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ABSTRACT

In this paper, we analyze the interaction between friction-
induced vibrations and self-sustained lateral vibratzmssed by
mass-unbalance in an experimental rotor dynamic set-ufs Th
study is performed on the level of both numerical and experi-
mental bifurcation analyses. The results show that a hilglvet
of mass-unbalance, which generally increases the latdyed-v
tions, can have a stabilizing effect on the torsional dyrami
i.e. friction-induced limit cycling can disappear. Moreoythe
analyses provide insight in the fundamental mechanismsimgu
self-sustained oscillations in rotor systems with flexipilmass-
unbalance and discontinuous friction which supports theegee
of such flexible rotor systems.
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to whirling motions to flexibilities present in a system. Gon
sequently, the dynamic behaviour of such systems can be ve
complex (see e.g. [1-3]).

Krauter [4] has analyzed torsional vibrations in water iubr
cated bearings and in [5-9] torsional vibrations in dritirg
systems have been analysed. In those papers, it is conclud
that torsional vibrations are caused by negative dampirtgen
friction force in the bearings ([4]), the friction force dtet con-
tact between the bit and the borehole rotor ([5-7]) and by the
friction force at the rotor ([8; 9]). Lateral vibrations inded by
mass-unbalance in rotor systems have been analyzed exignsi
in[1;2;10; 11].

The interaction between torsional and lateral vibrations i
rotor systems is studied in [1-3; 12]. In various mecharsgat

Rotating machinery such as turbines, pumps and fans aretems it is noticed that the increase of the mass-unbalance c:

important components in e.g. aircraft engines, powerstatand
large flywheels in hybrid transmissions of cars. The behavid
these rotor-dynamic components can influence the perfarenan
of the system as a whole. Namely, for certain ranges of ttee rot
tional speed, such systems can exhibit various types ohtidor

have both stabilizing and destabilizing effects. In [1] §2[ a
simple disc with a mass-unbalance connected to a shafthwhic
is elastic in both torsional and lateral direction, is cdeséd. In
such systems, under certain conditions, instabilitiesaygrear
if the unbalance increases. On the other hand, in [3; 12] th

which can be so violent that they can cause significant damage Pehaviour of flexible rotor-bearing systems is analyzeditrsd

or be performance limiting factors. Causes for such behavio
may vary from friction or fluid forces in the bearings in which

concluded that the mass-unbalance can stabilize rotaragst
In this paper, we focus on interaction between friction-

a shaft is borne and mass-unbalance in a rotor which can leadinduced torsional vibrations in flexible mechanical systeand

*This work was done while working at the TU/e.

lateral vibrations in rotor systems caused by a mass-unbala
When analyzing the friction-induced vibrations a discomtins
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static model for the friction is used. The discontinuity Ma&ve
significant consequences for the analysis of the steadysta
haviour of the system. The occurrence, prediction and arsly
of limit-cycling behaviour (vibrations) in systems withsdonti-
nuities is currently receiving wide attention see e.g. [6+19].

ter of the lower disc irx- andy-directions are measured with two
LVDT (Linear Variable Differential Transformer) displaoent
sensors. The displacement sensors measure, in fact, fhecmtis
ments of the rigid bodies of the constraintsxinandy-direction
which equal the displacements of the lower disc in those two d

However, most authors are studying such systems from a theo-rections.

retical point of view. Therefore, the focus of this paper isam
experimental study of such system.

The Euler-Lagrange equations are used to construct a
eighth-dimensional model. The model of the set-up is ddrive

In the next section, the rotor set-up is described and the in the co-rotating coordinate frame which is fixed to the uppe
model is given. Subsequently, the system dynamics are ana-disc as shown in Figure 3(b).

lyzed. The focus of the analysis is on the steady-state laivav
of the system. Herein, torsional vibrations, lateral vilmas and
the interaction between those vibrations in flexible roymtems
with discontinuous friction are modelled and analyzed. As-a
sult of such analysis appropriate bifurcation diagramscaie
structed. This analysis is aiming at an improved understagnd
of the cause of friction-induced limit cycling and effectstioe
interaction between the torsional and lateral dynamicsitfia-
ence this type of limit cycling. Next, we compare bifurcatio

diagrams based on the estimated model to experimentally ob-

tained bifurcation diagrams. We also discuss the expetahen
results obtained for various mass-unbalance levels. Tpsipis
finished with conclusions.

MODEL OF THE EXPERIMENTAL SET-UP

The dynamics of the set-up is independent of the angula
position of the discsf;, and6;), but only depends on the differ-
encea = 6, — 6, between these two angular positions, see Fig-
ure 3. Therefore, we replad® with wy, 6, with «y and after
performing some equivalent transformations to the obththe
namic model, the following seventh-order system of diffeiad
equations can be obtained:

Juty — ke + Ty () = kmu, (1)

(M +m)X—myed sin(a) — (my + m) Gy — Mredy sin(a) + bx
—2(my 4+ my)wyy — 2mrewy, & coga) — meed?coga) + kx

— (M + M) i — bayy — myewicoga) =0,

(M +my)y+meed coga) + (my +my)yx+ mrey coga) + by
+-2(my 4+ my) X — 2meeayd sin(a) — meed?sin(a) +ky

The experimental set-up consists of a power amplifier, a DC- —(my + m)wﬁer bwyx —mrewdsin(a) =0,

motor, two rotational (upper and lower) discs, a low-st&fs
string and an additional brake applied to the lower discFSge
ure 1. The input voltaga is fed to the DC-motor via the power

—mxesin(a) +myecoga) + (Mee? -+ Jc) (6 + )+
meaye(x coga) +ysin(a)) + 2meexwy, coga) + 2mreyuy, sin(a)

amplifier. The motor is connected, via the gear box, to the up- +Ti(6u+a) +mxewgsin(a) —mry ewf cog(a) +kea = 0,

per steel disc. The upper disc and the lower disc are corghecte

through a low stiffness steel string. The lower disc canteota
around its geometric center and is free to move in lateraicdir
tions.

In order to induce torsional vibrations at the lower disc, a

brake and a small oil-box (with ondina oil 68) with felt segp

are fixed to the upper bearing housing of the lower part of the

set-up (see Figure 2). The brake produces a friction foreged
on the brake disc. The brake contact material is bronze. {Ee¢ s
brake disc is connected to the lower brass disc via a stift.sha
Lateral vibrations are induced by fixing an additional maske
lower brass disc (Figure 2). Consequently, a mass-unbalianc
introduced to the disc which leads to motions in the latelah@
(whirl type motion). Tilting of the lower disc is avoided byeans
of two constraints; one ir- and one iry-direction, see Figure 2
and [2].

The angular positions of the upper and lower d&gcgnd6,,
respectively in Figure 1(b)) are measured using increnhenta
coders. The angular velocities of both discs are obtaineauby
merical differentiation of the angular positions and filigrthe
resulting signals using a low-pass filter with a cut-off fneqcy
of 200rad's (31.8Hz). The displacements of the geometric cen-

2

Teu(wu)sgn(o) for wy, # 0,
Tru(on) € { [—Tsu+ ATsy, Tsu+ ATsu] for wy =0,

Teu(Wu) = Tsu+ ATsusgn(wy) + byl wy| + Abywy,

Ter(or)sgn(wy) for oy # 0,
Tri(w) € { I[—Ts|7Ts|] for &y — 0.

Tar(0) = Tor -+ (Tor — T )e /51 1y ooy

wherewy = wy+ a. In (1), Try(wy) represents the friction torque
at the upper disc caused by friction in the bearings of theeupp
disc and by the electro-magnetic effect in the DC-motortiarr
more, T (wy) is the friction torque at the lower disc comprising
the friction in the bearings of the lower disc and the frintia-
duced by the brake mechanism. The friction torqUgséwy,) and

Ts1 (o) are modelled using set-valued force laws. Consequently
the model of the system represents a set of differentialgichs.

In order to analyze the dynamics of the experimental set-uf
we need to estimate the parameters in (1). Parameter e@stimat
is performed using a nonlinear least-squares techniquethEo
sake of brevity, we only present the results here; see [24i¢or
tails on the identification procedure. In (1), = 0.4765 kg n?,
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Figure 1. Experimental set-up.
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Figure 2. The lower part of the experimental set-up.

Jc = 0.0412 kg n? represent the moments of inertia of the up-
per disc and lower discs, respectively, with respect torthei
centers of massky = 4.3228 NnyV is the motor constant,
Teu+ ATgy and —Tgy + ATgy are the maximum and minimum
value of Try(wy) for wy = 0 (with Tgy = 0.37975 Nm, ATy =
—0.00575 Nm). Moreoveth, + Aby andb, — Aby are the vis-
cous friction coefficients for positive and negative vetpaiy,
(with by = 2.4245 kg nt /rad s and\b, = —0.0084 kg nf /rad s),

ke = 0.0775 Nnyrad is the torsional stiffness coefficieret—=

0.00489 m is the distance between the center of mass of th
lower disc and its geometric centen, = 9.9137 kg represents
the mass of all parts of the lower part of the set-up that car
rotate around the geometric center of the disc= 3.3202 kg
represents the mass of all parts of the lower part of the get-u
that do not rotate around the center of the disc but move in th
same X ory) direction during motion of the lower disc (i.e. one
constraint, the brake, the oil box, the upper bearing haysin
the lower bearing housing and the encoder at the lower disc
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(a) The model of the set- (b) The lower part of the system and the co-rotating cootéina

up. frame{&, &}.

Figure 3. The rotor dynamic system.

Finally, k = 297425 Ng/m is the bending stiffness coefficient
in lateral directionb = 25 N§/m is the damping coefficient in
lateral direction,Tg; = 0.2781 Nm is the static friction torque,
Ter = 0.0473 N m the Coulomb friction torquex = 1.4302 rad/s
the Stribeck velocity ands) = 2.0575 rad/s the Stribeck shape
parameter inTf () and b, = 0.0105 kg rﬁ’-/rads is the vis-
cous friction coefficient at the lower disc. The estimatéctifvn
torques are shown in Figure 4. From (1) and Figure 4(b) it can
be seen that a negative damping is present at the frictiquéor
at the lower disc for low angular velocities.

ANALYSIS OF NONLINEAR DYNAMIC BEHAVIOUR

When both the upper and lower disc rotate with a constant
angular velocity, a forward whirling motion is performed tne
lower disc (lateral vibrations) and this represents anlégjisim
point in the co-rotating coordinate frame. Moreover, when t
sional vibrations appear in the system, then such motion rep
resents a periodic motion in the co-rotating coordinaten&a
Therefore, both equilibrium points (sets), limit cycledathe
related stability properties are analyzed.

Equilibria and Related Stability Analysis

In the equilibria, (wy, a, X,y) = (Weq, Oeg, Xeq Yeq) and
Wy=0=a=%X=x=y=y=0, foru=u;, with u. a con-
stant. Clearlymy = weq in equilibrium. According to (1), in an
equilibrium the following holds:

KmUc — Tfu(weq) — Ty (weq)
B be?nfu, o @)
(my + my) 20 + b2 — 2k(my + m)wgg+k2

-0.5 6 0.5
wy [rad/s]
(a) Friction torque at the upper part of the set-up.

0.25¢
0.21
0.151
0.1r
0.051

-0.051
—0.1f
-0.151
-0.2
-0.251

Tri (@) [Nm]

-15 -10 - 10 15

5 0 5
wy [rad/s]
(b) Friction torque at the lower part of the set-up.

Figure 4. Estimated friction models.
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Tt1 (Weq)

aeq = —
befnfug, ®)
ko((my M) 200+ 00 — 2k(my +my) g+ K2)
and
_emwz (k_(mr+m)(*)gq)cos(ueq)+b00eqSin(Geq)
Xeq_ eq(m+m)2(*)éq+ bZQ)gq_zk(m"’_m)()\%q—kkz’
k— (02 i —b
yeqzemoogq (K— (my +m) ) Sin(Aeq) — bLeqCOY Oleq)

(M + M) 200 + D200 — 2k(my + my) g+ k2
(4)

Since friction torqueJ,(wy) and Ty («y) are modelled us-
ing set-valued friction models, (2) and (3) represent aigieb
inclusions and the following situations should be consder
firstly, equilibria forweq > 0, i.e. both the upper and the lower
disc rotate with the same constant angular veloaiy, and,
secondly, equilibria forweq = 0, i.e. both the upper and the
lower disc stand still. Foteq > 0, Try(Weq) = Teu(Weq) and
Tt (Weg) = Tei (Weq) (See (1)). Consequently, such an equilibrium
point satisfies the algebraic equations

km Uc — (Tsu+ ATsy) — (by + Aby) Weqg— Tei (Weq)

bempwg, %
(M + my) 20+ 020l 2K(my + M)Wtk
1. ®)
ko
bempug,

ke ((My + my) 200 + 0262, — 2k(my + m) W+ k2)

and (4). From (1), the first equation of (5) and due to the taat t

can be obtained by solving the first equation in (5). The corre
sponding radial displacement of the center of the lower @drsc

equilibrium)req= , /x§q+ ygq can be derived from (4) as:

Feq = mfe(*)gq
\/(mf + M) 200 + 2003y — 2K(me + my) gy + k2

(7)

since(m, +my) 2o+ b2wd, — 2k(my +my) wiq+ k2 > 0 for every
Weq € R for the estimated parameters of the set-up.

In order to obtain local stability conditions for the isaelt
equilibrium points (forweq # 0), we can use Lyapunov’s indi-
rect method. The method can be only be applied whog> 0
(i.e. condition (6) should be satisfied). Therefore, the ehad
system (1) is linearized around the equilibrium point areldta-
bility of the linear model is analyzed. The results of sucalgsis
are shown in the sequel.

Bifurcation Diagram (Nominal Case)

Since in the set-up both torsional and lateral vibrations ap
pear, we are interested in the angular veloaityand radial dis-
placement of the lower disc in steady-state for different con-
stant input voltagesi.. More specifically, two bifurcation dia-
grams (forwy andr) are constructed, with. as a bifurcation pa-
rameter for the estimated parameters given on page 3 andz4. Tl
equilibria are discussed in the previous section. Limileyare
obtained numerically using a path following technique imbo-
nation with a shooting method [20]. Herein, the so-calledcdw
model [18] is used to properly deal with the discontinuitiethe
dynamics, related to the set-valued nature of the frictioalets.

The results of an extensive bifurcation analysis are shown i
the bifurcation diagrams in Figures 5 and 6. In those figutes,
maximal and minimal values @f andr are plotted when a limit
cycle is found. The Floquet multipliers, correspondinghese
limit cycles, are computed numerically and used to deteerthie
local stability properties of these limit cycles.

For 0< uc < ugp, with ug, given by (6) (pointA in Figure

Weq > 0, it can be concluded that the system has such an isolated6), the system in steady state is in the stick phase, i.eytiters

equilibrium point when

Tout ATeu+ T
uc>u£p::%.

(6)

For 0< uc < ugp, an equilibrium set in whickieqg = Xeq= Yeq= 0

has a locally asymptotically stable equilibrium set (eiquilim

branche; in Figure 6), see [2] for a detailed stability argument.
For uc = uzp (point A in the bifurcation diagrams) the lo-

cally asymptotically stable equilibrium set reduces to eally

asymptotically stable isolated equilibrium point and narge

of stability properties occurs. The system has a unique-equi

librium point for us > uzp. Moreover, a locally asymptotically

exists, see [2]. For the estimated parameters of the model th stable equilibrium branclke, appears (Figure 6), for whictveq

system has aniqueisolated equilibrium foug > uz,, see [2].
Since in the set-up both torsional and lateral vibrations ap
pear, we are interested in the angular velocityand radial dis-
placement of the lower disc in steady state for different constant
input voltagesic. Whenug > Uz, @y = Wy = Weq in steady state

5

andreqincrease for increasings.

From bifurcation poinB an unstable equilibrium braneh
and an unstable periodic branph arise (see Figure 6). At that
point a pair of complex conjugate eigenvalues, relatededith
earisation of (1) around the equilibrium point, cross thagmn
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5
3

nary axis. Therefore, a smooth subcritical Hopf bifurcatome- 7
curs at poinB.

The unstable periodic branghy occurs for input voltages
smaller than the input voltage at poidt The branchp; is con-
nected to a locally stable periodic branph at the pointD (uc
at pointD is smaller thanu; at the pointB), which represents
a discontinuous fold bifurcation point, since the peridatianch
p2 consists of stable limit cycles which represent torsional v
brations with stick-slip (see Figure 6(a)). Moreover, adtiet
multiplier crosses through the point +1 in the complex plane

For some higher constant input voltageg(point E in Figure
5) the locally stable periodic brangh loses stability and an un-

w
&

wy [rad/s]

,_.
&
T

stable periodic branch appears (periodic brapgln Figure 5) ST v s 8w 2w 1w 1w w
through another discontinuous fold bifurcation (pdirith Figure Ue [V]
5)_ (a) Angular velocitywy .

The unstable periodic brangi is connected to the unstable
equilibrium branche; and the stable equilibrium branehin the
smooth subcritical Hopf bifurcation poi@t

For input voltagesi; higher than that at poir, the asymp-
totically stable equilibrium branch continues. For inieg uc
the steady-state velocity at the lower discincreases. Note that
for such high angular velocities, viscous friction is doarifin oo
the friction at the lower disc (see the estimated frictiorgtee =
T (ay) in Figure 4(b)), which induces the local stability of the ool
equilibrium branche,.

The bifurcation diagram shown in Figure 5 also shows vari- 0005
ous branches of steady-state solutions for input voltagess V,
which is in fact outside the working region of the experina¢nt o
set-up. However, a rich variety of interesting qualitatitenges T e e fle’
in the dynamic behaviour can appear for those voltages; for a Uc [V]
detailed bifurcation analysis, see [2]. The friction-icdd vibra- (b) Radial displacemenmt
tions, occurring fore € [0V, 3.6V], are discussed in more detail
in the next section.

= stable
= = unstable

0.025

I
12 14 16 18 20

Figure 5. Bifurcation diagram of the model of the experimental set-up

when both torsional and lateral vibrations are present.
Friction-Induced Vibrations

The vibrations, observed far; € [0V, 3.6V], are induced
by friction. Such vibrations are analyzed in more detail 9h [
when the lower disc is fixed in lateral direction. The main
cause for lateral vibrations is the presence of the masatlanbte.
Moreover, it appears that this mass-unbalance also affeets
friction-induced torsional limit-cycling. Therefore, vanalyze
the influence of the level of mass-unbalance on the steadg-st
behaviour of the system fa € [0V, 4V].

Hereto, we add additional magsm at a distance ofl, =
0.1m from the center of the lower disc in the direction of the
already existing unbalance. Consequently, the parametens
and Jc of the estimated model (see page 3 and 4) are changed
and the new related parameters m , andJca are:

In Figure 7, bifurcation diagrams are shown for the esti-
mated system (light-grey line), fahm = 5kg (dark-grey line),
for Am = 50kg (black line). Of course, adding an additional
mass/Am = 50Kkg to the lower disc, with the estimated mass be-
ing m, = 9.9137Kkg, is practically impossible. However, we an-
alyze that case in order to observe the effect of additioresn
unbalance to the steady-state behaviour of the set-up.

Due to an additional mass-unbalance, the region (in terms ¢
the input voltage) where friction-induced torsional vitiwas ap-
pear, decreases (see Figure 7(a)). Namely, if the masdanaea
increases, the first fold and Hopf bifurcation points occur a
higher input voltages. Furthermore, the second fold and Hisp
furcation points occur at significantly lower input voltageom-
pare the fold bifurcation point&’ and E”, and the Hopf bi-

o — me+daAm furcations atC’ andC” in Figure 7(a)). Therefore, the region
AT TmrAm (8) in which the torsional friction-induced vibrations can ocgs
Ma =My +Am, Joa = Jc+diAm. smaller when the mass unbalance is increased. In Figure 8 w

6 Copyright (© 2007 by ASME
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(b) Radial displacememt

Figure 6. Bifurcation diagram as in Figure 5 for low input voltages.

present the position of the first and the second Hopf bifionat
for various levels of the added mass-unbalance, i.e. we ghew
region in which unstable equilibria occur for variatisn and for

uc € [0V, 5V]. This figure clearly displays the influence of the
level of mass unbalance on friction induced instabilitiegar-
sional direction.

From Figure 7(b) it can be concluded that when the mass-
unbalance increases, the amplitude of lateral vibratiooieases
both for the input voltages where torsional vibrations @ccu T 1/
(compare periodic brangh}, with periodic branchep’,, py,, P5.
andpj, in Figure 7(b)) and where no torsional vibrations appear

(compare equilibrium branches ande), in the same figure). Figure 7. Bifurcation diagrams for various levels of mass-unbalance for
In Figure 7, we see that the periodic bramgh for Am= Uc € [0V, 5V].

5kg, splits to four branchep’,, pj,. P35 and pyy, for Am=

50kg. The periodic branches,, and pj. consists of torsional

vibrations with stick-slip, the branch}; represents torsional vi-

brations without stick-slip. The brangh}, represents torsional =

vibrations where the lower disc starts to rotate in the ojppas- %

rection during every period (i.e. miay ) < 0 in a limit-cycle on 4

Po)- .
The effect of the decrease of the friction-induced torsiona

vibrations when the mass-unbalance is increased can be ex- U et T

plained in the following way. When no mass-unbalance is rigure 8. The regions for which the equilibrium point of the system are

present at the lower disc, the range in which friction-iretlic

torsional vibrations can occur is determined by a subtlariz

between negative damping at lower velocities and viscaas fr

tion at higher velocities, see [2]. Namely, the energy rebea due to the negative damping in the friction characteristicthe

r [m]

(b) Radial displacememt

stable

unstable

locally asymptotically stable and unstable.
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lower disc is mainly transformed to kinetic energy at thedow
disc (i.e.wy) and to the potential energy in the low-stiffness string
(i.e. a) and torsional vibrations occur. When mass-unbalance is
present at the lower disc, then the energy released due tethe
ative damping is also transformed to the potential enerosedt

in the leaf springs and rods (i.e) and kinetic energy related
to the translational motion of the lower disc in lateral dtren.
Consequently, less energy is transformed to kinetic enefgy
the lower disc in torsional direction and torsional viboats de-
crease. In this respect it is important to notice that, when t
level of mass-unbalance is higher, the lateral vibratiocsdase
for angular velocities which are lower than the critical alag
velocity and, consequently, less energy can be transfotoled
netic energy of the disc in torsional direction. Hence, itoral
vibrations decrease further or they even disappear.

EXPERIMENTAL RESULTS
Validation of Steady-State Behaviour of the Set-Up

The predictive quality of the model (1) in steady state, with
the estimated parameters given on page 3 and 4, is of great in-
terest. Therefore, a constant voltage is applied at thet imfthe
DC motor of the set-up and each experiment lasted long enough
to guarantee that all transient effects have disappeared.

Using these experiments, the same type of bifurcation di-
agrams, as shown in Figure 5, are constructed experimgntall
However, due to limitations in the DC motor, the experimen-
tal bifurcation diagram is constructed by applying differeon-
stant input voltages in the limited voltage range= [0V, 5V].
When no torsional vibrations are observed, the mean value of
the recorded angular velocity and radial displacement ane-c
puted and the obtained data are plotted using the symiSol ”
Next, when torsional vibrations are observed at the lowsc,di
the mean values of local maxima and minima of the vibrations
are computed. Then, these experimentally obtained datdatre
ted using the symbold”. Experimental results, together with the
bifurcation diagram obtained by numerical analysis of thi-e
mated model, are shown in Figures 9(a) and 9(b). Furthermore
when torsional vibrations are observed in the set-up, thiege
time T of the vibrations is determined as well, see Figure 9(c).
The results, shown in Figure 9, illustrate the predictivelijy of
the obtained model.

Both in the numerical and the experimental bifurcation dia-
gram we recognize the regions which are also present when onl
torsional vibrations are possible in the set-up [2; 9]: ekétig re-
gion for very low input voltages, a region in which only tansal
vibrations (i.e. stable limit cycles) appear, a region irickttor-
sional vibrations (stable limit cycles) and a constant degue-
locity at the lower disc (stable equilibrium points) coéxend a
region in which no torsional vibrations can appear in stesidie.

For the input voltages. € [3V, 3.5V], we notice that the esti-
mated model is less accurate (see specifically Figure 9(tg.
reason for this fact is that some unmodelled dynamics iseptes

8

T T T T
without lateral vibrations
—— with lateral vibrations
= experimental equilibrium points
[| o experimental periodic solutions

i
©

[
o
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wy [rad/s]

(a) Angular velocitywy at the lower disc.

x10™ ?’ ‘
without lateral vibrations
—— with lateral vibrations
= experimental equilibrium points
O experimental periodic solutions

12H

10-

r[m]

I I I I I
25 3 35 4 45

U [V]

(b) Radial displacememtof the lower disc.

I
2

without lateral vibrations
—— with lateral vibrations
o experimental periodic solutions

2 3
Ue [V]
(c) Period time of the periodic solutions.

Figure 9. Comparison of the numerical and experimental bifurcation di-
agrams.

in the set-up such as: a position dependant friction at tverlo
disc, the presence of the sticking behaviour in lateralctioa
due to LVDT displacement sensors, see Figure 2 and anisotrop
characteristics of the lower part of the set-up in lateregation.

A detailed discussion on unmodelled dynamics in the sesup i

presented in [2].
Copyright (© 2007 by ASME
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Figure 10. Indication of disappearance of torsional vibrations when the
lower disc moves in lateral direction: experimental results for Uz = 3.7 V.

Disappearance of Torsional Vibrations

In Figure 9, with a light-grey line we show the bifurcation
diagram of the set-up when only torsional and no lateralasibr
tions are possible, i.e. whew andy-constraints are fixed. If we
compare that bifurcation diagram with the bifurcation déag
obtained when lateral vibrations are present in the setiagk{
grey line), we see that the second fold bifurcation point esov
towards lower velocities when mass-unbalance and latdyed-v
tions are present in the system (as predicted in the pregecis
tion). Namely, when the constraints are fixed the second fold
bifurcation point is observed far. € (3.9V, 4.0V) and when
the constraints are released the second fold bifurcatidmt s
observed fou; € (3.5V, 3.6V).

In order to show that torsional vibrations can really disap-
pear, for some voltages, due to the existence of laterabhvibr
tions, the following experiment is performed. We fix the con-
straints, apply a constant input voltage gf= 3.7V and wait
long enough to obtain torsional stick-slip vibrations (§égure
10). Then, at time instarif we release the constraints and the
lower disc starts to vibrate in lateral direction. After ailghthe
torsional vibrations disappear even though at time instawe
tried to induce those vibrations manually, by stopping tveer
disc for a very short time in torsional direction. Finallyhen
we fix again the constraints and stop the lower disc manually
(time instantts in Figure 10), the system continues with stick-
slip vibrations. This experiment provides additional @ride for
the fact that torsional vibrations can indeed disappeartaltiee
presence of lateral vibrations. In the next section, thisctfis
evidenced quantitatively in both experiments and simoitesti

Bifurcation Analysis for Various Levels of Mass-
Unbalance

In order to study the effect of mass-unbalance in experi-
ments, additional massesm = 0.6032kg orAm = 1.2152kg

following respective distancet :

da = 10.85 cm for Am= 0.6032kg and

dan =8.98 cm for Am=1.2152kg ©)

For both levels of mass-unbalance, model (1), (8) with param
ter estimates presented as on page 3 and 4 and equation (9)
model is validated. Hereto, we construct numerical and xpe
mental bifurcation diagrams when various constant vokage
applied at the input of the DC motor. The obtained diagrams
are shown in Figure 11. The comparison between the respons
of the experimental set-up and estimated model indicates th
good quality of the obtained parameters for both levels cdgna
unbalance. From those bifurcation diagrams, one can once mo
conclude that due to an additional mass-unbalance therregio
in which friction-induced torsional vibrations occur (deigure
11(a)), reduces. Namely, fakm= 0.6032 kg the second fold bi-
furcation point occurs betwee = 3.2V andu; = 3.3V, and for
Am=1.2152kg the fold bifurcation occurs betweepn= 3.1V
anduc = 3.2V.

CONCLUSIONS

The aim of this paper is to provide an improved understand
ing on the interaction between torsional and lateral vibresin
rotor systems with flexibility, mass-unbalance and drytioic
effects. For that purpose, we have analyzed an experimental
tor dynamic set-up, consisting of two discs interconnetiga@
low-stiffness string, in which torsional vibrations arelirced by
friction at the lower disc and lateral vibrations are indiibg the
presence of a mass-unbalance at the lower disc.

The dynamics of the set-up, described by differential inclu
sions (since the friction is modelled with a set-valued édaw),
is experimentally validated. With these differential ingibns we
successfully modelled equilibrium sets, isolated equidiland
stick-slip limit cycling phenomena (and the related siaprop-
erties) also observed in the set-up. We also observe a diseon
uous fold bifurcation both in simulations and experimeiste
that the experimental verification of such nonlinear pheaoan
which are explicitly due to the discontinuities in the systds
relatively rare in literature.

The influence of various levels of mass-unbalance to the
steady-state behaviour of the system is studied on a tlieore
cal, numerical and experimental level. Results on all keeh-
firm that if the level of mass-unbalance increases, the regio
in which friction-induced torsional vibrations occur, deases.
Moreover, numerical results show that if the mass-unba&lasic
high enough, the torsional vibrations can disappear dntire
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