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Abstract—There are many communication imperfections in  to understand how these phenomena influence the closed-
networked control systems (NCSs) such as varying delays, |oop stability and performance properties, preferably in a
varying transmission intervals, packet loss, communication g antitative ' manner. Unfortunately, much of the available

constraints and quantization effects. Most of the available | .
literature on NCSs focuses on only one of these aspects literature on NCSs considers only one or two of the above

while ignoring the others. In this paper we present a general Mentioned types of network phenomena, while ignoring the
framework that incorporates both communication constraints ~ other types, see the overview papers [7], [11], [14], [15].
(only one node accessing the network per transmission), varying Studies that incorporate three of these imperfections are, for

delays and varying transmission intervals. Based on a newly ; N (i SY (Y (i
developed NCS model including these three network phenom- instance, [9] (type (1), (iif), (v)), [3], [8] (type (i), (i), (V))

ena, we will provide an explicit (Lyapunov-based) procedure and [10] (type (ii), (iii), (V),)' )
to compute bounds on the maximally allowable transmission  Another paper that studies three different types of network
interval (MATI) and the maximally allowable delay (MAD) that imperfections is [2]. This paper studies NCSs involving
guarantee stability of the NCS. The developed results lead to poth variable delays, variable transmission intervals and
tra_deoff curves between MATI and MAD as will be illustrated communication constraints, and uses a method for delay
using a benchmark example. . . -
Index Terms— Networked control systems, Lyapunov func- compensation. For a particular control schem_e, '[2] prowdes
tions, stability, delays, communication constraints, protocols. ~ bounds on the tolerable delays and transmission intervals
such that stability of the NCS is guaranteed. Also in this
I. INTRODUCTION paper we will study NCSs corrupted by varying delays, vary-
H]g transmission intervals and communication constraints,

)@hile packet dropouts can be included as well by modelling

motivated by many benefits they offer such as the ease ras prolongations of the transmission intervals. In other
maintenance and installation, the greater flexibility and th%yords, th.'§ paper considers neMo_rked-lnq_uced imperfections
low cost. To harvest the advantages of wired and wireleg type (i), (iv) and (v) (and indirectly (ii)). After devel-

NCSs, control algorithms are needed that can deal wiffPind @ novel NCS model incorporating all these types of
netwo,rk-induced imperfections and constraints network phenomena, we will present allowable bounds on

Roughly spealging, the netwgrk—ipduced imperfections ant ;al)\/lsc gn?nt::?;stgisisxirt]hir[];?r\ﬂas c%l#]asrisgtreterjggmst;[?ebiggsigf
traint t i in five t : e . e .
cohs rain S.Car.] ©ca eggrlze |r.1 Ve ypes . emulation approacin the spirit of [1], [10], [12], [13], which
(i) Quantization errors in _the signals transmitted over thgncompasses no specific delay compensation schemes. The
. Setle(/orkddue to the flnltedwkc))rd Iﬁngth ofllthl;a'l_packftsﬁ work in [2] is of interest, as it aims at allowing larger delays
(i) Packet dropouts caused by the unreliability of t E’oy including specific delay compensation schemes, at the

network; . L .
(i) Variable sampling/transmission intervals: cost o_f sending larger control-packets and requiring time-
V) \Varvi piing tion delavs: ' stamping of messages. The features of compensation and
(iv) Varying communication delays; time-stamping of messages are not needed in our framework.

(v) Communication constraints caused by the sharing of the, siher distinction with [2] is related to the admissible

netwo'rk by multiple node; gnd I only ONrotocols that schedule which node is allowed to transmit
node is allowed to transmit its packet per transmissio s packet at a transmission time. Our work applies for all
) protocols satisfying the UGES property (see below for an
It is well known that the presence of these network phegxact definition) and not only for so-calléavariably UGES
nomena can degrade the performance of the control logRotocols as needed in [2], which exclude the commonly used
significantly and can even lead to instability, see e.g. [4Round-Robin (RR) protocol.
for an illustrative example. Therefore, it is of importance QOne of the main contributions of this paper is that we

) ) construct tradeoff curves between the maximally allowable
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Networked control systems (NCSs) have received consi
erable attention in recent years. The interest for NCSs



lem. IIl. NCS MODEL AND PROBLEM STATEMENT

In this section, we introduce the model that will be used
I1. NOTATIONAL CONVENTIONS to describe NCSs including both communication constraints
as well as varying transmission intervals and transmission
N will denote all nonnegative integerR, denotes the field delays. This model will form an extension of the NCS models
of all real numbers an®>, denotes all nonnegative reals.used before in [10] that were motivated by the work in
By |-| and(:,-) we denote the Euclidean norm and the usud[L3]. All these previous models did not include transmission
inner product of real vectors, respectively. For a number dlelays. We consider the continuous-time plant
real vectors(ay,...,ap) With a; € R™, we denote the . N -
column vector(a; ...a;,)" obtained by stacking the vectors tp = fol@p, @), Y = 9plp) 2)
a;,i=1,...,M ontop of each other byuy,...,as ). Fora that is sampled. Herey, € R"» denotes the state of the
symmetric matrixA4, A\, (A) denotes the largest eigenvalueplant, & < R™ denotes the most recent control values
of A. By v and A we denote the logical ‘or’ and ‘and, available at the plant ang € R™v is the output of the plant.
respectively. A functionrn : R>q — R is said to be of The controller is given by
classK if it is continuous, zero at zero and strictly increasing. Go = fu(e,9) w = go(@e) 3)
It is said to be of clas¥, if it is of class K and it is ¢ e exven
unbounded. A functiors : R>g x R>g — R>q is said to be where the variablec, € R" is the state of the controller,
of classK. L if 3(-,t) is of classk for eacht > 0 and(s,-) § € R is the most recent output measurement of the plant
is nonincreasing and satisfiéisn; .., 3(s,t) = 0 for each that is available at the controller andc R"+ denotes the
s> 0. A function 5 : R>g x Rs>g x R>g — R>¢ is said to control input. At timest,,, ¢ € N, (parts of) the input: at
be of classK.LL if, for eachr > 0, 3(-,r,-) and 5(-,-,r) the controller and/or the outpyt at the plant are sampled

belong to classCL. and transmitted over the network. The transmission times
We recall now some definitions given in [5] that will besatisfy 0 < t,, < t,, < t;, < ... and there exists a
used for developing a hybrid model of a NCS later. 6 > 0 such that the transmission intervals,, —¢,, satisfy
0 <tsy —ts; < Tinars for all i € N, wherer,,,q;; denotes

the maximally allowable transmission interval (MATI). At
Definition 1.1 A compact hybrid time domaiis a setD =  each transmission timg,,, i € N, the protocol determines
Uj;ol([tj,tjﬂ],j) C R>o x N with J € N>p and0 =t, <  which of the nodeg € {1,2,...,1} is granted access to the
ty--- <t . A hybrid time domairis a setD C R>o x N>g  network. Each node corresponds to a collection of sensors or
such thatbn ([0, 7] x {0, ..., J}) is a compact hybrid time actuators. The sensors/actuators corresponding to the node,
domain for eachT, J) € D. B which is granted access, collect their valuesyjif;,) or
u(ts,) that will be sent over the communication network.
They will arrive after a transmission delay of time units
at the controller or actuator. This results in updates of the
corresponding entries if or ¢ at timest,, + 7;, i € N. The
situation described above is illustrated fpandy in Fig. 1.

Definition 1.2 A hybrid trajectory is a pair (dom¢&, &)
consisting of hybrid time domain dor and a function
defined on dong that is absolutely continuous inon (dom
&) N (R>p x {j}) for eachj € N. [ ]

—
Definition 11.3 For the hybrid systeri{ given by the open °| _— ~¢ == _~ 7
state spac®™ and the datd F, G, C, D), whereF' : R* —

R™ is continuousG : R — R"™ is locally bounded, and® [

and D are subsets dR™, a hybrid trajectory (dong, &) with bo tar 71 fars Tos T 7ir1 forgs Topa T Tiv2 Torrs Time

¢ :dom¢ — R™ is asolution toH if

1) For all j € N and for almost alk € Ij — {t | (t,j) c Fig. 1. lllustration of a typical evolution of and.

dom¢}, we have((t, j) € C and 5(7573') = F(&(t,7))- It is assumed that there are bounds on the maximal delay
2) Forall(t,j) € dom¢ such that(t, j +1) € dom¢&, We i the sense that; € [0, Tmad], i € N, Where0 < 7imaq <
have(t, j) € D and{(t,j +1) = G(£(¢, 7)) Tmati IS the maximally allowable delay (MAD). To be more

precise, we adopt the following standing assumption.
Hence, the hybrid systems that we consider are of the form:

Standing Assumption Ill.1 The transmission times satisfy

&(tg) = FEt,g) &(t,j) e 6 < tsi.+l —ts; < Tmati, © € N and the delays satisf§ g
E(tjr, i +1) = G(E(tj41,7)) (tjv1,j) €D . Ti < min{Tad, ts;, — ts,}, @ € N, whered € (0, 744 iS
arbitrary.

We sometimes omit the time arguments and write: The latter condition implies that each transmitted packet

arrives before the next sample is taken. The updates satisfy

I((ts, + 7)) = ylts,) +hyiselts,))
where we denoted(t;.1,5 + 1) asé™. a((ts, + 7)) = ults,) + huli,e(ts,))

{=F(¢), when{ € C, ¢ =G(¢), whené € D, (1)



atts, +7,, wheree denotes the vectde,, e,,) with e, := y—  IV. REFORMULATION IN A HYBRID SYSTEM FRAMEWORK

= 1 — e i = e - .
y ande, := i—u. Henceg € R™ with ne = n, +n,. I the To facilitate the stability analysis, we transform the above

NES hag nodes, th%r: tr;e ertr_or \S/}(Lactelcda}? be partltlon%d ?S NCS model into the hybrid system framework as developed
¢ = (e1,¢2,..., ). The functions, andh, are now update 51 ‘14 46 50, we introduce the auxiliary variables R,

functions that are related to the protocol, but typically Wherp{ €N, 7€ Rsandl € {0,1} to reformulate the model in

the j-th node gets access to the network at some transmissi%?mS of flow equations and reset equations. The variatsle
t'mi tsih we have tr;zt the chJrrespopd!Pg tpart ||2hth9 €Imokn auxiliary variable containing the memory in (5b) storing
vector has a jJump als; + 7;. In MOSt Situations, the Jump ., valueh(i, e(ts,))—e(ts,) for the update oé at the update
will actually be t(.) ZEro, since we assume th"’.‘t the quant'zat'qﬂstanttq, +7;, k IS @ counter keeping track of the number of
effects are negligible. For instance, whenis transmitted transmissiony is a timer to constrain both the transmission

at ime t,,, we have th"my»f (4, e(ts;)) = 0. HOW‘?VG“ WE interval as well as the transmission delay dnd a Boolean
allow_ for more freedom in the proto_cols by allowing genera, eeping track whether the next event is a transmission event
functions. See [10] for more details. ) R or an update event. To be precise, wiea 0 the next event

In bet\_/veen the updates of the values jpfand a, the ill be related to transmission and whég- 1 the next event
network is assumed to operate in a zero order hold (ZO ill be an update.

fashion, meaning that the valuesgpfind < remain constant Th ; i ;
. . . e hybrid systen{ is given by the flow equations
in between the updating times, + 7; andt,,,, + 7i41: y Y Nes 1S9 y q

. : i = flz.e)
g=0, a=0. 4) ¢ = glxe)
_ s =0 (L =0AT € [0, Tmati])V
To compute the resets of at the update timest,, + Bo= 0 VIl =1AT €0, Tmad]) (6)
Ti }ien, We proceed as follows: F o= 1
¢ =0

ey((ts, +m)") = 9((ts, +7)7) = ylts, +7)
= y(ts,) + hy(ise(ts,)) — y(ts, + 1) and the reset equations are obtained by combining the “trans-
_h (i’ e(ts.)) er(t' ) — g(t ')Jr mission reset relations,” active at the transmission instants
YT N {ts, }ien, @nd the “update reset relations”, active at the update
—e(ts;) instants{t,, + 7; }sen, given by
+ g(tsi + Ti) - y(tSi + Ti)
e(ts, +7i)
= hy(i,e(ts,)) = elts;) + elts, + 7).

(xt, et st 7 kT 01T) = G(a,e,s,7,K, ), Wwhen
(EZO/\TG [&Tmati})\/(gz 1/\7— S [O,Tmad]) (7)

, ) , with G given by the transmission resets (wheég- 0)
In the third equality we used thgtt,,) = §(ts, +7;), which

holds due to the ZOH character of the network. G(z,e,s,7,k,0) = (x,e,h(k,e) —e,0,c+1,1)  (8)
A similar derivation holds foe,,, leading to the following
model for the NCS: and the update resets (whén-= 1)
i - G(x,e,8,7,k,1) = (x,8s+e,—s—e,T,k,0). 9
i £t SR RO NS (e = anel. @)
’ Note that the choice fos™ when/ = 1 is irrelevant from

a modeling point of view. However, it was selected here as
Jr . . 1
e((ts; +7)7) = h(ise(ls,)) —elts;) +elts, + ), (BB) o+ — ¢ "¢ pecause it will simplify the analysis later (see

wheres = (z,.2.) € R™ with n, = n, + ne, f, g are [6] for an explanation).

appropriately defined functions depending 0 g,, f. and o ) .
ge andh = (hy, h,,). See [10] for the explicit expressions of Definition IV.1 For the hybrid systerft{ y¢s, _the set given
fandg. by € .= {(z,e,8,7,k,£) | x =0, e =5 =0} is said to be
uniformly globally asymptotically stabl@GAS) if for each
. . . 0 < 6 < Tha; there exists a functiof € KLL such that for
_Standmg Assumption 11l.2 f andg are continuous and any initial conditionz(0,0) € R, ¢(0,0) € R, 5(0,0) €
is locally bounded. B Ree £(0,0) € Rsg, #(0,0) € N, £0,0) € {0,1} with!
(£(0,0) =0AT(0,0) € [0, Trmati]) V (£(0,0) = 1 AT(0,0) €

Observe that the system = f(z,0) is the closed-loop [0, Tmaa]), all corresponding solutions satisfy

system (2)-(3) without the network.

z(t, j) z(0,0)
Problem 1.3 Suppose that the controller (3) was designed e(t,j) || <8 e(0,0) ||,tj (10)
for the plant (2) rendering the closed-loop (2)-(3) (or equiv- s(t, j) 5(0,0)
alently, © = f(z,0)) stable in some sense. Determine th<=|,-or all (¢, j) in the solution’s domain -

value of 7,4 and 7,,.4 SO that the NCS given by (5) is
Sta.ble as We." when the .transmlssmn intervals and delaySlNote that the next condition is just saying thgD,0) € C'U D in the
satisfy Standing Assumption I11.1. B crminology of (1).



V. STABILITY ANALYSIS Consider now the differential equations

In order to guarantee UGAS, we assume the existence of by = —2Lg¢o — Yo(0g + 1) (16a)
a Lyapunov functiodV (k, ¢, e, s) for the reset equations (8) . 5 7
and (9) satisfying $1 = —2L1¢1 —vo(¢7 + 7—3). (16b)

W(k+1,1,e,h(k, e) —e) AW (k,0,e,5) (11a) Observe that the solutions to these differential equations are

—~ —~ strictly decreasing as long ag(7) >0, ¢£=0,1.

<
W(k,0,s+e,—s—e) < Wi(k,1,e,s) (11b)

Theorem V.2 Consider the systef y ¢ s that satisfies Con-

for all xk € N and alls,e € R™ and the bounds . .
" e dition V.1. SUppose,.ati > Tmad > 0 satisfy

By (e, s)]) < W(s,tes) < By(e.s))  (12) do(t) > N2y (0)forall 0 <7< mmars  (174)
forall k € N, £ € {0,1} ands, e € R™ for some functions $1(1) = ¢o(r) forall 0 <7 < 7naq (17b)
By, andfy € Koo and0 <A < 1. for solutions ¢, and ¢; of (16) corresponding to certain

In Section VI we will show how a functiof?’ satisfying chosen initial conditiong,(0) > 0, £ = 0,1, with ¢;(0) >
(11)-(12) can be derived from the generally accepted condpy(0) > A2¢1(0) > 0 and ¢o(Tmar;) > 0. Then for the
tions on the protocok as used for the delay-free case in [1],systenfH ycs the set€ as defined in Def. IV.1 is UGAE

[10]. To solve Problem III.3, we extend (11) and (12) to the . . .
following condition. The proof is based on constructing Lyapunov functions for

Hnes using the solutiongy and ¢; to (16), see [6].

_ From the above theorem quantitative numbers£Qr;
Condition V.1 There exist a functiom” : Nx{0,1} xR"<x  and r,,,4 can be obtained by constructing the solutions to
R — Rxq with W(, ¢, -, -) locally Lipschitz for alls € N (16) for certain initial conditions. By computing thevalue
and/ € {0, 1}, a locally Lipschitz functiort/ : R"* — R, corresponding to the intersection @f and the constant
K-functions 3, By 8, and Bw, continuous functions line A%¢;(0) provides,,,:; according to (17a), while the
H; : R"» — R, positive definite functiong; ands; and intersection ofs, and¢; gives a value for,,.q due to (17b),
constantsl; > 0, v; > 0, fori = 0,1, and0 < X\ < 1 with see also Fig. 2 below for an illustration. Different values of

. for all x € N and alls,e € R™ (11) holds and (12) the initial conditions¢y(0) and ¢;(0) lead, of course, to

holds for all¢ € {0, 1}; different solutions¢y, and ¢, of the differential equations
. forallkeN, (e {(’) 1}, s € R, z € R" and almost (16) and thus also to different,,.;; and 7,,.4. AS a result,
all e € R™ it holds ’that tradeoff curves between,,,;; andr,,.s can be obtained that

indicate when stability of the NCS is still guaranteed. This

aW(K e, s) — will be illustrated in Section VIl on a benchmark example.
#ag(xﬁa) S LZW(K7€7658)+HZ(J");
e VI. CONSTRUCTINGLYAPUNOV FUNCTIONS
(13) In this section we will construct L ioné
. th yapunov functions
. ;oreaRilnf €N, £€{0,1}, s,e € R™ and almost all ;77 55 in Condition V.1 from the commonly adopted

assumptions in [1], [10], [12], [13] for the delay-free case
~ 9 given by:
(VV(2), f(z,€)) < —pe(|z]) — Hy (x)
— oo(W(k, L e,s)) +~v2W?3(k,l,e,s). (14) Condition VI.1 The protocol given byh is UGES (uni-
formly globally exponentially stable), meaning that there
Y 3 exists a functionW : N x R" — R, that is locall
QV(M) < V(@) < By (lal)- (19) Lipschitz in its second argument such that g
The inequalities (13) and (14) are similar in nature to the —
delay-frge situatif)n )as stu(die)d in [1]. Roughly speaking, e < Wik, e) < awle] (18a)
the inequality (13) provides bounds on the growth 16 Wk +1,h(k,€)) < AW(x, ) (18b)
during flow, while inequality (14) provides bounds on thefor constants) < oy, < @y and0 < A < 1. (]
growth of V. Note that in casée, s) = (0,0) (14) implies »
(together with (12)) thal/ is decreasing along the network- Additionally we assume here that
free systemi = f(z,0) (hence,V is a Lyapunov function W(k+1,e) < AWk, e) (19)
for &+ = f(x,0)). Even stronger, (14) implies gain

conditions fromW to H, for & = f(z,e), as were used for some constanhy, > 1 and that for almost alt € R™

in this context also in [10]. These inequalities together witRnd allx € N

the decreasing conditions (11) during jumps will be used ‘(Iﬁ:,e)
to derive Lyapunov functions for the NCS mod&lycs. e
Although these conditions may seem difficult to obtain ator some constant/; > 0. For all protocols discussed in [1],
first sight, this is not the case as will be demonstrated in tH&0], [12], [13] such constants exist. In Lemma V1.3 below,
next sections. we specify appropriate values for these constants in case of

< M; (20)




the often used Round Robin (RR) and the Try-Once-Discard Below we indicate the main steps in the procedure to
(TOD) protocols (see [10], [13] for their definitions). We alsocompute the tradeoff curves between MATI and MAD.
assume the following growth condition on the NCS model

(5)
(21)

R" — Rsq and M, > 0 is a constant.

l9(z, €)| < mq () + Melel,

where m, :

Moreover, as in [1] we also use the existence of a locally

Lipschitz continuous functior’” : R"» — R satisfying
the bounds

ay([z]) < V(z) <av(lz) (22)

for someX-functionsa,, anday , and the condition

(VV(@), f(z,e)) < —m2(x) — pllz]) + (4° — e>w2<ﬁ(7 e))

23
for almost allz € R" and alle € R" with p € K,
to derive functionsl” and W satisfying Condition V.1. The
constants in (23) satisfg < ¢ < max{+?,1}, wheree > 0
is sufficiently small.

Theorem VI.2 Consider the syste{ ycs such that

« Condition VI.1, (19) with Ay > 1 and (20) with
constantM; > 0 hold;

e (21) is satisfied for some functiom,
and M, > 0.

« there exists a locally Lipschitz continuous functign
R™ — R>¢ satisfying the bound&2) for somek .-
functionsay,, ay, and (23) with vy > 0 and0 < € <
max{vy?,1}.

Then, the function$V’ and VV given by

: R" — Rxg

W(k,0,e,5) = max{W(k,e),W(s,e+s)}
Wik, 1,e,8) = maX{%W(H,e),W(m,e—l—s)}(Z@
w
Viz) = MMV (z) (25)

satisfy Condition V.1 with8, ,(r) = 3,7, By (r) = By,

év = Miay, By = M?ay, oo(r) = eMir?, o1(r) =
eM?AY and py(r) = Mip(r), Hy(x) = Mim,(x), € =
0,1, with X as in Condition VI.1,

M M, MM My
Lo= 2281 = W — Myyym = —2W
Oy )\QW A
_ (26)
and some positive constants,, Gy . |

The proof can be found in [6]

Procedure VI.4 Given Hycs apply the following steps:

1) Construct a Lyapunov functio for the UGES proto-
col as in Condition VI.1 with the constants,, aw, A,

Aw andM; asin (18), (19) and (20). Suitable Lyapunov
functions and the corresponding constants are available
for many protocols in the literature. For RR and TOD
protocols these are given in Lemma VI.3.

2) Compute the functiomn, and the constani/, as in
(21) boundingg as in (5).

3) Compute fori = f(z,e) in the NCS model (5) the,
gain fromW (k, e) to m,(z) in the sense that (22)-(23)
is satisfied for a (storage) functiovi for some small
0 < e < max{+% 1} andp € K. When f is linear,
this can be done using linear matrix inequalities (LMIs)
as demonstrated in the next section (cf. (27)).

4) Use now Theorem VI.2 to obtaihg, L1, 7o and~;.

5) For initial conditionsg(0) and ¢ (0) with A\2¢;(0) <
#0(0) < ¢1(0) find 7,4 and 7,,4.4 Such that the
corresponding solutions to the differential equations
(16) satisfy (17). Repeat this step for various values
of the initial conditions giving various combinations of
Tmati @NdT,qq leading to tradeoff curves.

Note that this procedure is systematic in nature and can be
applied in a straightforward manner as shown next.

VIl. CASE STUDY OF THE BATCH REACTOR

The case study of the batch reactor has developed over the
years as a benchmark example in NCSs [1], [10], [13]. The
functions in the NCS (5) for the batch reactor are given by
the linear functionsf(x,e) = Aj1x + Aj2e andg(x,e) =
As1x+ Agse. The batch reactor, which is open-loop unstable,
hasn, = 2 inputs,n, = 2 outputs,n, = 4 plant states and
n. = 2 controller states and = 2 nodes (only the outputs
are assumed to be sent over the network). See [10], [13] for
the details and the numerical values.

We will follow Procedure VI.4 to find combinations of
MAD and MATI that guarantee stability of the NCS using
the TOD protocol. Using Lemma V1.3 in step 1 provides the
Lyapunov functionWrop(k,e) = |e| and the constants,
aw, aw, A\w and M;. In step 2 we takeVl, = |Ags| :=
V Amaz(AgyAzz) and m, (z) = |Ag x| to satisfy (21). To
verify (23) (step 3) we takep(r) = er? and consider a
quadratic Lyapunov functiol (z) = =T Pz to compute the

To apply the above theorem for a given protocol weC, gain from|e| = Wrop(k,e) to m,(z) by minimizing v

need to establish the values My, A\w, ay,, anday. The

following lemma determines these constants for the well-
known RR and TOD protocols. See [10], [13] for the exact

definitions of these protocols.

subject to the following LMIs in the matrix® = PT = 0:

A]—lp-l- PA11 + el + A;—lAQl PA12
( AlTQP (E _ 72)[ j Oa (27)

Minimizing v subject to the LMI (27) withe = 0.01

Lemma VI.3 [6] Let! denote the number of nodes in theprovides the minimal value of = 15.9165. In Step 4 we

network. For the RR protocohpr = /52, ay,.,, = 1,

Awnr = VI, M\wen = VI, My rr = V1 satisfy (18), (19)
and (20). For the TOD protocol\rop = Z_Tl AWrop =
AWrop = 1, )\WTOD =1, Ml,TOD =1 satisfy(18), (19)
and (20). [ ]

apply Theorem VI.2 to obtain the valuds, = 15.7300,
Ly = 22.2456, vo = 15.9165 and~; = 22.5093.

In step 5 of Procedure V1.4 the obtained numerical values
provide various combinations ofr,qt, Tmaa) that yield
stability of the NCS by varying the initial conditions,(0)
and ¢ (0). To illustrate this, consider Fig. 2, which displays



Tradeoff curves for the TOD and RR protocol
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Fig. 3. Tradeoff curves between MATI and MAD.

VIIl. CONCLUSIONS
In this paper we presented a framework for studying

0.7, 1 2 3 2 5 6 7 8 ° the stability of a NCS, which involves communication con-
T x10° straints (only one node accessing the network per transmis-

sion), varying transmission intervals and varying transmis-
Fig. 2. Batch reactor functiong,, £ = 0,1 with ¢o(0) = 1.4142 and sion delays. Based on a neW|y developed model, an ex-

¢1(0) = 1.6142. plicit procedure was presented for computing bounds on the

maximally allowable transmission interval and delay (MATI

and MAD) such that the NCS is guaranteed to be globally
asymptotically stable. The application of the results on a
benchmark example showed how tradeoff curves between

o . ; ; .- "MATI and MAD can be computed providing designers of
(17a) indicates that,,,; is determined by the intersection NCSs with proper tools to support their design choices.

the solutionsg¢,, ¢ = 0,1, to (16) for initial conditions

of ¢ and the constant line with valué€ ¢, (0) and condition
(17b) states that,, .4 is determined by the intersection of
and¢; (as long aspy(0) < ¢1(0)). For the specific situation
depicted in Fig. 2 this would result im,,,;; = 0.008794
and 7,,,,¢ = 0.005062, meaning that UGES is guaranteed
for transmission intervals up t0.008794 and transmission
delays up t00.005062. Interestingly, the initial conditions
of both functionsgy and ¢; can be used to make design [3]
tradeoffs. For instance, by taking (0) larger, the allowable 4
delays become larger (as the solid line indicated by ‘o’ shifts
upwards), while the maximum transmission interval becomes
smaller as the dashed line indicated kywill shift upwards [5]
as well causing its intersection with, (dotted line indicated
by ‘+’) to occur for a lower value ofr. For instance,
by taking ¢o(0) = #1(0) = A\;op = V2, we recover
exactly the delay-free results in [1] with,., = 0 and
Tmati = 0.0108. Hence, once the hypotheses of Theorem V.2[7]
are satisfied, different combinations of MATI and MAD can 8]
be obtained leading to tradeoff curves. Repeating step g
(9]

(1]

(2]

(6]

for various increasing values @f; (0), while keepingg(0)
equal to)\;gD = /2, provides the graph in Fig. 3, where
the particular pointr,,,,:; = 0.008794 and7,,,q4 = 0.005062
corresponding to Fig. 2 is highlighted. A similar reasoning0l
can be used for the RR protocol. This lead€.to= 15.7300,
Ly = 31.4600, vy = 22.5093 andy; = 45.0185 with the [11]
tradeoff curve between MATI and MAD as in Fig. 3. These
tradeoff curves can be used to impose conditions or selddf!
a suitable network with certain communication delay and
bandwidth requirements. [13]
Also different protocols can be compared with respect to
each other. In Fig. 3, it is seen that for the task of stabilization4]
of the unstable batch reactor the TOD protocol outperfomES]
the RR protocol in the sense that it can allow for large
delays and larger transmission intervals.

REFERENCES

D. Carnevale, A.R. Teel, and D. Nié. A Lyapunov proof of improved
maximum allowable transfer interval for networked control systems.
IEEE Trans. Autom. Contrpb2:892-897, 2007.

A. Chaillet and A. Bicchi. Delay compensation in packet-switching
networked controlled sytems. IEEEE Conf. Decision and Control
pages 3620-3625, 2008.

M. Cloosterman.Control over Communication Networks: Modeling,
Analysis, and Synthesi®hD thesis Eindhoven Univ. Techn., 2008.
M. Cloosterman, N. van de Wouw, W.P.M.H. Heemels, and H. Nijmei-
jer. Robust stability of networked control systems with time-varying
network-induced delays. Ifroc. Conf. on Decision and Contiol
pages 4980-4985, San Diego, USA, 2006.

R. Goebel and A.R. Teel. Solution to hybrid inclusions via set and
graphical convergence with stability theory applicatioAsitomatica
42:573-587, 2006.

W.P.M.H. Heemels, A.R. Teel, N. van de Wouw, and D.3Ke
Networked control systems with communication constraints: Tradeoffs
betweens transmission intervals, delays and performa®gbmitted.
J.P. Hespanha, P. Naghshtabrizi, and Y. Xu. A survey of recent results
in networked control system&roc. IEEE pages 138-162, 2007.

P. Naghshtabrizi and J.P. Hespanha. Stability of network control
systems with variable sampling and delays.Pioc. Annual Allerton
Conf. Communication, Control, and ComputirZp06.

D. Nesi¢c and D. Liberzon. A unified framework for design and analysis
of networked and quantized control systemdEEE Trans. Autom.
Control, 54(4):732-747, 2009.

D. N&sSic and A.R. Teel. Input-output stability properties of networked
control systems. IEEE Trans. Autom. Contrpl49(10):1650-1667,
2004.

Y. Tipsuwan and M.-Y. Chow. Control methodologies in networked
control systemsControl Engineering Practice11:1099-1111, 2003.
G.C. Walsh, O. Belidman, and L.G. Bushnell. Asymptotic behavior
of nonlinear networked control system&EEE Trans. Autom. Contr.
46:1093-1097, 2001.

G.C. Walsh, O. Belidman, and L.G. Bushnell. Stability analysis of
networked control system#EE Trans. Control Syst. Techii0:438—
446, 2002.

T. C. Yang. Networked control system: a brief survefE Proc.-
Control Theory Appl.153(4):403—-412, July 2006.

W. Zhang, M.S. Branicky, and S.M. Phillips. Stability of networked
control systemslEEE Control Systems Magazin21(1):84—-99, 2001.



