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ABSTRACT
Common robotic tracking tasks consist of motions along pr

defined paths. The design of time-optimal path-constrainedtra-
jectories for robotic applications is discussed in this paper. To
increase industrial applicability, the proposed method accounts
for robot kinematics together with actuator velocity, acceleration
and jerk limits instead of accounting for the generally morecom-
plex dynamic equations of a manipulator with actuator torque
and torque-rate limits. Besides actuator constraints alsocon-
straints acting on process level are accounted for. The resulting
non-convex optimization problem is solved using a cascadef
genetic algorithms and Nelder-Mead’s method. Simulationsper-
formed on a Puma 560 manipulator model show that for a prop
choice of the kinematic constraints results can be obtainedthat
match the quality of those obtained using the more complex d-
namic constraint approach.

1 INTRODUCTION
One of the main issues in developing autonomous robots

robot motion planning. Robot motion planning consists of path
planning and trajectory planning. Path planning handles the plan-
ning of a spatial path from the robot’s initial configurationto the
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robot’s goal configuration, while trajectory generation consists
of deciding on the velocity, acceleration and jerk profiles along
the planned path as a function of time. Considering robotic appli-
cations, two major tasks can be distinguished, namely (1) pick-
and-place motions (e.g. component mounting applications)and
(2) motions for which the path is fully known in advance, also
termed path-constrained motion, (e.g. laser welding/cutting ap-
plications). Here, we will only address industrial applications
for which a path is fully known in advance.

A common performance criterion to increase productivity
and to lower cost prices of (industrial) robots is time-optimality.
The problem of finding path-constrained time-optimal trajecto-
ries for industrial applications has received a lot of attention in
literature. The problem was firstly solved in the mid 80’s when
Bobrow et al. [1], Shin and McKay [2] and Pfeiffer and Jo-
hanni [3] independently have presented algorithms for determin-
ing path constrained time-optimal motions including robotdy-
namics. In their approach, actuator torque constraints arerewrit-
ten to constraints in terms of the path parameter. Planning trajec-
tories by accounting only for actuator torque constraints results
in motions that are not second-order continuous. Instant changes
in desired torque levels cannot be generated by an actuator due
to its electrical dynamics. This implies that from the startof a
trajectory a difference between the desired joint positionand the
actual joint position will exist. Furthermore, instant changes in
torque level introduce a considerable amount of wear of the actu-
Copyright c© 2007 by ASME



ator [4], and causes excessive vibrations. This limits the practical
usability of time-optimal trajectory planning algorithmsthat re-
sult in bang-bang motions [5]. Different solutions are proposed
to account for discontinuous torque levels, see [5,6,7].

All of the methods discussed above incorporate actuator
torque limits (and possibly also torque rate or jerk limits)as con-
straints for the trajectory generation problem. This implies that
the equations of motion of the manipulator under consideration
must be known. From a practical point of view this is not desir-
able. Deriving the equations of motion asks for specific knowl-
edge on multi-body dynamics, that may not be available in a in-
dustrial environment. Furthermore, in most algorithms only con-
straints on joint/actuator level are taken into account, while for
certain industrial applications (such as e.g. welding and/or laser
cutting applications) also constraints in the workspace ofthe ma-
nipulator can limit the motion of the end-effector. Zlajpah[8] and
Dong and Stori [9] explicitly limit maximum velocities acting on
the process. However, for some applications next to maximum
process velocity also maximum acceleration and jerk of the ma-
nipulator’s end-effector should be limited.

As shown in [7], the path-constrained motion planning prob-
lem can be written as a Time-optimal Control (TOC) problem
with constraints on states and input. Time-optimal controlprob-
lems with bounded controls, have been solved analytically us-
ing Pontryagin’s minimum principle1 [10]. Despite the research
done in the field of time-optimal control, time-optimal control for
high-order systems is still an open issue [11]. Numerical meth-
ods can be used to solve the problem. A method which uses
a combination of a genetic algorithm and a local optimization
method can be used for several classes of linear systems [12]. Re-
cently, Chettibi [13] presented an optimization strategy for path
constrained motions using genetic algorithms.

In this paper, a method is presented for determining time-
optimal path-constrained motions subjected to velocity, acceler-
ation and jerk constraints acting on both the manipulator actua-
tors and the process it is performing. Using the path description,
the manipulator’s kinematic relations and the defined constraints,
a non-convex optimization problem is defined that is solved us-
ing a hybrid optimization strategy. The applicability of this ap-
proach in an industrial environment is highly increased dueto the
fact that the approach presented here only uses the manipulator’s
kinematic relations which are easy to determine (compared to the
generally complex equations of motion needed by the algorithms
discussed above). This approach will result in a somewhat con-
servative solution due to the fact that the constraints are constant
over the entire workspace. For the remainder of this paper itis
assumed that obstacle avoidance is satisfied during the pathdefi-
nition and is therefore not considered explicitly.

This paper is organized as follows. In Section2, the path-

1In Russian literature it is referred to as Pontryagin’s maximum principle due

to a different sign convention.

2

constrained motion planning problem is defined and the deriva-
tion of both process and actuator constraint limitations interms
of the path parameter will be discussed. Section3 describes the
hybrid optimization strategy for determining time optimaltrajec-
tories. Simulation results using the presented strategy, will be
presented in Section4. Finally, conclusions and an outlook on
future work are given in Section5.

2 PATH CONSTRAINED MOTIONS BASED ON KINE-
MATIC CONSTRAINTS

2.1 Problem formulation
As discussed in the previous section, the overall problem is

to find time-optimal trajectories, i.e. to minimize the timespan
T = t f − t0 of the total motion, i.e. minT = min

∫ t f
t0 dt, sub-

jected to manipulators kinematics,P = R(q(t)), constraints on
the path,P = P(s), with s the so-called path parameter; actuator
constraints,

|q̇i | ≤ q̇i,max, |q̈i | ≤ q̈i,max, |
...
q i | ≤

...
q i,max, for i = 1, . . . ,n j , (1)

and process constraints,

|Ẋi | ≤ Ẋi,max, |Ẍi | ≤ Ẍi,max, |
...
X i | ≤

...
X i,max, for i = 1, . . . ,6. (2)

Herein, the path, that must be followed by the manipulator’send-
effector, is represented by a six-dimensional vectorP, which con-
sists of a translational componentPt (with three translational co-
ordinates) and an angular componentPo (with three angular co-
ordinates), relative to some reference frameP = (PT

t ,PT
o )T . Fur-

thermore,qi is the displacement of jointi andn j the number of
joints (qT = (q1, . . . ,qn j )), Xi componenti of the end-effector’s
pose vectorX andR(q(t)) represents the manipulator’s forward
kinematics. It is assumed that a joint only allows a rotationor
translation in one degree-of-freedom. Since the total motion time
is unknown, the problem is to find a mapping from time onto the
path parameter (i.e.s(t)), while respecting the constraints as de-
fined above. Constraints are given as function of time. So a
transformation from time to the path parameter must be defined.
This is discussed in the following sections. First, the actuator
constraint transformation will be discussed. Second, the process
constraints will be treated and finally the results will be combined
to derive the set of constraints on the path parameter.

2.2 Constraint formulation
2.2.1 Actuator constraints The actuator limitations

can be e.g. determined using the actuator data sheet or by per-
forming some experiments. The path, defined byP = P(s) can
be written in terms of the joint displacementsq using the kine-
matic relations of the manipulatorP(s(t)) = R(q(t)) with R(q) =
Copyright c© 2007 by ASME



[R1(q), . . . ,R6(q)]. In order to determine the constraints on the
path velocity ˙s, induced by the actuator constraints,P(s(t)) =
R(q(t)) is differentiated with respect to time. When the inverse of
the JacobianRq(q) exists and the manipulator is non-redundant
we can determine the joint velocity angles as

q̇ = (Rq(q))−1Ps(s)ṡ, (3)

with (Rq(q))i j =
∂Ri(q)

∂q j
andPi,s(s) = ∂Pi(s)

∂s , for i = 1, . . . ,6 and

j = 1, . . . ,n j . Using the actuator velocity constraints in (1), the
constraint on ˙sdepending on actuator velocity constraints can be
determined by,

ṡi,ACvmax≤
q̇i,max

|(Rq(q))−1Ps(s)|i
, i = 1, . . . ,n j . (4)

As a consequence, the constraint on ˙s(t) depends ons(t) (and
thus also onq(t). DifferentiatingP(s(t)) = R(q(t)) twice with
respect to time results in

q̇TRi,qq(q)q̇+Ri,q(q)q̈ = Pi,ss(s)ṡ
2 +Pi,s(s)s̈, i = 1, . . . ,6, (5)

with Pi,ss(s) = ∂2Pi
∂s2 and(Ri,qq(q)) jk =

∂2Ri(q)

∂qk∂q j
. Combining (3) and

(5), we obtain

q̈ = R−1
q (q)

[

(Pss(s)−Q)ṡ2 +Ps(s)s̈
]

, (6)

with Q = {Qi} and Qi = PT
s (s)R−T

q (q)Ri,qq(q)R−1
q (q)Ps(s) for

i = 1, . . . , 6.
For the case in which ¨s = 0, i.e. when the acceleration

capacity is available for centripetal acceleration, restrictions
are posed on ˙s. Using s̈ = 0 and substituting the acceleration
constraints on joint level (i.e. ¨q

max,i
, i = 1, . . . ,n j ) into (6), the

limitation on ṡ due to maximum acceleration is given as

ṡACamax,i =

√

q̈max,i

|Rq(q)−1
(

Pss(s)−Q
)

|i
, for i = 1, . . . ,n j . (7)

Consequently, using (4) and (7) the overall admissible ˙s due to
actuator velocity and acceleration constraints, can be determined
by,

ṡmax,ac = min
i∈{1,...,n j}

(ṡACamax,i , ṡACvmax,i). (8)
3

Herein, the subscriptac stands for actuator constraints. Next,
whens̈ 6= 0 the limitation on ¨s is determined by

s̈i,acmin≤ s̈≤ s̈i,acmax, i = 1, . . . ,n j ,where (9)

s̈i,acmin=
−q̈i,max+ |Rq(q)−1(Pss(s)−Q)|i ṡ2

|Rq(q)−1Ps(s)|i
, (10)

s̈i,acmax=
q̈i,max−|Rq(q)−1(Pss(s)−Q)|i ṡ2

|Rq(q)−1Ps(s)|i
. (11)

As can be seen from (9), (10) and (11) the constraints on ¨sdepend
on the maximum joint acceleration levels, the path parameter s
and the pseudo-velocity ˙s. The limits on ¨s are determined by
evaluating (9) at each point along the path, for pseudo-velocities
varying from 0≤ ṡ≤ ṡmax, where ˙smax will be defined later on
when the limits due to actuator constraints and process con-
straints will be combined. So, at each point along the path with
a certain pseudo-velocity ˙s a maximum and minimum pseudo-
acceleration can be determined.

Finally, the constraints due to the jerk limitations on the ac-
tuator need to be determined. Differentiating (5) with respect to
time results in

Ri,qqq(q, q̇)q̇+3q̈TRi,qq(q)q̇+Ri,q(q)
...
q =

Pi,sss(s)ṡ3 +3Pi,ss(s)ṡs̈+Pi,s(s)
...
s, for i = 1, . . . ,n j ,

(12)

whereq̇ andq̈ can be determined using (3) and (6), respectively,
and

(

Ri,qqq(q, q̇)
)

j
= q̇TRi,qqqj(q)q̇, (13)

with
(

Ri,qqqj(q)
)

kl
=

∂3Ri(q)

∂ql ∂qk∂q j
. From (12) we can derive the fol-

lowing limitations on
...
s

−|Ri,q
...
q i,max+Zi |

|Pi,s(s)|
≤

...
s ≤

|Ri,q
...
q i,max+Zi |

|Pi,s(s)|
,with (14)

Zi = Ri,qqqR−1
q (q)Psṡ+3

[

R−1
q (q)(

(

Pss(s)−Q
)

ṡ2+

Pss̈)]
T Ri,qqR−1

q (q)Psṡ−3Pi,ssṡs̈−Pi,ssṡs3,
(15)

for i = 1, . . . ,n j ,

with Q as similar defined in (6). At this point, it assumed that
the influence of the jerk joint constraints on the limitationof
pseudo-velocity ˙s and pseudo-acceleration ¨s can be neglected.
This is done to simplify the constraint evaluation. Furthermore,
in practice jerk limitations are used as a smoothing factor,and
Copyright c© 2007 by ASME



are therefore relatively large in comparison to velocity and
acceleration limits such that the influence on pseudo-velocity
and acceleration is generally not critical.

2.2.2 Process constraints The process constraints
acting on the path can be determined in the same manner as
actuator constraints. Since the path is defined in the workspace of
a manipulator, the kinematics of the manipulator are not needed
for this transformation. The path in the workspace is definedas
X(t) = P(s(t)) with X(t) the predefined path of the robot hand a
a function of time. Differentiating this expression with respect to
time and by using the process constraints (2), we can determine
the maximum admissible value of ˙sdue to the maximum velocity
allowed in the workspace,

ṡPCvmax,i =







Ẋi,max

|Pi,s(s)|
, if Pi,s(s) 6= 0

∞, if Ps,i(s) = 0,
(16)

for i = 1, . . . ,6. By differentiatingX(t) = P(s(t)) twice with re-
spect to time and regarding the case for which ¨s= 0, the maxi-
mum pseudo-velocity ˙smax,pc due to the maximum process acce
eration can be determined as

ṡPCamax,i =

√

Ẍi,max

|Pi,ss(s)|
for i = 1, . . . ,6, (17)

ṡmax,pc = min
i∈{1,...,6}

(ṡPCvmax,i , ṡPCamax,i). (18)

Herein, the subscriptpc stands for process constraints. The ma
imum pseudo-acceleration ¨smax,pc is determined as

−Ẍi,max+ |Pi,ss(s)|ṡ2

|Pi,s(s)|
≤ s̈

≤
Ẍi,max−|Pi,ss(s)|ṡ2

|Pi,s(s)|
, i = 1, . . . ,6.

(19)

Finally, the limitations on the third derivative of the path
parameters with respect to time, induced by jerk process con
straints are defined as follows

−(
...
X i,max−|Psss(s)ṡ

3 +3Pss(s)ṡs̈|i)
|Pi,s(s)|

≤
...
s

≤
(
...
X i,max−|Psss(s)ṡ

3 +3Pss(s)ṡs̈|i)
|Pi,s(s)|

, i = 1, . . . ,6.

(20)
4

the

s

l-

x-

-

2.2.3 Combining actuator and process con-
straints Here, the constraints on the pseudo-velocity, -
acceleration and -jerk determined using the actuator constraints
and process constraints are gathered such that one constraint
definition is obtained. For the pseudo-velocity this results in
0 < ṡ≤ min(ṡmax,ac, ṡmax,pc), where ˙smax,ac and ṡmax,pc are de-
fined in (8) and (18), respectively.

Similarly, the pseudo-acceleration constraint is
formulated as a(ṡ,s) ≤ s̈ ≤ b(ṡ,s), with a(ṡ,s) =
maxi∈{1,...,n j},k∈{1,...,6}(aac,i(ṡ,s),apc,k(ṡ,s)) and b(ṡ,s) =

mini∈{1,...,n j},k∈{1,...,6}(bac,i(ṡ,s),bpc,k(ṡ,s)) and the valuesaac,i ,
bac,i , apc,k andbpc,k defined as

aac,i =
−q̈i,max+ |Rq(q)−1(Pss(s)−Q)|i ṡ2

|Rq(q)−1Ps(s)|i
, (21)

bac,i =
q̈i,max−|Rq(q)−1(Pss(s)−Q)|i ṡ2

|Rq(q)−1Ps(s)|i
, i = 1, . . . ,n j (22)

apc,k =
−Ẍk,max+ |Pss(s)|kṡ

2

|Pk,s(s)|
, (23)

bpc,k =
Ẍk,max−|Pss(s)|kṡ

2

|Pk,s(s)|
, k = 1, . . . ,6. (24)

The total pseudo-jerk limitation
...
s is defined

as follows, c(s, ṡ, s̈) ≤
...
s ≤ d(s, ṡ, s̈) with c(s, ṡ, s̈) =

maxi∈{1,...,n j},k∈{1,...,6}(cac,i ,cpc,k) and d(s, ṡ, s̈) =

mini∈{1,...,n j},k∈{1,...,6}(dac,i ,dpc,k). The variablescac,i , dac,i ,
cpc,k, dpc,k are defined by,

cac,i =
−|Ri,q

...
q i,max+Zi |

|Pi,s(s)|
, (25)

dac,i =
|Ri,q

...
q i,max+Zi |

|Pi,s(s)|
, i = 1, . . . ,n j (26)

cpc,k =
−(

...
Xk,max−|Psss(s)ṡ

3 +3Pss(s)ṡs̈|k)

|Pk,s(s)|
, (27)

dpc,k =
(
...
Xk,max−|Psss(s)ṡ

3 +3Pss(s)ṡs̈|k)

|Pk,s(s)|
, k = 1, . . . ,6, (28)

whereZi is defined by (15).

3 TIME OPTIMAL TRAJECTORY GENERATION
In principle, the problem of path-constrained motion plan-

ning is to find a functions(t) satisfying the constraints, as de-
fined in the previous section, and the requirement that the mo-
tion is time-optimal. This problem can be written as a Time-
optimal Control (TOC) problem as shown by Constantinescu and
Copyright c© 2007 by ASME



Croft [7]. The system can be formulated as

ẋ =





0 1 0
0 0 1
0 0 0



x+





0
0
1



u, (29)

with the states of the system defined asx = [s, ṡ, s̈]T , and in-
put u =

...
s, and fulfilling the performance criterion minT =

min
∫ t f

t0 dt. The problem is now to find inputu such thatT is min-
imized, subject to the dynamics defined by (29), with boundary
conditions,x0 = [s0, ṡ0, s̈0] andxf = [sf , ṡf , s̈f ], while respect-
ing the constraints on the statesx (i.e. velocity and acceleration
constraints), and on the control saturation levelsumin ≤ u≤ umax

(i.e. jerk constraints), both derived in Section2. In order to
solve the problem, an optimization problem needs to be solved.
Here, instead of solving the time-optimal control problem di-
rectly, we opt to solve the trajectory planning problem in the
(s, ṡ)−plane. The same approach as presented by Constantine
and Croft [7] is followed, however a different optimization algo-
rithm is applied. The goal of the optimization strategy is tofind
a set of points in the(s, ṡ)−plane that are interpolated using cu
bic splines. Cubic splines are chosen because these represent the
lowest degree polynomials which results in a smooth motion,i.e.
continuous and differentiable everywhere [7]. The points that are
interpolated using cubic splines are the switching points in the
case that no jerk constraints (or torque rate constraints incase
of Constantinescu and Croft) are taken into account. In com
parison, the algorithm used by Constantinescu and Croft is the
Flexible Tolerance method [14] that is based on the Nelder-Mead
method [15]. A disadvantage of this optimization algorithm is
that it can converge to local minima in case of non-convex o
timization problems. Constantinescu and Croft try to overcome
this disadvantage by running the optimization four times. The
best solution is then used as initial estimation for a final opti-
mization run. However, this approach still does not guarantee
that a global optimum is found. Since it is not guaranteed tht
the remaining solution space of the trajectory planning problem
is convex, the obtained solution may represent a local minimum.
Therefore, here a different approach is proposed.

An overview of the optimization strategy is depicted in Fig
ure1. As can be seen from this figure, the chosen optimizatio
strategy is a hybrid optimization strategy that determinespoints
in the (s, ṡ)−plane which are interpolated using cubic splines
Such strategy is chosen since the solution space may be n
convex. A global optimization strategy is proposed. Sincen
general the outcome of a global optimization strategy does not
give the optimum solution, the global optimization strategy is
followed by a local optimization strategy to obtain a more accu-
rate optimum solution.
5

scu

-

-

p-

a

-
n

.
on-
i

The optimization problem is defined as

min f (O), O∈ R
n, (30)

whereO represents the set of optimization variables such that
fitness functionf (O) is minimized. The Fitness function deter-
mines the total motion time. The input to the function are opti-
mization variablesO. The optimization variables are interpolated
using cubic splines. First, it is checked whether the constraints
on pseudo-velocity, -acceleration and -jerk are violated.When a
constraint is violated the motion time for the set of optimization
variables is set to,T = 1·1099, with T the total motion time. The
optimization variables to this optimization problem are the pa-
rameters for determining a cubic spline. The variables are given
as

O =

[

(

dṡ
ds

)

0
, ṡ1, . . . , ṡp,

(

dṡ
ds

)

f

]

. (31)

Herein,p indicates the number of intermediate switching points.
As can be seen from the optimization variables, here a directional
cubic spline is used instead of a natural cubic spline. A visual-
ization of the optimization variables for a case withp = 2 can
be found in Figure2. The variables

(

dṡ
ds

)

0 and
(

dṡ
ds

)

f represent
the slope of the directional cubic spline at the start (s= s0) and
end point (s = sf ), respectively. The slopes are part of the op-
timization variables for two reasons. First, often a begin and/or
end pseudo-velocity is required, so these pseudo-velocities can-
not be part of the set of optimization variables. Second, the
start and end slopes represent the velocity at which the actuator
torques leave or approach the static equilibrium values. There-
fore, steeper slopes represent faster motions [7].

The intermediate knotpoint positions for cubic spline inter-
polation, are determined using a strategy discussed by Shinand
McKay [2] and Pfeiffer and Johanni [3]. The knotpoints could
also be included as optimization parameters in the global opti-
mization algorithm. However, this will increase the computa-
tional time and is therefore not considered.

After the intermediate points are determined, the global op-
timization strategy is performed. Several global optimization
algorithms are available. Here the global optimization method
suggested by Sim et al. [12], namely a genetic algorithm ap-
proach, is used. Genetic algorithms are search algorithms based
on the mechanics of natural selection and natural genetics [16],
and are often used in solving path planning problems see e.g.
[17, 18].Genetic algorithms are in principle composed of three
operators, namely reproduction (or sometimes called selection),
crossover and mutation. During reproduction, a selection out of
an initial population of solutions is made. Once a solution is
selected for reproduction, it enters a tentative new population.
Copyright c© 2007 by ASME



Input

Determine intermediate points

Global optimization

Local optimization

Cubic spline interpolation

Output

Figure 1: Optimization strategy to solve the path-constrained tra-
jectory planning. problem

ṡ

s

Boundary curve g(s)

sfs1 s2

ṡ1

ṡ2

(

dṡ
ds

)

0

s0

(

dṡ
ds

)

f

Interpolated cubic spline

Figure 2: Visualization of optimization strategy.

Crossover proceeds by randomly mating two tentative solutions
Each of the mated solutions undergoes a crossover by excha-
ing solution substrings of two mated solutions. Finally, mutation
is a random walk through the string space. When a solution string
is binary coded, this means changing a 1 to a 0 and vice versa

The outcome of the global optimization strategy is a set o
optimization variables which in general will not result in the op-
timum solution. This fact and in order to speed up the optimiza-
tion process, an optimization algorithm is used that is suitable
for local optimization problems. Here, the Nelder-Mead method
is chosen [15]. The Nelder-Mead method is chosen above th
Steepest-Descent and line search methods. In comparisone
latter methods are computationally more efficient, howeverthey
show slow convergence near the optimum solution.

The outcome of the local optimization strategy is interpo
lated using cubic splines, see Figure1. This completes the opti-
mization strategy.

4 SIMULATIONS
The strategy for determining path-constrained time optimal

motions with kinematic constraints presented above is validated
by simulations. The strategy is compared with a dynamicall
6
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Table 1: Genetic algorithm parameters.
Parameter Value
Population size 500
Maximum number of generations 60
Reproduction Uniform selection
Crossover rate 80%
Mutation rate 25%
Mutation distribution Gaussian

constrained, path-constrained motion planning strategy using
torque and torque-rate constraints (for which a dynamic model
for the manipulator is needed). For each approach, i.e. using
kinematic or dynamic constraints, the optimization strategy pre-
sented in Section3 is used to generate trajectories. The pa-
rameters for the genetic algorithm optimization can be found
in Table 1. The parameter settings are verified by performing
reproducibility simulations (i.e. the parameters of the optimiza-
tion strategy are chosen such that the outcome of the optimiza-
tion reproduces). In simulations only actuator constraints will
be taken into account, although with the developed strategyit
is also possible to account for process constraints. For simula-
tion purposes we consider a PUMA 560 manipulator, see Figure
3. This type of robot resembles a typical industrial manipula-
tor. Here, we will only consider positional degrees of freedom,
so the wrist (i.e. joints 4, 5 and 6) is fixed. The dynamic model
of the robot and its parameters are given in the appendix (Fora
6 DOF dynamic model of the PUMA 560 manipulator we refer
to [19]). Friction in the joints is modeled using Coulomb (Tc,i

for joint i) and viscous friction (Tv,i for joint i), with related pa-
rametersTc = [6.3, 5.5, 2.6] NmandTv = 0.1Tc (in Nms). The
robot is controlled using independent joint PD-control with grav-
ity compensation where the parameters (Kp,i and Kv,i for joint
i), with Kp = [700, 600, 340] Nm/rad andKv = [70, 102, 27]
Nms/rad, by tuning for a rise time of 0.2 seconds and an over-
shoot of maximally 5%. The simulations are performed using

Figure 3: The PUMA 560 manipulator in zero position with at-
tached coordinate frames using modified DH-convention, [19].
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MATLAB/Simulink [ 20].
Three simulation case studies are considered, where je

limits (in case of kinematic constraints) and torque-rate lim-
its (in case of dynamic constraints) are related to accele-
tion and torque constraints respectively, i.e.

...
qmax = cq̈max and

Ṫmax = cTmax with c = 100 (case 1),c = 10 (case 2) andc = 1
(case 3). The kinematic velocity and acceleration constraints
are determined by performing simulations, while regardingthe
torque saturation level and the response of the robotic system
and are defined as ˙qmax = [3.84, 2.81, 9.41] rad/s and q̈max =
[24.5, 32.5, 76] rad/s2 . In practice, the constraints are typically
given by an experienced robot-user or are obtained by perform-
ing experiments. The torque constraints are taken from [19]. Jerk
and torque-rate constraints are chosen arbitrarily to smoothen the
motion.

During simulation we want the manipulator to move from
P0 = [0.4, 0.1, 0.42]T to Pe = [−0.4, 0.1, −0.25]T defined in
the workspace of the manipulator. This cannot be realized bya
straight line segment due to singular configurations of the manip-
ulator along this line. Therefore the path to be followed during
simulation is a parabolic path and is given as

P(s) =





0.4−0.8s
−0.4(s−0.5)2 +0.2

0.42−0.67s



 , s∈ [0,1]. (32)

The simulation results for the three simulation cases are d-
picted in Figures4, 5, 6 and Table2. In these figures, the solid
lines represent the reference path, the dashed lines the simulated
controller tracked path while considering kinematic constraints
(i.e. on velocity, acceleration and jerk) and the dash-dotted lines
the simulated controller tracked path while considering dynamic
constraints (i.e. on torque and torque-rate). The tracked path de-
viates from the reference path due to the modeled joint friction.
Furthermore, some noise on the torque profiles is seen. T
can be ascribed to the fact that the controller uses a numerial
derivative of the reference signal in the D-action. From Table
2 we can see that for decreasing jerk/torque-rate limits, themo-
tion time and path following accuracy increases. This is dueto
the smoothing effect of the jerk/torque-rate limits on the result-
ing torque profiles, see Figures4c, 5c and 6c. Regarding the
computational time of a trajectory it can be said that recently Be-
hzadipour and Khajepour [21] concluded that the computational
time of time-optimal trajectories along predefined paths ismore
than 1000 times larger than the motion time. This research sup-
ports that conclusion. So, despite many research efforts, deter-
mining path-constrained motions still costs a tremendous amount
of computational effort.

When comparing simulation results of the kinematicall
constrained path and the dynamically constrained path, we can
see that (except for simulation case 3) the motion time for the
7
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(c) Actuator torques; Solid lines represent kinematically constrained torques;
Dash-dotted lines represent dynamically constrained torques.
Figure 4: Simulation results for simulation case 1.
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(c) Actuator torques; Solid lines represent kinematically constrained torque
Dash-dotted lines represent dynamically constrained torques.

Figure 5: Simulation results for simulation case 2.
;
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(c) Actuator torques; Solid lines represent kinematically constrained torques;
Dash-dotted lines represent dynamically constrained torques.

Figure 6: Simulation results for simulation case 3.
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Table 2: Simulation data.

Kinematically constrained path
Simulation Case 1 2 3
Total motion time [sec] 1.8643 2.1737 2.881
Path following accuracyq1 [rad] 0.1326 0.1284 0.1229
Path following accuracyq2 [rad] 0.1098 0.1091 0.1015
Path following accuracyq3 [rad] 0.0633 0.0581 0.0514
Settling errorq1 [mrad] 9.7 9.8 10.1
Settling errorq2 [mrad] -6.8 7.1 -7.3
Settling errorq3 [mrad] 5.7 6.0 6.6

(a) Simulation results for kinematically constrained path.

Dynamically constrained path
Simulation Case 1 2 3
Total motion time [sec] 1.440 2.145 3.732
Path following accuracyq1 [rad] 0.1523 0.1316 0.0922
Path following accuracyq2 [rad] 0.1212 0.0993 0.0729
Path following accuracyq3 [rad] 0.0755 0.0628 0.0503
Settling errorq1 [mrad] 9.7 9.9 10.5
Settling errorq2 [mrad] -6.4 -6.8 -7.5
Settling errorq3 [mrad] 5.4 6.3 7.0

(b) Simulation results for dynamically constrained path.

dynamically constrained path is somewhat smaller than for the
kinematically constrained path. This is due to the fact that
kinematically constraints are constant along the entire path and
therefore the motion can be somewhat conservative from a time-
optimality point of view. The fact that this is not the case for case
3 can be related to the formulation of the constraints as described
in Section2. Herein, the influence of jerk limits on pseudo-
velocity and pseudo-acceleration is neglected. Since simulation
case 3 for kinematically constrained approach does not result in
a conservative solution in comparison to the dynamic constraint
approach, it seems that this assumption does not hold for rela-
tively small jerk limits.
From the discussion above it can be concluded that, by usin
kinematic constraints, motions are determined that give compa-
rable results to motions determined using dynamic constraints.
The ’tuning’ of the kinematic constraints may take some time;
however the industrial applicability of a kinematic constraint ap-
proach is highly increased in comparison with a dynamic con-
straint approach when accounting for the time and expertise
needed to build a reliable dynamic model.

5 CONCLUSIONS AND RECOMMENDATIONS
In this paper, a method is presented for determining time-

optimal trajectories for industrial manipulators along a pre-
9

g

defined path. Instead of taking into account dynamic equations
with actuator torque limits and possible torque-rate limits of a
manipulator, we only require knowledge on the kinematics ofa
manipulator together with actuator velocity, acceleration and jerk
limits. The industrial applicability is highly increased,firstly,
due to the fact that it uses kinematic relations of a manipulator
(which are far easier to obtain than the dynamic equations) and
secondly due to the fact that constraints acting on the process
can be taken into account. By transforming the constraints to
one domain, a time-optimal control problem can be formulated.
However, no analytic solution for this kind of time-optimalcon-
trol problem is available to this date. The proposed optimization
algorithm consists of a combination of a genetic algorithm and
the Nelder-Mead method. In this way a global optimum, for a
path constrained motion with a minimum time criterion, can be
found. From simulations on a Puma 560 manipulator model, it
can be concluded that, for a proper choice of the kinematic con-
straints, results can be obtained that are comparable to those ob-
tained using the dynamic constraint approach. However, where
the dynamic constraint approach asks for a specific knowledge on
multi-body dynamics, the ’tuning’ of the kinematic constraints
may take some time.

For further research it is recommended to reduce the com-
putational time of the optimization strategy such that the in-
dustrial applicability is increased even more. Furthermore, as
observed in the simulation case with relatively low jerk limits,
the influence of jerk limitations on pseudo-velocity and pseudo-
acceleration cannot be neglected. Therefore, the constraint for-
mulation should be extended such that jerk influence on pseudo-
velocity and pseudo-acceleration is accounted for. Moreover, for
further performance evaluations, experiments on industrial appli-
cations with challenging mechanisms, such as a robotic system
of double-scara type, should be performed. Finally, it can be in-
teresting to apply the developed algorithm on applicationsother
than industrial manipulators, for example, a mobile robotic sys-
tem, with non-holonomic constraints.

A DYNAMIC MODEL OF PUMA560 WITH THREE DE-
GREES OF FREEDOM
The dynamic model of the Puma560 is of the following

form; M(q)q̈+ q̇TC(q)q̇+ G(q) = T. Herein, q ∈ R
n repre-

sents the vector of joint positions,T ∈ R
n the vector of actu-

ator torques,M(q) ∈ R
n×n the inertia matrix of the manipula-

tor, C(q) ∈ R
n×n×n the third-order tensor representing centrifu-

gal and Coriolis terms,G(q)∈R
n the gravity vector and˙denotes

the derivative with respect to time.
For the three-degree-of-freedom model used heren= 3. The

nonzero elements of the inertia matrix (inkgm2) are given as

M11 = 2.57+1.38cq2cq2 +0.3sq2+q3sq2+q3

+0.744cq2sq2+q3

(33)
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M12 = 0.69sq2 −0.134cq2+q3 +0.0238cq2 (34)

M13 = −0.134+cq2+q3 −3.97·10−3sq2+q3 (35)

M21 = M12 (36)

M22 = 6.79+0.744sq3 (37)

M23 = 0.33+0.372sq3 −0.011cq3 (38)

M31 = M13 (39)

M32 = M23 (40)

M33 = 1.16, (41)

wherecq represents cos(q) andsq represents sin(q). The nonzero
Christoffel symbols (inNms2) are given as

C112 = −2.76sq2cq2 +0.744c2q2+q3

+0.6sq2+q3cq2+q3 −0.0213(1−2sq2+q3sq2+q3)
(42)

C113 = 0.744cq2cq2+q3 +0.6sq2+q3cq2+q3

+0.022cq2sq2+q3 −0.0213(1−2sq2+q3sq2+q3)
(43)

C122 = 0.69cq2 +0.134sq2+q3 −0.0238sq2 (44)

C123 = 0.267sq2+q3 −7.58·10−3cq2+q3 (45)

C133 = 0.5C123 (46)

C211 = −0.5C112 (47)

C223 = 0.022sq3 +0.744cq3 (48)

C233 = 0.5C223 (49)

C311 = −0.5C113 (50)

C322 = −C233, (51)

and nonzero gravity vector entries (inNm) are given below

G2 = −37.2cq2 −8.4sq2+q3 +1.02sq2 (52)

G3 = −8.4sq2+q3 +0.25cq2+q3. (53)
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