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1 Introductino

This paper is concerned with the modelling of drilling systems, involving both the drill string
and the cutting process at the bit, towards the goal of analyzing how drilling parameters affect
Rate of Penetration (ROP) and stick-slip vibrations. We consider a distributed drill-string and
bit-rock interaction model capable of replicating axial and torsional stick-slip as caused by the
regenerative effect. We discuss the recent idea that axial stick-slip contributes to higher ROP for
a given average hook-load (surface weight on bit). Finally, the model is used to create torsional
stability maps.

2 Dimensionless model formulation

We will use a non-dimensional system model so as to express the model by the smallest number
of dimensionless parameters derived from the characteristic quantities of the physical system.
The detailed model derivation is given in [1].

2.1 Dimensionless PDE model

The model uses the independent spatial and time variables t̄, x̄, and the systems dynamics are
described as follows. The cut profile, Λ, see Fig. 1, is described by the transport equation [2]

∂Λ(t̄, θ)

∂t̄
+ Ωb(t̄)

∂Λ(t̄, θ)

∂θ
= Vb(t̄), (1)

where

Λ(t̄, θ = 0) = 0, D(t̄) = Λ(t̄, 1), (2)

where D(t̄) is the depth of cut, and Ωb(t̄), Vb(t̄) are the angular and axial velocity of the bit.
This is used to express the weight- and torque-on-bit, Wb, Tb, as follows:

Wb(t̄) =
Ka

c̄
D(t̄) +Wfg(Vb), (3)

Tb(t̄) = D(t̄) + βWfg(Vb), (4)

1



where Ka is the axial loop-gain [3]. The second term in (3) denotes the wearflat force component
where Wf is the normal force that must be overcome before axial cutting is initiated, while the
non-linear function g(vb) (colloquially referred to as the g(·) non-linearity) is a set-valued map
described as (following the description of [4]):

g(Vb) =
1− Sign(Vb)

2
=


0, Vb < 0

[0, 1], Vb = 0

1, Vb > 0

, (5)

where Sign(·) is the set-valued sign function.
Note the definition of β in (4), which is called the bit-rock interaction number in [5]. β

relates the magnitude of changes in the axial wearflat force to changes in the wearflat torque.
That is, a large β means that activation of the g(·) nonlinearity in (4) has a large effect on
the torque on bit. Consequently, it determines to what degree the wearflat forces influence the
torsional dynamics (and the potential occurrence of stick-slip oscillations). The dimensionless
axial drill-string dynamics, force, W , and axial velocity, V , are given by

∂W (t̄, x̄)

∂t̄
+
∂V (t̄, x̄)

∂x̄
= 0 (6)

∂V (t̄, x̄)

∂t̄
+ c̄2∂W (t̄, x̄)

∂x̄
= −k̄aV (t, x), (7)

where k̄a is a linear damping coefficient. The axial boundaryt conditions are

W (t̄, x̄ = L) = Wb(t̄), (8)

while at the topside we use either (9) or (10):

V (t̄, x̄ = 0) = V0 (9)

W (t̄, x̄ = 0) = W0, (10)

reflecting an imposed axial velocity (rate of penetration), V0, or imposed axial force (hook-
load), W0, boundary condition, respectively. The dimensionless torsional drill-string dynamics,
torque, T , and angular velocity, Ω, are given by

∂T (t̄, x̄)

∂t̄
+
∂Ω(t̄, x̄)

∂x̄
= 0 (11)

∂Ω(t̄, x̄)

∂t̄
+
∂T (t̄, x̄)

∂x̄
= −k̄tω(t, x), (12)

with the linear damping coefficient k̄t and with topside and downhole boundary conditions,
respectively, given by

Ω(t̄, x̄ = 0) = Ω0 (13)

T (t̄, x̄ = L) = Tb(t̄), (14)

where Tb(t̄) is given by (4).
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3 Linearized model description in the Laplace domain

In this section, we state the model description in the Laplace domain which corresponds to the
dimensionless model formulation from Section 2. This is the same description as used in [1, 3, 6].
To obtain the Laplace domain model description, we cast the model in perturbation variables,
and employ a linearization of the bit rock interaction model in (3),(4). We let the superscripts
‘overbar’ and ‘tilde’ denote the steady-state solution and the deviation from this steady-state
solution, respectively, for a given variable.

3.1 Drill-string dynamics

Using the Laplace variable s ∈ C as the argument to indicate variables in the Laplace domain,
we have, for the torsional drill-string dynamics:

Ω̃b

T̃b
(s) = −gt(s), gt(s) =

tanh
(
s
√

1 + k̄t
s

)
√

1 + k̄t
s

, (15)

Note that the Laplace transform is performed from the time-domain to the s-domain. Similarly,
for the axial dynamics, we have

Ṽb

W̃b

(s) = −c̄ga(s), (16)

where the transfer function ga(s) depends on the topside boundary condition (BC):

ga(s) =


tanh

(
s
c̄

√
1+ k̄a

s

)
√

1+ k̄a
s

, for BC (9).

1√
1+ k̄a

s
tanh

(
s
c̄

√
1+ k̄a

s

) , for BC (10).
(17)

Here we recall that BC (9) corresponds to constant imposed topside axial velocity, while BC
(10) corresponds to constant hook-load.

3.2 Bit rock interaction law

Let the superscripts ‘overbar’ and ‘tilde’ denote the steady-state solution and the deviation from
this steady-state solution, respectively, for a given variable. E.g., for the depth of cut profile we
have Λ̃(θ, t̄) = Λ(θ, t̄)− Λ̄(θ).

Linearizing (1) around the steady-state profile Λ̄(θ) we obtain

∂Λ̃(t̄, θ)

∂t̄
+

(
Ω̃b(t̄)

∂Λ̄(θ)

∂θ
+ Ω̄

∂Λ̃(t, θ)

∂θ

)
= Ṽb(t̄). (18)

The steady-state gradient of Λ̄(θ) is given by the steady-state velocities Ω̄, V̄ as follows:

∂Λ̄(θ)

∂θ
=
V̄

Ω̄
. (19)
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Taking the Laplace transform of (18) while using (19), we obtain

Λ̃(s, θ)s+

(
Ω̃b(s)

V̄

Ω̄
+ Ω̄

∂Λ̃(s, θ)

∂θ

)
= Ṽb(s). (20)

Hence, we obtain

∂Λ̃(s, θ)

∂θ
=

1

Ω̄

(
Ṽb(s)− Λ̃(s, θ)s− Ω̃b(s)

V̄

Ω̄

)
, (21)

Λ̃(s, 0) = 0. (22)

Note that (21) is a linear ODE in θ with initial condition (22), which we can solve to obtain

Λ̃(s, θ) = C1e−θs/Ω̄ +
1

s

(
Ṽb(s)− Ω̃b(s)

V̄

Ω̄

)
, (23)

where C1 is an integration constant. Enforcing (22) helps to find this integration constant and
hence the solution in (23):

Λ̃(s, 0) = C1 +
1

s

(
Ṽb(s)− Ω̃b(s)

V̄

Ω̄

)
= 0 (24)

=⇒ C1 = −1

s

(
Ṽb(s)− Ω̃b(s)

V̄

Ω̄

)
. (25)

Then we find the Laplace transformed linearized depth of cut as

D̃(s) = Λ̃(s, 1) =
1

s

(
Ṽb(s)− Ω̃b(s)

V̄

Ω̄

)(
1− e−s/Ω̄

)
, (26)

and from (3), (4) (noting that the g(·) nonlinearities disappear in the linearized perturbation
variables) we obtain:

W̃b(s) =
Ka

c̄
D̃(s), T̃b(s) = D̃(s), (27)

which is consistent with the expressions used in [6, 7, 8, 9].

3.3 Characteristic function

Combining (15), (16) and (26), (27), we obtain the feedback loop generated by the regenerative
effect of the rock-cutting process interacting with the drill-string dynamics, see Fig. 2. The
stability of this loop can be determined by applying the Nyquist criterion to the characteristic
equation [6]:

0 = G(s) + 1 (28)

G(s) = Ga(s) +Gt(s) (29)

Ga(s) = ga(s)
Ka

s

(
1− e−s/Ω0

)
(30)

Gt(s) = −gt(s)
Kt

s

(
1− e−s/Ω0

)
, (31)
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Figure 1: Downhole bit-rock interaction,
from [10, 9].
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Figure 2: Block diagram of the system.

where key quantities are the axial and torsional loop gain parameters, Ka,Kt. The Nyquist
criterion predicts instability if the Nyquist contour of the characteristic function G(s) encircles

−1. Note that the torsional loop gain Kt = V̄
Ω̄

is dependent on the steady-state axial velocity
V̄ .

We refer to [6, 3] for details on this kind of analysis. In that analysis it is confirmed that
the “well known” approaches of increasing damping (at the top-drive or in the domain) and
increasing angular velocity both have a stabilizing effects in terms of linear stability. It is
also found that of a low-order lumped-parameter model approach has limitations in evaluating
stability.

Finally, in particular for the axial dynamics, achieving stability can be difficult to achieve
in practice due to the restrictions on RPM and the difficulty of having sufficient damping in
practice. Hence, in practice drilling is usually performed with unstbale axial dynamics and the
resulting axial limit-cycle. Hence it is necessary to analyse the resulting behavior by simulating
the non-local dynamics.

4 Global Dynamics of the Coupled Axial-Torsional System

In this section, we perform a simulation study of the full coupled model given in Section 2.1.

4.1 Characteristic quantities and simulation setup

Recall that the non-dimensional weight on bit depends on the depth-of-cut D and the g(·)
non-linearity as follows:

Wb(t̄) =
Ka

c̄
D(t̄) +Wfg(t̄), (32)

and the non-dimensional torque on bit as follows:

Tb(t̄) = D(t̄) + βWfg(t̄). (33)

We assume a typical value of the relative torsional wave velocity compared to the axial wave
velocity of c̄ = 1.6. Then, there are four remaining characteristic quantities for the torsional
and axial feedback loops:
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- Nominal axial velocity V0 or W0, for BC (9) and (10), respectively,

- Axial loop gain Ka,

- Pseudo reflection coefficients ηa = e−2 k̄a
c̄ , ηt = e−2k̄t .

Additionally, there are two characteristic quantities arising from the bit-rock interaction

- Angular top-drive velocity Ω0.

- β appearing in the torsional bit-rock interaction law, giving the effect of the g(·) non-
linearity on torque on bit, see (33).

Throughout this section, we fix the following parameters:

• β = 0.1,

• ηt = 0.7,

• ηa = ±0.7 for BC (9) and (10), respectively.

The three remaining characteristic quantities: Ω0,Ka, and V0 or W0, are considered within
representative ranges.

The model is initialized at the equilibrium and then subject to a 15 dimensionless time units
square wave added to the weight on bit to perturb the system away from the equilibrium. The
simulation is run for 120 time units, and then the existence and magnitude of the torsional
limit cycles, and averaged quantities are evaluated over the last 60 time units to assess the
steady-state behaviour of the drill-string dynamics.

4.2 Torsional stability, stick-slip occurrence

We introduce the metric

MT =
Ω0 −min

t̄
Ωb(t̄)

Ω0
, (34)

where MT = 1 indicates a limit cycle that involves torsional stick, i.e., a stick-slip limit cycle
and MT = 0 indicates a stable steady-state (constant torsional velocity) solution. A constant
imposed top-drive velocity is used.

Consider the case of Ka = 0, which implies that the linear torsional dynamics are uncou-
pled from the axial dynamics, i.e., the stability of the torsional dynamics is determined by the
torsional part of the characteristic equation

Gt(s) = −gt(s)
1

s

V̄

Ω̄

(
1− e−s/Ω0

)
, (35)

and the characteristic equation reduces to the torsional term, i.e. G(s) = Gt(s). The corre-
sponding stability map, for ηt = 0.70 and parametrized in imposed topside velocity V0, is shown
in Fig 3. We expect the non-local torsional dynamics to be dominated by the (non)-occurrence
of the torsional instability. This expectation is confirmed in simulations, the result of which is
illustrated in Fig. 3 0) and a) which shows the result of the Nyquist criteria evaluated in the
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Figure 3: The effect of the axial loop gain, Ka, on the stability of the torsional dynamics
where yellow indicates MT = 1, as given in (34), meaning a stick-slip limit cycle, and dark blue
indicates MT < 0.1 meaning stable torsional dynamics. 0) Torsional uncoupled dynamics of the
drill-string (i.e. Ka = 0), derived in the frequency domain using the Nyquist criterion [6]. The
other subplots are evaluates from simulations with a) Ka = 0, b) Ka = 10, c) Ka = 20, d)
Ka = 40.

frequency domain and the result of simulating the non-linear model. The occurrence of stick-
slip limit cycles in the model closely matches the existence of an unstable pole, as indicated by
the Nyquist stability criterion for the case of Ka = 0. This is a significant validation of the
numerical implementation of the distributed, non-linear model, as it indicates that the behavior
is consistent with the stability results of [3] and [6].

Having established the coherence between the previous analytical stability results and the
behavior of our simulation model, and, furthermore, established a baseline for behavior of the
uncoupled torsional dynamics, we now introduce the axial coupling by setting Ka > 0 and
evaluate the effect on the MT metric of (34). The effect of the axial loop gain Ka > 0 on the oc-
currence of stick-slip limit cycles is illustrated in Fig. 3 b) – d). The main conclusion from these
figures is that increasing the axial loop gain has a stabilizing effect on the torsional dynamics.
Furthermore, while some of the qualitative properties of the shape of the unstable region are
conserved (generally, increasing V0 has a destabilizing effect while increasing Ω0 has a stabiliz-
ing effect), the local stability analysis alone is clearly insufficient to evaluate the occurrence of
stick-slip oscillations: the greater Ka, the more dissimilar are the local and the nonlocal stability
maps. This is related to our final takeaway from this figure: the interaction between the axial
non-linear dynamics and the torsional ones results in a more complex topology of the stability
map than what is seen in the linear case, the uncoupled case or in the lumped parameter case
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[3]. In particular, we note the appearance of peninsulas of ‘stick-slip limit cycles’ along certain
RPMs (Ω0), see Fig. 3. These peninsulas seem to roughly remain along the same RPMs for
changing Ka, and indicate the counter-intuitive results that, in specific cases, stick-slip can be
avoided by reducing the RPM.

4.3 Constant hook-load

Next, we consider the case of constant imposed hook-load, that is using BC (10). For this case,
the equilibrium velocity will be dependent on the axial loop gain Ka.

To understand these stability maps, recall the torsional characteristic equation

Gt(s) = −gt(s)
1

s

V̄

Ω̄

(
1− e−s/Ω0

)
, (36)

where the torsional nominal loop gain, given by Kt = V̄
Ω̄

, is key for stability. Inserting the

expression for equilibrium ROP: V̄ = Ω0
W0−Wf

Ka
, we have

Kt ≈
c̄

Ka
(W0 −Wf ) , (37)

where the last approximation comes from noting that typically k̄a � Ka. That means that the
nominal torsional loop gain might be considered approximately independent of the top drive
velocity, Ω0, while inversely proportional to the axial loop gain Ka, and increasing with weight
on bit Wb −Wf . In Fig. 4, the stability boundary roughly follows along W0 −Wf = 10, 20, 40
for the cases W0−Wf = 10, 20, 40 given in a), b) and c), indicating that the stability boundary
lies around

W0 −Wf = Ka. (38)

We note that Ka = c̄aζεLEA N , where a is bit radius, ζ cutter sharpness, ε rock hardness and
E,A,L are drill-string elasticity, cross section and length.

4.4 Impact on ROP

Recal that V̄ is the equilibrium ROP, that is the ROP with stable dynamics no vibrations for a
given weight. We introduce the following metric to evaluate the averaged effect of vibrations on
ROP:

EV ≡
〈V0〉
V̄

=
〈V0〉
Ω0

Ka

W0 −Wf
, (39)

where EV = 1 when the system is stable, while axial and torsional vibrations can cause EV to
become larger or smaller than one, corresponding to a higher or lower drilling effiency compared
to the stable case. Imposing a constant hook-load, using BC (10), a higher EV = 1 corresponds
to a higher ROP (V0) for the given RPM and is considered desirable. EV obtained in simu-
lations are shown in Fig. 5. Here we see that EV > 1 can be obtained for certain parameter
configurations which seems to correspond to an axial instability and vibrations. This makes
sense when considering (32) as an axial limit-cycle can reduce work lost to the wearflat force,
thereby increasing the cutting component [11, 12, 13] We also see a founder-effect fot high WOB,
probably casused by stick-slip.
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Figure 4: Occurrence of stick-slip for imposed constant hook load. Yellow indicates MT = 1, as
given in (34), meaning a stick-slip limit cycle, and dark blue indicates MT < 0.1 meaning stable
torsional dynamics, with 0) Ka = 0, a) Ka = 10, b) Ka = 20, c) Ka = 40.
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Figure 5: Drilling efficiency parametrized in EV = V0
Ω0

Ka
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for: a) Ka = 10, b) Ka = 20, c)

Ka = 40. We see vibrational founder occurring for high WOB, probably casused by stick-slip.

5 Conclusion

In this paper, we have considered a distributed axial-torsional drill-string model with a rate-
independent bit-rock interaction law to study the occurrence of axial and torsional self-excited
vibrations as caused by the regenerative effect induced by the bit-rock interaction.

We find that The occurrence of torsional stick-slip roughly matches the stability predictions
of the linearized torsional loop and increasing the RPM, Ω0, and increasing the axial loop gain,
thus the severity of the axial instability, has a stabilizing effect on torsional dynamics. Based on
the simulation results, we proposed the stability heuristic that the stick-slip instability occurs
when the non-dimensional weight on bit, subtracted the wearflat component, is greater than
the axial loop gain. We also find that the axial vibrations can improve drilling efficiency, while
torsional vibrations (unsurprisingly) reduces efficiency.
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