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Abstract— There are many communication imperfections in
networked control systems (NCSs) such as varying delays,
varying transmission intervals, packet loss, communication
constraints and quantization effects. Most of the available
literature on NCSs focuses on only one of these aspects,
while ignoring the others. In this paper we present a general
framework that incorporates both communication constraints
(only one node accessing the network per transmission), varying
delays and varying transmission intervals. Based on a newly
developed NCS model including these three network phenom-
ena, we will provide an explicit (Lyapunov-based) procedure
to compute bounds on the maximally allowable transmission
interval (MATI) and the maximally allowable delay (MAD) that
guarantee stability of the NCS. The developed results lead to
tradeoff curves between MATI and MAD as will be illustrated
using a benchmark example.

Index Terms— Networked control systems, Lyapunov func-
tions, stability, delays, communication constraints, protocols.

I. I NTRODUCTION

Networked control systems (NCSs) have received consid-
erable attention in recent years. The interest for NCSs is
motivated by many benefits they offer such as the ease of
maintenance and installation, the greater flexibility and the
low cost. To harvest the advantages of wired and wireless
NCSs, control algorithms are needed that can deal with
network-induced imperfections and constraints.

Roughly speaking, the network-induced imperfections and
constraints can be categorized in five types:

(i) Quantization errors in the signals transmitted over the
network due to the finite word length of the packets;

(ii) Packet dropouts caused by the unreliability of the
network;

(iii) Variable sampling/transmission intervals;
(iv) Varying communication delays;
(v) Communication constraints caused by the sharing of the

network by multiple nodes and the fact that only one
node is allowed to transmit its packet per transmission.

It is well known that the presence of these network phe-
nomena can degrade the performance of the control loop
significantly and can even lead to instability, see e.g. [4]
for an illustrative example. Therefore, it is of importance
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to understand how these phenomena influence the closed-
loop stability and performance properties, preferably in a
quantitative manner. Unfortunately, much of the available
literature on NCSs considers only one or two of the above
mentioned types of network phenomena, while ignoring the
other types, see the overview papers [7], [11], [14], [15].
Studies that incorporate three of these imperfections are, for
instance, [9] (type (i), (iii), (v)), [3], [8] (type (ii), (iii), (iv))
and [10] (type (ii), (iii), (v)).

Another paper that studies three different types of network
imperfections is [2]. This paper studies NCSs involving
both variable delays, variable transmission intervals and
communication constraints, and uses a method for delay
compensation. For a particular control scheme, [2] provides
bounds on the tolerable delays and transmission intervals
such that stability of the NCS is guaranteed. Also in this
paper we will study NCSs corrupted by varying delays, vary-
ing transmission intervals and communication constraints,
while packet dropouts can be included as well by modelling
it as prolongations of the transmission intervals. In other
words, this paper considers networked-induced imperfections
of type (iii), (iv) and (v) (and indirectly (ii)). After devel-
oping a novel NCS model incorporating all these types of
network phenomena, we will present allowable bounds on
delays and transmission intervals guaranteeing stability of
the NCS. In contrast with [2], we consider the more basic
emulation approachin the spirit of [1], [10], [12], [13], which
encompasses no specific delay compensation schemes. The
work in [2] is of interest, as it aims at allowing larger delays
by including specific delay compensation schemes, at the
cost of sending larger control-packets and requiring time-
stamping of messages. The features of compensation and
time-stamping of messages are not needed in our framework.
Another distinction with [2] is related to the admissible
protocols that schedule which node is allowed to transmit
its packet at a transmission time. Our work applies for all
protocols satisfying the UGES property (see below for an
exact definition) and not only for so-calledinvariably UGES
protocols as needed in [2], which exclude the commonly used
Round-Robin (RR) protocol.

One of the main contributions of this paper is that we
construct tradeoff curves between the maximally allowable
transmission interval (MATI) and the maximally allowable
delay (MAD) while still guaranteeing stability of the NCS.
This construction is based on the standard delay-free condi-
tions as adopted in [1], [10], [12], [13]. The tradeoff curves
will depend on the specific communication protocol used,
thereby also allowing the comparison of different protocols.
This design methodology and the method to compute the
tradeoff curves will be demonstrated on a benchmark prob-
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II. N OTATIONAL CONVENTIONS

N will denote all nonnegative integers,R denotes the field
of all real numbers andR≥0 denotes all nonnegative reals.
By | · | and〈·, ·〉 we denote the Euclidean norm and the usual
inner product of real vectors, respectively. For a number of
real vectors(a1, . . . , aM ) with ai ∈ Rni , we denote the
column vector(a>1 . . . a>M )> obtained by stacking the vectors
ai, i = 1, . . . ,M on top of each other by(a1, . . . , aM ). For a
symmetric matrixA, λmax(A) denotes the largest eigenvalue
of A. By ∨ and ∧ we denote the logical ‘or’ and ‘and,’
respectively. A functionα : R≥0 → R≥0 is said to be of
classK if it is continuous, zero at zero and strictly increasing.
It is said to be of classK∞ if it is of class K and it is
unbounded. A functionβ : R≥0×R≥0 → R≥0 is said to be
of classKL if β(·, t) is of classK for eacht ≥ 0 andβ(s, ·)
is nonincreasing and satisfieslimt→∞ β(s, t) = 0 for each
s ≥ 0. A function β : R≥0 × R≥0 × R≥0 → R≥0 is said to
be of classKLL if, for each r ≥ 0, β(·, r, ·) and β(·, ·, r)
belong to classKL.

We recall now some definitions given in [5] that will be
used for developing a hybrid model of a NCS later.

Definition II.1 A compact hybrid time domainis a setD =⋃J−1
j=0 ([tj , tj+1], j) ⊂ R≥0×N with J ∈ N≥0 and0 = t0 ≤

t1 · · · ≤ tJ . A hybrid time domainis a setD ⊂ R≥0 ×N≥0

such thatD∩ ([0, T ]× {0, . . . , J}) is a compact hybrid time
domain for each(T, J) ∈ D. �

Definition II.2 A hybrid trajectory is a pair (domξ, ξ)
consisting of hybrid time domain domξ and a functionξ
defined on domξ that is absolutely continuous int on (dom
ξ) ∩ (R≥0 × {j}) for eachj ∈ N. �

Definition II.3 For the hybrid systemH given by the open
state spaceRn and the data(F,G, C,D), whereF : Rn →
Rn is continuous,G : Rn → Rn is locally bounded, andC
andD are subsets ofRn, a hybrid trajectory (domξ, ξ) with
ξ : dom ξ → Rn is a solution toH if

1) For all j ∈ N and for almost allt ∈ Ij := {t | (t, j) ∈
dom ξ}, we haveξ(t, j) ∈ C and ξ̇(t, j) = F (ξ(t, j)).

2) For all (t, j) ∈ dom ξ such that(t, j + 1) ∈ dom ξ, we
haveξ(t, j) ∈ D andξ(t, j + 1) = G(ξ(t, j)).

Hence, the hybrid systems that we consider are of the form:

ξ̇(t, j) = F (ξ(t, j)) ξ(t, j) ∈ C

ξ(tj+1, j + 1) = G(ξ(tj+1, j)) ξ(tj+1, j) ∈ D .

We sometimes omit the time arguments and write:

ξ̇ = F (ξ), whenξ ∈ C, ξ+ = G(ξ), whenξ ∈ D, (1)

where we denotedξ(tj+1, j + 1) asξ+.

III. NCS MODEL AND PROBLEM STATEMENT

In this section, we introduce the model that will be used
to describe NCSs including both communication constraints
as well as varying transmission intervals and transmission
delays. This model will form an extension of the NCS models
used before in [10] that were motivated by the work in
[13]. All these previous models did not include transmission
delays. We consider the continuous-time plant

ẋp = fp(xp, û), y = gp(xp) (2)

that is sampled. Here,xp ∈ Rnp denotes the state of the
plant, û ∈ Rnu denotes the most recent control values
available at the plant andy ∈ Rny is the output of the plant.
The controller is given by

ẋc = fc(xc, ŷ), u = gc(xc), (3)

where the variablexc ∈ Rnc is the state of the controller,
ŷ ∈ Rny is the most recent output measurement of the plant
that is available at the controller andu ∈ Rnu denotes the
control input. At timestsi

, i ∈ N, (parts of) the inputu at
the controller and/or the outputy at the plant are sampled
and transmitted over the network. The transmission times
satisfy 0 ≤ ts0 < ts1 < ts2 < . . . and there exists a
δ > 0 such that the transmission intervalstsi+1 − tsi satisfy
δ ≤ tsi+1 − tsi

≤ τmati for all i ∈ N, whereτmati denotes
the maximally allowable transmission interval (MATI). At
each transmission timetsi , i ∈ N, the protocol determines
which of the nodesj ∈ {1, 2, . . . , l} is granted access to the
network. Each node corresponds to a collection of sensors or
actuators. The sensors/actuators corresponding to the node,
which is granted access, collect their values iny(tsi

) or
u(tsi) that will be sent over the communication network.
They will arrive after a transmission delay ofτi time units
at the controller or actuator. This results in updates of the
corresponding entries in̂y or û at timestsi + τi, i ∈ N. The
situation described above is illustrated fory and ŷ in Fig. 1.
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Fig. 1. Illustration of a typical evolution ofy and ŷ.
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at tsi
+τi, wheree denotes the vector(ey, eu) with ey := ŷ−

y andeu := û−u. Hence,e ∈ Rne with ne = ny +nu. If the
NCS hasl nodes, then the error vectore can be partitioned as
e = (e1, e2, . . . , el). The functionshy andhu are now update
functions that are related to the protocol, but typically when
thej-th node gets access to the network at some transmission
time tsi we have that the corresponding part in the error
vector has a jump attsi

+ τi. In most situations, the jump
will actually be to zero, since we assume that the quantization
effects are negligible. For instance, whenyj is transmitted
at time tsi

, we have thathy,j(i, e(tsi
)) = 0. However, we

allow for more freedom in the protocols by allowing general
functionsh. See [10] for more details.

In between the updates of the values ofŷ and û, the
network is assumed to operate in a zero order hold (ZOH)
fashion, meaning that the values ofŷ and û remain constant
in between the updating timestsi

+ τi and tsi+1 + τi+1:

˙̂y = 0, ˙̂u = 0. (4)

To compute the resets ofe at the update times{tsi +
τi}i∈N, we proceed as follows:

ey((tsi + τi)+) = ŷ((tsi + τi)+)− y(tsi + τi)
= y(tsi) + hy(i, e(tsi))− y(tsi + τi)
= hy(i, e(tsi

)) + y(tsi
)− ŷ(tsi

)︸ ︷︷ ︸
−e(tsi

)

+

+ ŷ(tsi
+ τi)− y(tsi

+ τi)︸ ︷︷ ︸
e(tsi

+τi)

= hy(i, e(tsi
))− e(tsi

) + e(tsi
+ τi).

In the third equality we used that̂y(tsi) = ŷ(tsi +τi), which
holds due to the ZOH character of the network.

A similar derivation holds foreu, leading to the following
model for the NCS:

ẋ(t) = f(x(t), e(t))
ė(t) = g(x(t), e(t))

}
t ∈ [tsi

, tsi
+ τi) (5a)

e((tsi
+ τi)+) = h(i, e(tsi

))− e(tsi
) + e(tsi

+ τi), (5b)

where x = (xp, xc) ∈ Rnx with nx = np + nc, f , g are
appropriately defined functions depending onfp, gp, fc and
gc andh = (hy, hu). See [10] for the explicit expressions of
f andg.

Standing Assumption III.2 f and g are continuous andh
is locally bounded. �

Observe that the systeṁx = f(x, 0) is the closed-loop
system (2)-(3) without the network.

Problem III.3 Suppose that the controller (3) was designed
for the plant (2) rendering the closed-loop (2)-(3) (or equiv-
alently, ẋ = f(x, 0)) stable in some sense. Determine the
value of τmati and τmad so that the NCS given by (5) is
stable as well when the transmission intervals and delays
satisfy Standing Assumption III.1. �

IV. REFORMULATION IN A HYBRID SYSTEM FRAMEWORK

To facilitate the stability analysis, we transform the above
NCS model into the hybrid system framework as developed
in [5]. To do so, we introduce the auxiliary variabless ∈ Rn,
κ ∈ N , τ ∈ R≥0 and` ∈ {0, 1} to reformulate the model in
terms of flow equations and reset equations. The variables is
an auxiliary variable containing the memory in (5b) storing
the valueh(i, e(tsi))−e(tsi) for the update ofe at the update
instanttsi

+τi, κ is a counter keeping track of the number of
transmission,τ is a timer to constrain both the transmission
interval as well as the transmission delay and` is a Boolean
keeping track whether the next event is a transmission event
or an update event. To be precise, when` = 0 the next event
will be related to transmission and when` = 1 the next event
will be an update.

The hybrid systemHNCS is given by the flow equations

ẋ = f(x, e)
ė = g(x, e)
ṡ = 0
κ̇ = 0
τ̇ = 1
˙̀ = 0


(` = 0 ∧ τ ∈ [0, τmati])∨
∨(` = 1 ∧ τ ∈ [0, τmad])

(6)

and the reset equations are obtained by combining the “trans-
mission reset relations,” active at the transmission instants
{tsi

}i∈N, and the “update reset relations”, active at the update
instants{tsi + τi}i∈N, given by

(x+, e+, s+, τ+, κ+, `+) = G(x, e, s, τ, κ, `), when

(` = 0 ∧ τ ∈ [δ, τmati]) ∨ (` = 1 ∧ τ ∈ [0, τmad]) (7)

with G given by the transmission resets (when` = 0)

G(x, e, s, τ, κ, 0) = (x, e, h(κ, e)− e, 0, κ + 1, 1) (8)

and the update resets (when` = 1)

G(x, e, s, τ, κ, 1) = (x, s + e,−s− e, τ, κ, 0). (9)

Note that the choice fors+ when ` = 1 is irrelevant from
a modeling point of view. However, it was selected here as
s+ = −s− e, because it will simplify the analysis later (see
[6] for an explanation).

Definition IV.1 For the hybrid systemHNCS , the set given
by E := {(x, e, s, τ, κ, `) | x = 0, e = s = 0} is said to be
uniformly globally asymptotically stable(UGAS) if for each
0 < δ ≤ τmati there exists a functionβ ∈ KLL such that for
any initial conditionx(0, 0) ∈ Rnx , e(0, 0) ∈ Rne , s(0, 0) ∈
Rne , τ(0, 0) ∈ R≥0, κ(0, 0) ∈ N, `(0, 0) ∈ {0, 1} with1

(`(0, 0) = 0∧ τ(0, 0) ∈ [0, τmati])∨ (`(0, 0) = 1∧ τ(0, 0) ∈
[0, τmad]), all corresponding solutions satisfy∣∣∣∣∣∣

 x(t, j)
e(t, j)
s(t, j)

∣∣∣∣∣∣ ≤ β

∣∣∣∣∣∣
 x(0, 0)

e(0, 0)
s(0, 0)

∣∣∣∣∣∣ , t, j

 (10)

for all (t, j) in the solution’s domain. �

1Note that the next condition is just saying thatξ(0, 0) ∈ C ∪D in the
terminology of (1).



V. STABILITY ANALYSIS

In order to guarantee UGAS, we assume the existence of
a Lyapunov functioñW (κ, `, e, s) for the reset equations (8)
and (9) satisfying

W̃ (κ + 1, 1, e, h(κ, e)− e) ≤ λW̃ (κ, 0, e, s) (11a)

W̃ (κ, 0, s + e,−s− e) ≤ W̃ (κ, 1, e, s) (11b)

for all κ ∈ N and alls, e ∈ Rne and the bounds

β
W

(|(e, s)|) ≤ W̃ (κ, `, e, s) ≤ βW (|(e, s)|) (12)

for all κ ∈ N, ` ∈ {0, 1} ands, e ∈ Rne for some functions
β

W
andβW ∈ K∞ and0 ≤ λ < 1.

In Section VI we will show how a functioñW satisfying
(11)-(12) can be derived from the generally accepted condi-
tions on the protocolh as used for the delay-free case in [1],
[10]. To solve Problem III.3, we extend (11) and (12) to the
following condition.

Condition V.1 There exist a functioñW : N×{0, 1}×Rne×
Rne → R≥0 with W̃ (κ, `, ·, ·) locally Lipschitz for allκ ∈ N
and` ∈ {0, 1}, a locally Lipschitz functioñV : Rnx → R≥0,
K∞-functionsβ

V
, βV , β

W
and βW , continuous functions

Hi : Rnx → R≥0, positive definite functionsρi andσi and
constantsLi ≥ 0, γi > 0, for i = 0, 1, and0 ≤ λ < 1 with

• for all κ ∈ N and all s, e ∈ Rne (11) holds and (12)
holds for all` ∈ {0, 1};

• for all κ ∈ N, ` ∈ {0, 1}, s ∈ Rne , x ∈ Rnx and almost
all e ∈ Rne it holds that〈

∂W̃ (κ, `, e, s)
∂e

, g(x, e)

〉
≤ L`W̃ (κ, `, e, s) + H`(x);

(13)
• for all κ ∈ N, ` ∈ {0, 1}, s, e ∈ Rne and almost all

x ∈ Rnx

〈∇Ṽ (x), f(x, e)〉 ≤ −ρ`(|x|)−H2
` (x)

− σ`(W̃ (κ, `, e, s)) + γ2
` W̃ 2(κ, `, e, s). (14)

β
V

(|x|) ≤ Ṽ (x) ≤ βV (|x|). (15)

The inequalities (13) and (14) are similar in nature to the
delay-free situation as studied in [1]. Roughly speaking,
the inequality (13) provides bounds on the growth of̃W
during flow, while inequality (14) provides bounds on the
growth of Ṽ . Note that in case(e, s) = (0, 0) (14) implies
(together with (12)) that̃V is decreasing along the network-
free systemẋ = f(x, 0) (hence,Ṽ is a Lyapunov function
for ẋ = f(x, 0)). Even stronger, (14) impliesL2 gain
conditions fromW̃ to H` for ẋ = f(x, e), as were used
in this context also in [10]. These inequalities together with
the decreasing conditions (11) during jumps will be used
to derive Lyapunov functions for the NCS modelHNCS .
Although these conditions may seem difficult to obtain at
first sight, this is not the case as will be demonstrated in the
next sections.

Consider now the differential equations

φ̇0 = −2L0φ0 − γ0(φ2
0 + 1) (16a)

φ̇1 = −2L1φ1 − γ0(φ2
1 +

γ2
1

γ2
0

). (16b)

Observe that the solutions to these differential equations are
strictly decreasing as long asφ`(τ) ≥ 0, ` = 0, 1.

Theorem V.2 Consider the systemHNCS that satisfies Con-
dition V.1. Supposeτmati ≥ τmad ≥ 0 satisfy

φ0(τ) ≥ λ2φ1(0) for all 0 ≤ τ ≤ τmati (17a)

φ1(τ) ≥ φ0(τ) for all 0 ≤ τ ≤ τmad (17b)

for solutionsφ0 and φ1 of (16) corresponding to certain
chosen initial conditionsφ`(0) > 0, ` = 0, 1, with φ1(0) ≥
φ0(0) ≥ λ2φ1(0) ≥ 0 and φ0(τmati) > 0. Then for the
systemHNCS the setE as defined in Def. IV.1 is UGAS.�

The proof is based on constructing Lyapunov functions for
HNCS using the solutionsφ0 andφ1 to (16), see [6].

From the above theorem quantitative numbers forτmati

and τmad can be obtained by constructing the solutions to
(16) for certain initial conditions. By computing theτ value
corresponding to the intersection ofφ0 and the constant
line λ2φ1(0) providesτmati according to (17a), while the
intersection ofφ0 andφ1 gives a value forτmad due to (17b),
see also Fig. 2 below for an illustration. Different values of
the initial conditionsφ0(0) and φ1(0) lead, of course, to
different solutionsφ0 and φ1 of the differential equations
(16) and thus also to differentτmati and τmad. As a result,
tradeoff curves betweenτmati andτmad can be obtained that
indicate when stability of the NCS is still guaranteed. This
will be illustrated in Section VII on a benchmark example.

VI. CONSTRUCTINGLYAPUNOV FUNCTIONS

In this section we will construct Lyapunov functions̃V
and W̃ as in Condition V.1 from the commonly adopted
assumptions in [1], [10], [12], [13] for the delay-free case
given by:

Condition VI.1 The protocol given byh is UGES (uni-
formly globally exponentially stable), meaning that there
exists a functionW : N × Rne → R≥0 that is locally
Lipschitz in its second argument such that

αW |e| ≤ W (κ, e) ≤ αW |e| (18a)

W (κ + 1, h(κ, e)) ≤ λW (κ, e) (18b)

for constants0 < αW ≤ αW and0 < λ < 1. �

Additionally we assume here that

W (κ + 1, e) ≤ λW W (κ, e) (19)

for some constantλW ≥ 1 and that for almost alle ∈ Rne

and allκ ∈ N ∣∣∣∣∂W

∂e
(κ, e)

∣∣∣∣ ≤ M1 (20)

for some constantM1 > 0. For all protocols discussed in [1],
[10], [12], [13] such constants exist. In Lemma VI.3 below,
we specify appropriate values for these constants in case of



the often used Round Robin (RR) and the Try-Once-Discard
(TOD) protocols (see [10], [13] for their definitions). We also
assume the following growth condition on the NCS model
(5)

|g(x, e)| ≤ mx(x) + Me|e|, (21)

where mx : Rnx → R≥0 and Me ≥ 0 is a constant.
Moreover, as in [1] we also use the existence of a locally
Lipschitz continuous functionV : Rnx → R≥0 satisfying
the bounds

αV (|x|) ≤ V (x) ≤ αV (|x|) (22)

for someK∞-functionsαV andαV , and the condition

〈∇V (x), f(x, e)〉 ≤ −m2
x(x)− ρ(|x|) + (γ2 − ε)W 2(κ, e)

(23)
for almost all x ∈ Rnx and all e ∈ Rne with ρ ∈ K∞,
to derive functions̃V andW̃ satisfying Condition V.1. The
constants in (23) satisfy0 < ε < max{γ2, 1}, whereε > 0
is sufficiently small.

Theorem VI.2 Consider the systemHNCS such that
• Condition VI.1, (19) with λW ≥ 1 and (20) with

constantM1 > 0 hold;
• (21) is satisfied for some functionmx : Rnx → R≥0

and Me ≥ 0.
• there exists a locally Lipschitz continuous functionV :

Rnx → R≥0 satisfying the bounds(22) for someK∞-
functionsαV , αV , and (23) with γ > 0 and 0 < ε <
max{γ2, 1}.

Then, the functions̃W and Ṽ given by

W̃ (κ, 0, e, s) := max{W (κ, e),W (κ, e + s)}

W̃ (κ, 1, e, s) := max{ λ

λW
W (κ, e),W (κ, e + s)}(24)

Ṽ (x) = M2
1 V (x) (25)

satisfy Condition V.1 withβ
W

(r) = β
W

r, βW (r) = βW r,
β

V
= M2

1 αV , βV = M2
1 αV , σ0(r) = εM2

1 r2, σ1(r) =

εM2
1

λ2
W

λ2 and ρ`(r) = M2
1 ρ(r), H`(x) = M1mx(x), ` =

0, 1, with λ as in Condition VI.1,

L0 =
M1Me

αW

;L1 =
M1MeλW

λαW

; γ0 = M1γ; γ1 =
M1γλW

λ
,

(26)
and some positive constantsβ

W
, βW . �

The proof can be found in [6]
To apply the above theorem for a given protocol we

need to establish the valuesλ, M1, λW , αW andαW . The
following lemma determines these constants for the well-
known RR and TOD protocols. See [10], [13] for the exact
definitions of these protocols.

Lemma VI.3 [6] Let l denote the number of nodes in the

network. For the RR protocolλRR =
√

l−1
l , αWRR

= 1,

αWRR
=
√

l, λWRR
=
√

l, M1,RR =
√

l satisfy (18), (19)

and (20). For the TOD protocolλTOD =
√

l−1
l , αWT OD

=
αWT OD

= 1, λWT OD
= 1, M1,TOD = 1 satisfy (18), (19)

and (20). �

Below we indicate the main steps in the procedure to
compute the tradeoff curves between MATI and MAD.

Procedure VI.4 GivenHNCS apply the following steps:
1) Construct a Lyapunov functionW for the UGES proto-

col as in Condition VI.1 with the constantsαW , αW , λ,
λW andM1 as in (18), (19) and (20). Suitable Lyapunov
functions and the corresponding constants are available
for many protocols in the literature. For RR and TOD
protocols these are given in Lemma VI.3.

2) Compute the functionmx and the constantMe as in
(21) boundingg as in (5).

3) Compute forẋ = f(x, e) in the NCS model (5) theL2

gain fromW (κ, e) to mx(x) in the sense that (22)-(23)
is satisfied for a (storage) functionV for some small
0 < ε < max{γ2, 1} and ρ ∈ K∞. Whenf is linear,
this can be done using linear matrix inequalities (LMIs)
as demonstrated in the next section (cf. (27)).

4) Use now Theorem VI.2 to obtainL0, L1, γ0 andγ1.
5) For initial conditionsφ0(0) andφ1(0) with λ2φ1(0) ≤

φ0(0) < φ1(0) find τmati and τmad such that the
corresponding solutions to the differential equations
(16) satisfy (17). Repeat this step for various values
of the initial conditions giving various combinations of
τmati andτmad leading to tradeoff curves.

Note that this procedure is systematic in nature and can be
applied in a straightforward manner as shown next.

VII. C ASE STUDY OF THE BATCH REACTOR

The case study of the batch reactor has developed over the
years as a benchmark example in NCSs [1], [10], [13]. The
functions in the NCS (5) for the batch reactor are given by
the linear functionsf(x, e) = A11x + A12e and g(x, e) =
A21x+A22e. The batch reactor, which is open-loop unstable,
hasnu = 2 inputs,ny = 2 outputs,np = 4 plant states and
nc = 2 controller states andl = 2 nodes (only the outputs
are assumed to be sent over the network). See [10], [13] for
the details and the numerical values.

We will follow Procedure VI.4 to find combinations of
MAD and MATI that guarantee stability of the NCS using
the TOD protocol. Using Lemma VI.3 in step 1 provides the
Lyapunov functionWTOD(κ, e) = |e| and the constantsλ,
αW , αW , λW and M1. In step 2 we takeMe = |A22| :=√

λmax(A>22A22) and mx(x) = |A21x| to satisfy (21). To
verify (23) (step 3) we takeρ(r) = εr2 and consider a
quadratic Lyapunov functionV (x) = x>Px to compute the
L2 gain from |e| = WTOD(κ, e) to mx(x) by minimizing γ
subject to the following LMIs in the matrixP = P> � 0:(

A>11P + PA11 + εI + A>21A21 PA12

A>12P (ε− γ2)I

)
� 0, (27)

Minimizing γ subject to the LMI (27) withε = 0.01
provides the minimal value ofγ = 15.9165. In Step 4 we
apply Theorem VI.2 to obtain the valuesL0 = 15.7300,
L1 = 22.2456, γ0 = 15.9165 andγ1 = 22.5093.

In step 5 of Procedure VI.4 the obtained numerical values
provide various combinations of(τmati, τmad) that yield
stability of the NCS by varying the initial conditionsφ0(0)
andφ1(0). To illustrate this, consider Fig. 2, which displays
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Fig. 2. Batch reactor functionsφℓ, ℓ = 0, 1 with φ0(0) = 1.4142 and
φ1(0) = 1.6142.

the solutionsφℓ, ℓ = 0, 1, to (16) for initial conditions
φ0(0) = 1.4142 andφ1(0) = 1.6142. The solutionsφℓ, ℓ =
0, 1 are determined using Matlab/Simulink. The condition
(17a) indicates thatτmati is determined by the intersection
of φ0 and the constant line with valueλ2φ1(0) and condition
(17b) states thatτmad is determined by the intersection ofφ0

andφ1 (as long asφ0(0) ≤ φ1(0)). For the specific situation
depicted in Fig. 2 this would result inτmati = 0.008794
and τmad = 0.005062, meaning that UGES is guaranteed
for transmission intervals up to0.008794 and transmission
delays up to0.005062. Interestingly, the initial conditions
of both functionsφ0 and φ1 can be used to make design
tradeoffs. For instance, by takingφ1(0) larger, the allowable
delays become larger (as the solid line indicated by ‘o’ shifts
upwards), while the maximum transmission interval becomes
smaller as the dashed line indicated by ‘•’ will shift upwards
as well causing its intersection withφ0 (dotted line indicated
by ‘+’) to occur for a lower value ofτ . For instance,
by taking φ0(0) = φ1(0) = λ−1

TOD =
√

2, we recover
exactly the delay-free results in [1] withτmad = 0 and
τmati = 0.0108. Hence, once the hypotheses of Theorem V.2
are satisfied, different combinations of MATI and MAD can
be obtained leading to tradeoff curves. Repeating step 5
for various increasing values ofφ1(0), while keepingφ0(0)
equal toλ−1

TOD =
√

2, provides the graph in Fig. 3, where
the particular pointτmati = 0.008794 andτmad = 0.005062
corresponding to Fig. 2 is highlighted. A similar reasoning
can be used for the RR protocol. This leads toL0 = 15.7300,
L1 = 31.4600, γ0 = 22.5093 and γ1 = 45.0185 with the
tradeoff curve between MATI and MAD as in Fig. 3. These
tradeoff curves can be used to impose conditions or select
a suitable network with certain communication delay and
bandwidth requirements.

Also different protocols can be compared with respect to
each other. In Fig. 3, it is seen that for the task of stabilization
of the unstable batch reactor the TOD protocol outperforms
the RR protocol in the sense that it can allow for larger
delays and larger transmission intervals.
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VIII. C ONCLUSIONS

In this paper we presented a framework for studying
the stability of a NCS, which involves communication con-
straints (only one node accessing the network per transmis-
sion), varying transmission intervals and varying transmis-
sion delays. Based on a newly developed model, an ex-
plicit procedure was presented for computing bounds on the
maximally allowable transmission interval and delay (MATI
and MAD) such that the NCS is guaranteed to be globally
asymptotically stable. The application of the results on a
benchmark example showed how tradeoff curves between
MATI and MAD can be computed providing designers of
NCSs with proper tools to support their design choices.
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the solutionsφ`, ` = 0, 1, to (16) for initial conditions
φ0(0) = 1.4142 andφ1(0) = 1.6142. The solutionsφ`, ` =
0, 1 are determined using Matlab/Simulink. The condition
(17a) indicates thatτmati is determined by the intersection
of φ0 and the constant line with valueλ2φ1(0) and condition
(17b) states thatτmad is determined by the intersection ofφ0

andφ1 (as long asφ0(0) ≤ φ1(0)). For the specific situation
depicted in Fig. 2 this would result inτmati = 0.008794
and τmad = 0.005062, meaning that UGES is guaranteed
for transmission intervals up to0.008794 and transmission
delays up to0.005062. Interestingly, the initial conditions
of both functionsφ0 and φ1 can be used to make design
tradeoffs. For instance, by takingφ1(0) larger, the allowable
delays become larger (as the solid line indicated by ‘o’ shifts
upwards), while the maximum transmission interval becomes
smaller as the dashed line indicated by ‘•’ will shift upwards
as well causing its intersection withφ0 (dotted line indicated
by ‘+’) to occur for a lower value ofτ . For instance,
by taking φ0(0) = φ1(0) = λ−1

TOD =
√

2, we recover
exactly the delay-free results in [1] withτmad = 0 and
τmati = 0.0108. Hence, once the hypotheses of Theorem V.2
are satisfied, different combinations of MATI and MAD can
be obtained leading to tradeoff curves. Repeating step 5
for various increasing values ofφ1(0), while keepingφ0(0)
equal toλ−1

TOD =
√

2, provides the graph in Fig. 3, where
the particular pointτmati = 0.008794 andτmad = 0.005062
corresponding to Fig. 2 is highlighted. A similar reasoning
can be used for the RR protocol. This leads toL0 = 15.7300,
L1 = 31.4600, γ0 = 22.5093 and γ1 = 45.0185 with the
tradeoff curve between MATI and MAD as in Fig. 3. These
tradeoff curves can be used to impose conditions or select
a suitable network with certain communication delay and
bandwidth requirements.

Also different protocols can be compared with respect to
each other. In Fig. 3, it is seen that for the task of stabilization
of the unstable batch reactor the TOD protocol outperforms
the RR protocol in the sense that it can allow for larger
delays and larger transmission intervals.
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and τmad = 0.005062, meaning that UGES is guaranteed
for transmission intervals up to0.008794 and transmission
delays up to0.005062. Interestingly, the initial conditions
of both functionsφ0 and φ1 can be used to make design
tradeoffs. For instance, by takingφ1(0) larger, the allowable
delays become larger (as the solid line indicated by ‘o’ shifts
upwards), while the maximum transmission interval becomes
smaller as the dashed line indicated by ‘•’ will shift upwards
as well causing its intersection withφ0 (dotted line indicated
by ‘+’) to occur for a lower value ofτ . For instance,
by taking φ0(0) = φ1(0) = λ−1

TOD =
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2, we recover
exactly the delay-free results in [1] withτmad = 0 and
τmati = 0.0108. Hence, once the hypotheses of Theorem V.2
are satisfied, different combinations of MATI and MAD can
be obtained leading to tradeoff curves. Repeating step 5
for various increasing values ofφ1(0), while keepingφ0(0)
equal toλ−1
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2, provides the graph in Fig. 3, where
the particular pointτmati = 0.008794 andτmad = 0.005062
corresponding to Fig. 2 is highlighted. A similar reasoning
can be used for the RR protocol. This leads toL0 = 15.7300,
L1 = 31.4600, γ0 = 22.5093 and γ1 = 45.0185 with the
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tradeoff curves can be used to impose conditions or select
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VIII. C ONCLUSIONS

In this paper we presented a framework for studying
the stability of a NCS, which involves communication con-
straints (only one node accessing the network per transmis-
sion), varying transmission intervals and varying transmis-
sion delays. Based on a newly developed model, an ex-
plicit procedure was presented for computing bounds on the
maximally allowable transmission interval and delay (MATI
and MAD) such that the NCS is guaranteed to be globally
asymptotically stable. The application of the results on a
benchmark example showed how tradeoff curves between
MATI and MAD can be computed providing designers of
NCSs with proper tools to support their design choices.

REFERENCES

[1] D. Carnevale, A.R. Teel, and D. Nešić. A Lyapunov proof of improved
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