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ABSTRACT
In this paper, we analyze the interaction between friction

induced vibrations and self-sustained lateral vibrationscaused by
mass-unbalance in an experimental rotor dynamic set-up. Tis
study is performed on the level of both numerical and expe
mental bifurcation analyses. The results show that a higherlevel
of mass-unbalance, which generally increases the lateral vibra-
tions, can have a stabilizing effect on the torsional dynamics,
i.e. friction-induced limit cycling can disappear. Moreover, the
analyses provide insight in the fundamental mechanisms causing
self-sustained oscillations in rotor systems with flexibility, mass-
unbalance and discontinuous friction which supports the design
of such flexible rotor systems.

INTRODUCTION
Rotating machinery such as turbines, pumps and fans a

important components in e.g. aircraft engines, power stations and
large flywheels in hybrid transmissions of cars. The behaviour of
these rotor-dynamic components can influence the performance
of the system as a whole. Namely, for certain ranges of the roa-
tional speed, such systems can exhibit various types of vibration
which can be so violent that they can cause significant dama
or be performance limiting factors. Causes for such behaviour
may vary from friction or fluid forces in the bearings in which
a shaft is borne and mass-unbalance in a rotor which can le

∗This work was done while working at the TU/e.
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to whirling motions to flexibilities present in a system. Con-
sequently, the dynamic behaviour of such systems can be very
complex (see e.g. [1–3]).

Krauter [4] has analyzed torsional vibrations in water lubri-
cated bearings and in [5–9] torsional vibrations in drill-string
systems have been analysed. In those papers, it is concluded
that torsional vibrations are caused by negative damping inthe
friction force in the bearings ([4]), the friction force at the con-
tact between the bit and the borehole rotor ([5–7]) and by the
friction force at the rotor ([8; 9]). Lateral vibrations induced by
mass-unbalance in rotor systems have been analyzed extensively
in [1; 2; 10; 11].

The interaction between torsional and lateral vibrations in
rotor systems is studied in [1–3; 12]. In various mechanicalsys-
tems it is noticed that the increase of the mass-unbalance can
have both stabilizing and destabilizing effects. In [1] and[2], a
simple disc with a mass-unbalance connected to a shaft, which
is elastic in both torsional and lateral direction, is considered. In
such systems, under certain conditions, instabilities canappear
if the unbalance increases. On the other hand, in [3; 12] the
behaviour of flexible rotor-bearing systems is analyzed andit is
concluded that the mass-unbalance can stabilize rotor systems.

In this paper, we focus on interaction between friction-
induced torsional vibrations in flexible mechanical systems and
lateral vibrations in rotor systems caused by a mass-unbalance.
When analyzing the friction-induced vibrations a discontinuous
Copyright c© 2007 by ASME



static model for the friction is used. The discontinuity will have
significant consequences for the analysis of the steady-state be-
haviour of the system. The occurrence, prediction and analysis
of limit-cycling behaviour (vibrations) in systems with disconti-
nuities is currently receiving wide attention see e.g. [6; 13–19].
However, most authors are studying such systems from a the
retical point of view. Therefore, the focus of this paper is on an
experimental study of such system.

In the next section, the rotor set-up is described and th
model is given. Subsequently, the system dynamics are an
lyzed. The focus of the analysis is on the steady-state behaviour
of the system. Herein, torsional vibrations, lateral vibrations and
the interaction between those vibrations in flexible rotor systems
with discontinuous friction are modelled and analyzed. As are-
sult of such analysis appropriate bifurcation diagrams arecon-
structed. This analysis is aiming at an improved understanding
of the cause of friction-induced limit cycling and effects of the
interaction between the torsional and lateral dynamics that influ-
ence this type of limit cycling. Next, we compare bifurcation
diagrams based on the estimated model to experimentally o
tained bifurcation diagrams. We also discuss the experimental
results obtained for various mass-unbalance levels. This paper is
finished with conclusions.

MODEL OF THE EXPERIMENTAL SET-UP
The experimental set-up consists of a power amplifier, a DC

motor, two rotational (upper and lower) discs, a low-stiffness
string and an additional brake applied to the lower disc, seeFig-
ure 1. The input voltageu is fed to the DC-motor via the power
amplifier. The motor is connected, via the gear box, to the up
per steel disc. The upper disc and the lower disc are connectd
through a low stiffness steel string. The lower disc can rotate
around its geometric center and is free to move in lateral direc-
tions.

In order to induce torsional vibrations at the lower disc, a
brake and a small oil-box (with ondina oil 68) with felt stripes
are fixed to the upper bearing housing of the lower part of th
set-up (see Figure 2). The brake produces a friction force exerted
on the brake disc. The brake contact material is bronze. The steel
brake disc is connected to the lower brass disc via a stiff shaft.
Lateral vibrations are induced by fixing an additional mass at the
lower brass disc (Figure 2). Consequently, a mass-unbalance is
introduced to the disc which leads to motions in the lateral plane
(whirl type motion). Tilting of the lower disc is avoided by means
of two constraints; one inx- and one iny-direction, see Figure 2
and [2].

The angular positions of the upper and lower disc (θu andθl ,
respectively in Figure 1(b)) are measured using incremental en-
coders. The angular velocities of both discs are obtained bynu-
merical differentiation of the angular positions and filtering the
resulting signals using a low-pass filter with a cut-off frequency
of 200rad/s (31.8Hz). The displacements of the geometric cen-
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ter of the lower disc inx- andy-directions are measured with two
LVDT (Linear Variable Differential Transformer) displacement
sensors. The displacement sensors measure, in fact, the displace-
ments of the rigid bodies of the constraints inx- andy-direction
which equal the displacements of the lower disc in those two di-
rections.

The Euler-Lagrange equations are used to construct an
eighth-dimensional model. The model of the set-up is derived
in the co-rotating coordinate frame which is fixed to the upper
disc as shown in Figure 3(b).

The dynamics of the set-up is independent of the angular
position of the discs (θu andθl ), but only depends on the differ-
enceα = θl − θu between these two angular positions, see Fig-
ure 3. Therefore, we replacėθu with ωu, θ̇l with ωl and after
performing some equivalent transformations to the obtained dy-
namic model, the following seventh-order system of differential
equations can be obtained:

Juω̇u−kθα+Tf u(ωu) = kmu, (1)

(mr +mt)ẍ−mreα̈ sin(α)− (mr +mt)ω̇uy−mreω̇usin(α)+bẋ
−2(mr +mt)ωuẏ−2mreωu α̇ cos(α)−mreα̇2cos(α)+kx
−(mr +mt)ω2

ux−bωuy−mreω2
ucos(α) = 0,

(mr +mt)ÿ+mreα̈ cos(α)+(mr +mt)ω̇ux+mreω̇ucos(α)+bẏ
+2(mr +mt)ωuẋ−2mreωuα̇ sin(α)−mreα̇2sin(α)+ky
−(mr +mt)ω2

uy+bωux−mreω2
usin(α) = 0,

−mr ẍesin(α)+mr ÿecos(α)+(mre2 +JC)(α̈+ ω̇u)+
mr ω̇ue(x cos(α)+y sin(α))+2mreẋωucos(α)+2mreẏωusin(α)
+Tf l (ωu + α̇)+mrxeω2

u sin(α)−mryeω2
ucos(α)+kθα = 0,

Tf u(ωu) ∈

{

Tcu(ωu)sgn(ωu) for ωu 6= 0,
[−Tsu+△Tsu, Tsu+△Tsu] for ωu = 0,

Tcu(ωu) = Tsu+△Tsusgn(ωu)+bu|ωu|+△buωu,

Tf l (ωl ) ∈

{

Tcl(ωl )sgn(ωl ) for ωl 6= 0,
[−Tsl, Tsl] for ωl = 0,

Tcl(ωl ) = Tcl +(Tsl −Tcl)e−|ωl /ωsl|
δsl +bl |ωl |,

whereωl = ωu+ α̇. In (1),Tf u(ωu) represents the friction torque
at the upper disc caused by friction in the bearings of the upper
disc and by the electro-magnetic effect in the DC-motor. Further-
more,Tf l (ωl ) is the friction torque at the lower disc comprising
the friction in the bearings of the lower disc and the friction in-
duced by the brake mechanism. The friction torquesTf u(ωu) and
Tf l (ωl ) are modelled using set-valued force laws. Consequently,
the model of the system represents a set of differential inclusions.

In order to analyze the dynamics of the experimental set-up,
we need to estimate the parameters in (1). Parameter estimation
is performed using a nonlinear least-squares technique. For the
sake of brevity, we only present the results here; see [2] forde-
tails on the identification procedure. In (1),Ju = 0.4765 kg m2,
Copyright c© 2007 by ASME
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Figure 1. Experimental set-up.
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Figure 2. The lower part of the experimental set-up.
JC = 0.0412 kg m2 represent the moments of inertia of the up-
per disc and lower discs, respectively, with respect to ther
centers of mass,km = 4.3228 N m/V is the motor constant,
Tsu+△Tsu and−Tsu+△Tsu are the maximum and minimum
value ofTf u(ωu) for ωu = 0 (with Tsu = 0.37975 N m,△Tsu =
−0.00575 Nm). Moreover,bu +△bu andbu−△bu are the vis-
cous friction coefficients for positive and negative velocity ωu

(with bu = 2.4245 kg m2/rad s and△bu =−0.0084 kg m2/rad s),
kθ = 0.0775 Nm/rad is the torsional stiffness coefficient,e =
3

i
0.00489 m is the distance between the center of mass of the
lower disc and its geometric center,mr = 9.9137 kg represents
the mass of all parts of the lower part of the set-up that can
rotate around the geometric center of the disc,mt = 3.3202 kg
represents the mass of all parts of the lower part of the set-up,
that do not rotate around the center of the disc but move in the
same (x or y) direction during motion of the lower disc (i.e. one
constraint, the brake, the oil box, the upper bearing housing,
the lower bearing housing and the encoder at the lower disc).
Copyright c© 2007 by ASME
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Figure 3. The rotor dynamic system.
Finally, k = 2974.25 N s/m is the bending stiffness coefficient
in lateral direction,b = 25 N s/m is the damping coefficient in
lateral direction,Tsl = 0.2781 N m is the static friction torque,
Tcl = 0.0473 N m the Coulomb friction torque,ωsl = 1.4302 rad/s
the Stribeck velocity andδsl = 2.0575 rad/s the Stribeck shape
parameter inTf l (ωl ) and bl = 0.0105 kg m2/rad s is the vis-
cous friction coefficient at the lower disc. The estimated friction
torques are shown in Figure 4. From (1) and Figure 4(b) it can
be seen that a negative damping is present at the friction torque
at the lower disc for low angular velocities.

ANALYSIS OF NONLINEAR DYNAMIC BEHAVIOUR
When both the upper and lower disc rotate with a constant

angular velocity, a forward whirling motion is performed bythe
lower disc (lateral vibrations) and this represents an equilibrium
point in the co-rotating coordinate frame. Moreover, when tor-
sional vibrations appear in the system, then such motion rep-
resents a periodic motion in the co-rotating coordinate frame.
Therefore, both equilibrium points (sets), limit cycles and the
related stability properties are analyzed.

Equilibria and Related Stability Analysis
In the equilibria, (ωu, α, x, y) = (ωeq, αeq, xeq, yeq) and

ω̇u = α̈ = α̇ = ẍ = ẋ = ÿ = ẏ = 0, for u = uc, with uc a con-
stant. Clearly,ωl = ωeq in equilibrium. According to (1), in an
equilibrium the following holds:

kmuc−Tf u(ωeq)−Tf l (ωeq)

−
be2m2

r ω5
eq

(mr +mt)2ω4
eq+b2ω2

eq−2k(mr +mt)ω2
eq+k2 = 0,

(2)
4

−0.5 0 0.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

ωu [rad/s]

T
fu

(ω
u
)

[N
m

]

(a) Friction torque at the upper part of the set-up.

−15 −10 −5 0 5 10 15

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

T
fl
(ω

l)
[N

m
]

ωl [rad/s]
(b) Friction torque at the lower part of the set-up.

Figure 4. Estimated friction models.
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αeq = −
Tf l (ωeq)

kθ

−
be2m2

r ω5
eq

kθ((mr +mt)2ω4
eq+b2ω2

eq−2k(mr +mt)ω2
eq+k2)

,
(3)

and

xeq = emrω2
eq

(k− (mr +mt)ω2
eq)cos(αeq)+bωeqsin(αeq)

(mr +mt)2ω4
eq+b2ω2

eq−2k(mr +mt)ω2
eq+k2 ,

yeq = emrω2
eq

(k− (mr +mt)ω2
eq)sin(αeq)−bωeqcos(αeq)

(mr +mt)2ω4
eq+b2ω2

eq−2k(mr +mt)ω2
eq+k2 .

(4)

Since friction torquesTf u(ωu) andTf l (ωl ) are modelled us-
ing set-valued friction models, (2) and (3) represent algebraic
inclusions and the following situations should be considered:
firstly, equilibria forωeq > 0, i.e. both the upper and the lowe
disc rotate with the same constant angular velocityωeq and,
secondly, equilibria forωeq = 0, i.e. both the upper and the
lower disc stand still. Forωeq > 0, Tf u(ωeq) = Tcu(ωeq) and
Tf l (ωeq) = Tcl(ωeq) (see (1)). Consequently, such an equilibrium
point satisfies the algebraic equations

km uc− (Tsu+△Tsu)− (bu +△bu)ωeq−Tcl(ωeq)

−
be2m2

r ω5
eq

(mr +mt)2ω4
eq+b2ω2

eq−2k(mr +mt)ω2
eq+k2 = 0,

αeq = −
Tcl(ωeq)

kθ

−
be2m2

r ω5
eq

kθ((mr +mt)2ω4
eq+b2ω2

eq−2k(mr +mt)ω2
eq+k2)

,

(5)

and (4). From (1), the first equation of (5) and due to the fact that
ωeq > 0, it can be concluded that the system has such an isola
equilibrium point when

uc > uE p :=
Tsu+△Tsu+Tsl

km
. (6)

For 0≤ uc ≤ uE p, an equilibrium set in whichωeq= xeq= yeq= 0
exists, see [2]. For the estimated parameters of the modele
system has auniqueisolated equilibrium foruc > uE p, see [2].

Since in the set-up both torsional and lateral vibrations a-
pear, we are interested in the angular velocityωl and radial dis-
placementr of the lower disc in steady state for different consta
input voltagesuc. Whenuc > uE p, ωl = ωu = ωeq in steady state
5
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can be obtained by solving the first equation in (5). The corre-
sponding radial displacement of the center of the lower disc(in

equilibrium)req =
√

x2
eq+y2

eq can be derived from (4) as:

req =
mreω2

eq
√

(mr +mt)2ω4
eq+b2ω2

eq−2k(mr +mt)ω2
eq+k2

, (7)

since(mr +mt)
2ω4

eq+b2ω2
eq−2k(mr +mt)ω2

eq+k2 > 0 for every
ωeq∈ R for the estimated parameters of the set-up.

In order to obtain local stability conditions for the isolated
equilibrium points (forωeq 6= 0), we can use Lyapunov’s indi-
rect method. The method can be only be applied whenωeq > 0
(i.e. condition (6) should be satisfied). Therefore, the model of
system (1) is linearized around the equilibrium point and the sta-
bility of the linear model is analyzed. The results of such analysis
are shown in the sequel.

Bifurcation Diagram (Nominal Case)
Since in the set-up both torsional and lateral vibrations ap-

pear, we are interested in the angular velocityωl and radial dis-
placementr of the lower disc in steady-state for different con-
stant input voltagesuc. More specifically, two bifurcation dia-
grams (forωl andr) are constructed, withuc as a bifurcation pa-
rameter for the estimated parameters given on page 3 and 4. The
equilibria are discussed in the previous section. Limit cycles are
obtained numerically using a path following technique in combi-
nation with a shooting method [20]. Herein, the so-called switch
model [18] is used to properly deal with the discontinuitiesin the
dynamics, related to the set-valued nature of the friction models.

The results of an extensive bifurcation analysis are shown in
the bifurcation diagrams in Figures 5 and 6. In those figures,the
maximal and minimal values ofωl andr are plotted when a limit
cycle is found. The Floquet multipliers, corresponding to these
limit cycles, are computed numerically and used to determine the
local stability properties of these limit cycles.

For 0< uc ≤ uE p, with uE p given by (6) (pointA in Figure
6), the system in steady state is in the stick phase, i.e. the system
has a locally asymptotically stable equilibrium set (equilibrium
branche1 in Figure 6), see [2] for a detailed stability argument.

For uc = uE p (point A in the bifurcation diagrams) the lo-
cally asymptotically stable equilibrium set reduces to a locally
asymptotically stable isolated equilibrium point and no change
of stability properties occurs. The system has a unique equi-
librium point for uc > uE p. Moreover, a locally asymptotically
stable equilibrium branche2 appears (Figure 6), for whichωeq

andreq increase for increasinguc.
From bifurcation pointB an unstable equilibrium branche3

and an unstable periodic branchp1 arise (see Figure 6). At that
point a pair of complex conjugate eigenvalues, related to the lin-
earisation of (1) around the equilibrium point, cross the imagi-
Copyright c© 2007 by ASME



nary axis. Therefore, a smooth subcritical Hopf bifurcation oc-
curs at pointB.

The unstable periodic branchp1 occurs for input voltages
smaller than the input voltage at pointB. The branchp1 is con-
nected to a locally stable periodic branchp2 at the pointD (uc

at pointD is smaller thanuc at the pointB), which represents
a discontinuous fold bifurcation point, since the periodicbranch
p2 consists of stable limit cycles which represent torsional vi-
brations with stick-slip (see Figure 6(a)). Moreover, a Floquet
multiplier crosses through the point +1 in the complex plane.

For some higher constant input voltageuc (pointE in Figure
5) the locally stable periodic branchp2 loses stability and an un-
stable periodic branch appears (periodic branchp3 in Figure 5)
through another discontinuous fold bifurcation (pointE in Figure
5).

The unstable periodic branchp3 is connected to the unstable
equilibrium branche3 and the stable equilibrium branche4 in the
smooth subcritical Hopf bifurcation pointC.

For input voltagesuc higher than that at pointE, the asymp-
totically stable equilibrium branch continues. For increasinguc

the steady-state velocity at the lower discωl increases. Note that
for such high angular velocities, viscous friction is dominant in
the friction at the lower disc (see the estimated friction torque
Tf l (ωl ) in Figure 4(b)), which induces the local stability of the
equilibrium branche4.

The bifurcation diagram shown in Figure 5 also shows vari-
ous branches of steady-state solutions for input voltagesuc > 5V,
which is in fact outside the working region of the experimental
set-up. However, a rich variety of interesting qualitativechanges
in the dynamic behaviour can appear for those voltages; for a
detailed bifurcation analysis, see [2]. The friction-induced vibra-
tions, occurring foruc ∈ [0V, 3.6V], are discussed in more detail
in the next section.

Friction-Induced Vibrations
The vibrations, observed foruc ∈ [0V, 3.6V], are induced

by friction. Such vibrations are analyzed in more detail in [9]
when the lower disc is fixed in lateral direction. The main
cause for lateral vibrations is the presence of the mass-unbalance.
Moreover, it appears that this mass-unbalance also affectsthe
friction-induced torsional limit-cycling. Therefore, weanalyze
the influence of the level of mass-unbalance on the steady-state
behaviour of the system foruc ∈ [0V, 4V].

Hereto, we add additional mass△m at a distance ofd△ =
0.1m from the center of the lower disc in the direction of the
already existing unbalance. Consequently, the parameterse, mr

andJC of the estimated model (see page 3 and 4) are changed
and the new related parameterse△, mr△ andJC△ are:

e△ =
mre+d△△m

mr +△m
,

m = m +△m, J = J +d2 △m.
(8)
r△ r C△ C △
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Figure 5. Bifurcation diagram of the model of the experimental set-up

when both torsional and lateral vibrations are present.

In Figure 7, bifurcation diagrams are shown for the esti-
mated system (light-grey line), for△m= 5kg (dark-grey line),
for △m = 50kg (black line). Of course, adding an additional
mass△m= 50kg to the lower disc, with the estimated mass be-
ing mr = 9.9137kg, is practically impossible. However, we an-
alyze that case in order to observe the effect of additional mass-
unbalance to the steady-state behaviour of the set-up.

Due to an additional mass-unbalance, the region (in terms of
the input voltage) where friction-induced torsional vibrations ap-
pear, decreases (see Figure 7(a)). Namely, if the mass-unbalance
increases, the first fold and Hopf bifurcation points occur at
higher input voltages. Furthermore, the second fold and Hopf bi-
furcation points occur at significantly lower input voltages (com-
pare the fold bifurcation pointsE′ and E′′, and the Hopf bi-
furcations atC′ andC′′ in Figure 7(a)). Therefore, the region
in which the torsional friction-induced vibrations can occur is
smaller when the mass unbalance is increased. In Figure 8 we
Copyright c© 2007 by ASME
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Figure 6. Bifurcation diagram as in Figure 5 for low input voltages.

present the position of the first and the second Hopf bifurcations
for various levels of the added mass-unbalance, i.e. we showthe
region in which unstable equilibria occur for various△mand for
uc ∈ [0V, 5V]. This figure clearly displays the influence of the
level of mass unbalance on friction induced instabilities in tor-
sional direction.

From Figure 7(b) it can be concluded that when the mass
unbalance increases, the amplitude of lateral vibrations increases
both for the input voltages where torsional vibrations occur
(compare periodic branchp′2 with periodic branchesp′′2a, p′′2b, p′′2c
andp′′2d in Figure 7(b)) and where no torsional vibrations appear
(compare equilibrium branchese′4 ande′′4 in the same figure).

In Figure 7, we see that the periodic branchp′2, for △m=
5kg, splits to four branchesp′′2a, p′′2b, p′′2c and p′′2d, for △m =
50kg. The periodic branchesp′′2a and p′′2c consists of torsional
vibrations with stick-slip, the branchp′′2d represents torsional vi-
brations without stick-slip. The branchp′′2b represents torsional
vibrations where the lower disc starts to rotate in the opposite di-
rection during every period (i.e. min(ωl ) < 0 in a limit-cycle on
p′′2b).

The effect of the decrease of the friction-induced torsional
vibrations when the mass-unbalance is increased can be e
plained in the following way. When no mass-unbalance is
present at the lower disc, the range in which friction-induced
torsional vibrations can occur is determined by a subtle balance
between negative damping at lower velocities and viscous fric-
tion at higher velocities, see [2]. Namely, the energy released
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Figure 7. Bifurcation diagrams for various levels of mass-unbalance for

uc ∈ [0V, 5V].
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due to the negative damping in the friction characteristicsat the
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lower disc is mainly transformed to kinetic energy at the loer
disc (i.e.ωl ) and to the potential energy in the low-stiffness str
(i.e. α) and torsional vibrations occur. When mass-unbalanc
present at the lower disc, then the energy released due to thneg-
ative damping is also transformed to the potential energy stored
in the leaf springs and rods (i.e.r) and kinetic energy relate
to the translational motion of the lower disc in lateral direction.
Consequently, less energy is transformed to kinetic energof
the lower disc in torsional direction and torsional vibrations de-
crease. In this respect it is important to notice that, whenhe
level of mass-unbalance is higher, the lateral vibrations increase
for angular velocities which are lower than the critical angular
velocity and, consequently, less energy can be transformedto ki-
netic energy of the disc in torsional direction. Hence, torsional
vibrations decrease further or they even disappear.

EXPERIMENTAL RESULTS
Validation of Steady-State Behaviour of the Set-Up

The predictive quality of the model (1) in steady state, w
the estimated parameters given on page 3 and 4, is of gre
terest. Therefore, a constant voltage is applied at the input of the
DC motor of the set-up and each experiment lasted long en
to guarantee that all transient effects have disappeared.

Using these experiments, the same type of bifurcation
agrams, as shown in Figure 5, are constructed experimeny.
However, due to limitations in the DC motor, the experim
tal bifurcation diagram is constructed by applying different con-
stant input voltages in the limited voltage rangeuc ∈ [0V, 5V].
When no torsional vibrations are observed, the mean valu
the recorded angular velocity and radial displacement areom-
puted and the obtained data are plotted using the symbolx”.
Next, when torsional vibrations are observed at the lower dsc,
the mean values of local maxima and minima of the vibrat
are computed. Then, these experimentally obtained data areplot-
ted using the symbol ”o”. Experimental results, together with th
bifurcation diagram obtained by numerical analysis of the esti-
mated model, are shown in Figures 9(a) and 9(b). Furtherm,
when torsional vibrations are observed in the set-up, the period
time T of the vibrations is determined as well, see Figure 9
The results, shown in Figure 9, illustrate the predictive quality of
the obtained model.

Both in the numerical and the experimental bifurcation d
gram we recognize the regions which are also present wheny
torsional vibrations are possible in the set-up [2; 9]: a sticking re-
gion for very low input voltages, a region in which only torsional
vibrations (i.e. stable limit cycles) appear, a region in which tor-
sional vibrations (stable limit cycles) and a constant angular ve-
locity at the lower disc (stable equilibrium points) coexist, and a
region in which no torsional vibrations can appear in steadystate.
For the input voltagesuc ∈ [3V, 3.5V], we notice that the est
mated model is less accurate (see specifically Figure 9(b)).The
reason for this fact is that some unmodelled dynamics is preent
w
ing
e is

e

d

y

t

ith
at in-

ough

di-
tall
en-

e of
c
”
i

ions

e

ore

(c).

ia-
onl

i-

s

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

2

4

6

8

10

12

14

16

18 without lateral vibrations
with lateral vibrations
experimental equilibrium points
experimental periodic solutions

•

•

•

uc [V]

ω
l
[r

ad
/s

]

e1

e3

e4
p2

p2

p3

p3

E

E

C

(a) Angular velocityωl at the lower disc.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

2

4

6

8

10

12
without lateral vibrations
with lateral vibrations
experimental equilibrium points
experimental periodic solutions

•

•

•

uc [V]

×10−3

r
[m

]

e1

e3

e4

p2

p2

p3

E

E
C

(b) Radial displacementr of the lower disc.

0 1 2 3 4 5
0

5

10

15

20

25
without lateral vibrations
with lateral vibrations
experimental periodic solutions

•••

uc [V]

T
[s

]

p1

p2

p3A EC

(c) Period time of the periodic solutions.

Figure 9. Comparison of the numerical and experimental bifurcation di-

agrams.

in the set-up such as: a position dependant friction at the lower
disc, the presence of the sticking behaviour in lateral direction
due to LVDT displacement sensors, see Figure 2 and anisotropic
characteristics of the lower part of the set-up in lateral direction.
A detailed discussion on unmodelled dynamics in the set-up is
presented in [2].
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lower disc moves in lateral direction: experimental results for uc = 3.7V.

Disappearance of Torsional Vibrations

In Figure 9, with a light-grey line we show the bifurcation
diagram of the set-up when only torsional and no lateral vibra-
tions are possible, i.e. whenx- andy-constraints are fixed. If we
compare that bifurcation diagram with the bifurcation diagram
obtained when lateral vibrations are present in the set-up (dark-
grey line), we see that the second fold bifurcation point moves
towards lower velocities when mass-unbalance and lateral vibra-
tions are present in the system (as predicted in the previoussec-
tion). Namely, when the constraints are fixed the second fo
bifurcation point is observed foruc ∈ (3.9V, 4.0V) and when
the constraints are released the second fold bifurcation point is
observed foruc ∈ (3.5V, 3.6V).

In order to show that torsional vibrations can really disap
pear, for some voltages, due to the existence of lateral vibra-
tions, the following experiment is performed. We fix the con
straints, apply a constant input voltage ofuc = 3.7V and wait
long enough to obtain torsional stick-slip vibrations (seeFigure
10). Then, at time instantt1 we release the constraints and the
lower disc starts to vibrate in lateral direction. After a while, the
torsional vibrations disappear even though at time instantt2 we
tried to induce those vibrations manually, by stopping the lower
disc for a very short time in torsional direction. Finally, when
we fix again the constraints and stop the lower disc manual
(time instantt3 in Figure 10), the system continues with stick-
slip vibrations. This experiment provides additional evidence for
the fact that torsional vibrations can indeed disappear dueto the
presence of lateral vibrations. In the next section, this effect is
evidenced quantitatively in both experiments and simulations.

Bifurcation Analysis for Various Levels of Mass-
Unbalance

In order to study the effect of mass-unbalance in exper
ments, additional masses△m = 0.6032kg or△m = 1.2152kg
are added to the existing mass-unbalance (see Figure 2) ate

9

d

y

-

h

following respective distancesd△:

d△ = 10.85 cm for △m= 0.6032kg, and
d△ = 8.98 cm for △m= 1.2152kg.

(9)

For both levels of mass-unbalance, model (1), (8) with parame-
ter estimates presented as on page 3 and 4 and equation (9) the
model is validated. Hereto, we construct numerical and experi-
mental bifurcation diagrams when various constant voltages are
applied at the input of the DC motor. The obtained diagrams
are shown in Figure 11. The comparison between the responses
of the experimental set-up and estimated model indicates the
good quality of the obtained parameters for both levels of mass-
unbalance. From those bifurcation diagrams, one can once more
conclude that due to an additional mass-unbalance the region,
in which friction-induced torsional vibrations occur (seeFigure
11(a)), reduces. Namely, for△m= 0.6032kg the second fold bi-
furcation point occurs betweenuc = 3.2V anduc = 3.3V, and for
△m= 1.2152kg the fold bifurcation occurs betweenuc = 3.1V
anduc = 3.2V.

CONCLUSIONS
The aim of this paper is to provide an improved understand-

ing on the interaction between torsional and lateral vibrations in
rotor systems with flexibility, mass-unbalance and dry friction
effects. For that purpose, we have analyzed an experimentalro-
tor dynamic set-up, consisting of two discs interconnectedby a
low-stiffness string, in which torsional vibrations are induced by
friction at the lower disc and lateral vibrations are induced by the
presence of a mass-unbalance at the lower disc.

The dynamics of the set-up, described by differential inclu-
sions (since the friction is modelled with a set-valued force law),
is experimentally validated. With these differential inclusions we
successfully modelled equilibrium sets, isolated equilibria and
stick-slip limit cycling phenomena (and the related stability prop-
erties) also observed in the set-up. We also observe a discontin-
uous fold bifurcation both in simulations and experiments.Note
that the experimental verification of such nonlinear phenomena,
which are explicitly due to the discontinuities in the system, is
relatively rare in literature.

The influence of various levels of mass-unbalance to the
steady-state behaviour of the system is studied on a theoreti-
cal, numerical and experimental level. Results on all levels con-
firm that if the level of mass-unbalance increases, the region,
in which friction-induced torsional vibrations occur, decreases.
Moreover, numerical results show that if the mass-unbalance is
high enough, the torsional vibrations can disappear entirely.
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