rame- |
its (in case of dynamic constraints) are related to accelera
tion and torque constraints respectively, i(Bnax = Climax and o.2f
Tmax = CTmax With ¢ = 100 (case 1)¢ =10 (case 2) and =1
(case 3). The kinematic velocity and acceleration congBai
are determined by performing simulations, while regardimg
torque saturation level and the response of the robotiesyst
and are defined agmax= [3.84, 2.81, 9.41] rad/s andgmax = o2k
[24.5, 325, 76| rad/s> . In practice, the constraints are typically
given by an experienced robot-user or are obtained by pesfor

T T T
Reference Path B
— — — Kinematic constrained Path
— - — - Dynamic constrained Path | |

0.3r

0.1

X-axis [m]

ing experiments. The torque constraints are taken i Perk “04r ‘ ‘ ‘ ‘ ‘ ‘ ]
and torque-rate constraints are chosen arbitrarily to heocthe 008 01 012 014 016 018 02 022
motion. Y-axis [m]

During simulation we want the manipulator to move from (@) Y-X plot of path in manipulator workspace.

Po=1[0.4, 0.1, 0.42" to P = [-0.4, 0.1, —0.25" defined in
the workspace of the manipulator. This cannot be realized by
straight line segment due to singular configurations of thaip:
ulator along this line. Therefore the path to be followedimyr 0.4r
simulation is a parabolic path and is given as

0.5

T T
Reference Path

— — — Kinematic constrained Path
— - — - Dynamic constrained Path

0.3r

0.2

0.4—0.8s
P(s)= | —0.4(s—0.5)240.2 |, s€[0,1]. (32)
0.42—0.67s

0.1r

Z-axis [m]

The simulation results for the three simulation cases are de
picted in Figurest, 5, 6 and Table2. In these figures, the solid -0.2r
lines represent the reference path, the dashed lines théasad ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
controller tracked path while considering kinematic coeists 008 01 01z 014 016 018 02 0.2
(i.e. on velocity, acceleration and jerk) and the dashedblines Y-axis [m]
the simulated controller tracked path while consideringatyic (b) Y-Z plot of path in manipulator workspace.
constraints (i.e. on torque and torque-rate). The tracked ge-
viates from the reference path due to the modeled jointidrict ‘ ‘ ‘ ‘ ‘

N

[
o
o

o
E\'
gl

Furthermore, some noise on the torque profiles is seen. This
can be ascribed to the fact that the controller uses a nuateric
derivative of the reference signal in the D-action. Froml&ab
2 we can see that for decreasing jerk/torque-rate limitsptbe
tion time and path following accuracy increases. This is ue
the smoothing effect of the jerk/torque-rate limits on theuit-
ing torque profiles, see Figurék, 5¢c and 6¢c. Regarding the
computational time of a trajectory it can be said that rdgeBu- o 05 1 15 > 25 3 35 2
hzadipour and Khajepou2]] concluded that the computational
time of time-optimal trajectories along predefined pathsiise
than 1000 times larger than the motion time. This researph su
ports that conclusion. So, despite many research effoeterd
mining path-constrained motions still costs a tremendousLant
of computational effort.

When comparing simulation results of the kinematically
constrained path and the dynamically constrained path,ame c
see that (except for simulation case 3) the motion time fer th Figure 4: Simulation results for simulation case 1.

I
=
(=}
o

L

L . . . . . . .
0 0.5 1 1.5 2 2.5 3 3.5 4

N
o
o

Actuator 2 [Nm]  Actuator 1 [Nm]

Actuator 3 [Nm]

25 3 35 4
Time [sec]

(c) Actuator torques; Solid lines represent kinematicalbystrained torques;
Dash-dotted lines represent dynamically constrained &xqu
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0.4+ Reference Path - 0.4+ Reference Path -
— — — Kinematic constrained Path — — — Kinematic constrained Path
0.3k - Dynamic constrained Path | | 03t — - — - Dynamic constrained Path | |
0.2 b 0.2 b
T oal ] T oal ]
= =
2} L 1 8% L |
< 0 < 0
® ®
'Y -0.1F b > -0.1p b
-0.2 b -0.2 b
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Table 2: Simulation data.

Kinematically constrained path
Simulation Case 1 2 3

Total motion time [sec] 1.8643 2.1737 2.881
Path following accuracy; [rad] 0.1326 0.1284 0.1229
Path following accuracyp [rad] 0.1098 0.1091 0.1015
Path following accuracys [rad] 0.0633 0.0581 0.0514
Settling erromy [mrad] 9.7 9.8 10.1
Settling errom, [mrad] -6.8 7.1 -7.3
Settling errormz [mrad] 5.7 6.0 6.6

(a) Simulation results for kinematically constrained path.

Dynamically constrained path
Simulation Case 1 2 3

Total motion time [sec] 1.440 2.145 3.732
Path following accuracy; [rad] 0.1523 0.1316 0.0922
Path following accuracyp [rad] 0.1212 0.0993 0.0729
Path following accuracys [rad] 0.0755 0.0628 0.0503
Settling errorg; [mrad] 9.7 9.9 10.5
Settling errorg, [mrad] -6.4 -6.8 -7.5
Settling errorgz [mrad] 54 6.3 7.0

(b) Simulation results for dynamically constrained path.

dynamically constrained path is somewhat smaller thantfer t
kinematically constrained path. This is due to the fact that
kinematically constraints are constant along the entith pad
therefore the motion can be somewhat conservative fromextim
optimality point of view. The fact that this is not the casedase

3 can be related to the formulation of the constraints asrifest

in Section2. Herein, the influence of jerk limits on pseudo-
velocity and pseudo-acceleration is neglected. Sincelation
case 3 for kinematically constrained approach does nottriesu
a conservative solution in comparison to the dynamic cairstr
approach, it seems that this assumption does not hold far rel
tively small jerk limits.

From the discussion above it can be concluded that, by using

kinematic constraints, motions are determined that givepze
rable results to motions determined using dynamic comgtai
The 'tuning’ of the kinematic constraints may take some time
however the industrial applicability of a kinematic coastt ap-
proach is highly increased in comparison with a dynamic con-

defined path. Instead of taking into account dynamic eqgnatio
with actuator torque limits and possible torque-rate knuf a
manipulator, we only require knowledge on the kinematica of
manipulator together with actuator velocity, acceleratad jerk
limits. The industrial applicability is highly increasefirstly,
due to the fact that it uses kinematic relations of a mantpula
(which are far easier to obtain than the dynamic equationd) a
secondly due to the fact that constraints acting on the geoce
can be taken into account. By transforming the constramts t
one domain, a time-optimal control problem can be formdate
However, no analytic solution for this kind of time-optinan-
trol problem is available to this date. The proposed opttiin
algorithm consists of a combination of a genetic algorithmd a
the Nelder-Mead method. In this way a global optimum, for a
path constrained motion with a minimum time criterion, can b
found. From simulations on a Puma 560 manipulator model, it
can be concluded that, for a proper choice of the kinematie co
straints, results can be obtained that are comparable $e o
tained using the dynamic constraint approach. Howeveryavhe
the dynamic constraint approach asks for a specific knowledg
multi-body dynamics, the 'tuning’ of the kinematic congtita
may take some time.

For further research it is recommended to reduce the com-
putational time of the optimization strategy such that the i
dustrial applicability is increased even more. Furtheenas
observed in the simulation case with relatively low jerkitsn
the influence of jerk limitations on pseudo-velocity andyzke
acceleration cannot be neglected. Therefore, the consfoat
mulation should be extended such that jerk influence on mseud
velocity and pseudo-acceleration is accounted for. Magduar
further performance evaluations, experiments on indalstpli-
cations with challenging mechanisms, such as a robotiesyst
of double-scara type, should be performed. Finally, it camnb
teresting to apply the developed algorithm on applicatimther
than industrial manipulators, for example, a mobile robetis-
tem, with non-holonomic constraints.

A DYNAMIC MODEL OF PUMA560 WITH THREE DE-
GREES OF FREEDOM
The dynamic model of the Puma560 is of the following
form; M(q)§+q'C(q)g+ G(q) = T. Herein, q € R" repre-

sents the vector of joint positiond, € R" the vector of actu-
ator torquesM(q) € R™" the inertia matrix of the manipula-
tor, C(q) € R™™" the third-order tensor representing centrifu-

straint approach when accounting for the time and expertise gal and Coriolis terms3(q) € R" the gravity vector and” denotes

needed to build a reliable dynamic model.

5 CONCLUSIONS AND RECOMMENDATIONS

In this paper, a method is presented for determining time-

optimal trajectories for industrial manipulators along ee-p

9

the derivative with respect to time.
For the three-degree-of-freedom model used hete3. The
nonzero elements of the inertia matrix kgnt) are given as

Mll =257+ 1380q2Cq2 + 0~3Sq2+Q3SQ2+qs
+O~744CQ25q2+Q3
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Mz = 0.69sg, — 0.134Cq, 1 ¢, + 0.0238&,, (34)
Mz = —0.134+ Cqg, 1 qs — 3.97-10 35y, g (35)
M1 = M1 (36)
Mo = 6.79+ 0.744s, (37)
Mz = 0.33+ 0.3725, — 0.011cq, (38)
M3z1 = Mi3 (39)
Ms3o = Mo (40)
M33=1.16, (41)

wherecqy represents cdg) andsy represents sii)). The nonzero
Christoffel symbols (ilfNmg) are given as

Cio= —2.765q2Cq2 + 0.744.':2qz+q3

+0.6S4,+q3Cqp+g3 — 0.02131 — 25y, 43 Sup+3) (42)
C113 = 0.744Cq,Cqp g5 + 0.6, 195 Cap 40 (43)
+O'OZZCQZSQ2+Q3 —0.02131- 23(12+G3%2+0I3)
Ci22 = 0.69q, + 0.134sy, + g, — 0.0238%, (44)
Ci23= 0.2675g,+q; — 7.58-10 3cqpi 3 (45)
C133=0.5C123 (46)
Co11=—0.5C112 (47)
Cooz= 0.02&13 + 0.744Cq3 (48)
C233 = 0.5Cz23 (49)
Cs11=—0.5C113 (50)
Ca22= —Casg, (51)

and nonzero gravity vector entries (itm) are given below

Gy = —37.2Cq, — 8.4, 4q +1.025,
G3 = —8.48q,+q; +-0-25Cqy +.g5-

(52)
(53)
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