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Abstract— Incremental stability is a property of dynamical
and control systems, requiring the stability and convergence
of trajectories with respect to each other, rather than with
respect to an equilibrium point or a particular trajectory.
Most design techniques providing controllers rendering con-
trol systems incrementally stable have two main drawbacks:
they can only be applied to control systems in parametric-
strict-feedback or strict-feedback form, and they require the
control systems to be smooth. In this paper, we propose a
controller design technique that is applicable to larger classes
of control systems, including a class of non-smooth control
systems. Moreover, we propose a recursive way of constructing
incremental Lyapunov functions which have been identified as
a key tool enabling the construction of finite abstractions of
nonlinear control systems. The effectiveness of the proposed
results in this paper is illustrated by synthesizing a controller
rendering a non-smooth control system incrementally stable as
well as constructing its finite abstraction, using the computed
incremental Lyapunov function. Finally, using the constructed
finite abstraction, we synthesize another controller for the in-
crementally stable closed-loop system enforcing the satisfaction
of logic specifications, difficult (or even impossible) to enforce
using conventional techniques.

I. INTRODUCTION

This paper proposes a synthesis strategy rendering (non-
smooth) control systems incrementally stable. In incremental
stability, focus is on the stability and convergence of all
trajectories with respect to each other rather than merely with
respect to an equilibrium point or a specific trajectory. Note
that there exist dynamical and control systems that are stable
(with respect to a particular solution) but not incrementally
stable [1]. Examples of applications of incremental stability
include building explicit bounds on the region of attraction in
phase-locking in the Kuramoto system [3], global synchro-
nization in networks of cyclic feedback systems [5], control
reconfiguration of piecewise affine systems with actuator
and sensor faults [16], construction of symbolic models for
nonlinear control systems [15], [4], [12], and synchronization
of complex networks [18]. Unfortunately there are very few
results available in the literature regarding the design of
controllers enforcing incremental stability of the resulting
closed-loop systems. Therefore, there is a growing need to
develop design methods rendering control systems incremen-
tally stable. One of the design approaches, which received
much more attention, is the backstepping method.

Related works include controller design for convergence
of Lur’e-type systems [14] and a class of piecewise affine
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systems [23] through the solution of linear matrix inequalities
(LMIs). In contrast, the results presented in this paper
do not require the solution of the LMIs and existence
of controllers is always guaranteed. Existing backstepping
design approaches either render parametric-strict-feedback1

form systems incrementally globally asymptotically stable2

using the notion of contraction metrics in [6], [20], [19], or
render strict-feedback1 form systems incrementally input-to-
state stable3 using the notion of contraction metrics and in-
cremental Lyapunov functions in [25] and [24], respectively.
The results in [14] offer a backstepping design approach
rendering a larger class of control systems than those in
strict-feedback form input-to-state convergent, rather than
incrementally input-to-state stable. The notion of input-to-
state convergence requires existence of a trajectory which
is bounded on the whole time axis which is not necessarily
the case in incremental (input-to-state) stability. Moreover,
we note that the notion of (input-to-state) convergence can
not be applied in the scope of the results in [15], [4],
[12], which require uniform stability and convergence of
trajectories with respect to each other rather than the uniform
asymptotic stability of a particular trajectory. See [25], [17]
for a comparison between the notions of convergent system
and incremental stability.

The results in this paper improve upon existing backstep-
ping techniques for incremental stability by addressing the
following three aspects in unison:

1) the controller design enforces not only incremental
global asymptotic stability but also incremental input-
to-state stability;

2) the results are applicable to larger classes of control sys-
tems including a class of non-smooth control systems;

3) a recursive way of constructing incremental Lyapunov
functions is provided.

In the first direction, our technique extends the results in
[6], [20], [19], where only controllers enforcing incremen-
tal global asymptotic stability are designed. In the second
direction, our technique improves the results in [6], [20],
[19], which are only applicable to smooth parametric-strict-
feedback form systems, and the results in [25], [24], which
are only applicable to smooth strict-feedback form systems.
In the third direction, our technique extends the results
in [6], [20], [19], [25], where the authors only provide a
recursive way of constructing contraction metrics, and the
results in [14], where the authors do not provide a way
to construct Lyapunov functions characterizing the input-to-
state convergence property induced by the controller. Note
that having incremental Lyapunov functions explicitly is
necessary in many applications. Examples include construc-
tion of symbolic models for nonlinear control systems [4],

1See [9] for a definition.
2Understood in the sense of Definition 2.2.
3Understood in the sense of Definition 2.4.
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approximation of stochastic hybrid systems [7], and source-
code model checking for nonlinear dynamical systems [8].
Note that incremental Lyapunov functions can be used as
bisimulation functions, which are recognized as a key tool
for the analysis provided in [7], [8].

Our technical results are illustrated by designing an incre-
mentally input-to-state stabilizing controller for an unstable
non-smooth control system that does not satisfy the assump-
tions required in [6], [20], [19], [25], [24]. Moreover, we
construct a finite bisimilar abstraction for the resulting incre-
mentally stable closed-loop system using the results in [4],
which can only be applied to incrementally stable systems
with explicitly available incremental Lyapunov functions.
When a finite abstraction is available, the synthesis of the
controllers satisfying logic specifications expressed in linear
temporal logic or automata on infinite strings can be easily
reduced to a fixed-point computation over the finite-state
abstraction [22]. Note that satisfying those specifications is
difficult or impossible to enforce with conventional control
design methods. We synthesize another controller for the in-
crementally stable closed-loop system satisfying some logic
specification explained in detail in the example section.

II. CONTROL SYSTEMS AND STABILITY NOTIONS

A. Notation
The symbols N, R, R+, and R+

0 denote the set of
natural, real, positive, and nonnegative real numbers, re-
spectively. Given a vector x ∈ Rn, we denote by xi
the i–th element of x, by |xi| the absolute value of xi,
and by ‖x‖ the Euclidean norm of x; we recall that
‖x‖ =

√
x2

1 + x2
2 + ...+ x2

n. Given a measurable function
f : R+

0 → Rn, the (essential) supremum of f is denoted
by ‖f‖∞; we recall that ‖f‖∞ := (ess)sup{‖f(t)‖, t ≥ 0}
and ‖f‖[0,τ) := (ess)sup{‖f(t)‖, t ∈ [0, τ)}. Function f
is essentially bounded if ‖f‖∞ < ∞. For a given time
τ ∈ R+, define fτ so that fτ (t) = f(t), for any t ∈
[0, τ), and fτ (t) = 0 elsewhere; f is said to be locally
essentially bounded if for any τ ∈ R+, fτ is essentially
bounded. A function f : Rn → R+

0 is called radially
unbounded if f(x) → ∞ as ‖x‖ → ∞. A continuous
function γ : R+

0 → R+
0 , is said to belong to class K if it

is strictly increasing and γ(0) = 0; γ is said to belong to
class K∞ if γ ∈ K and γ(r)→∞ as r →∞. A continuous
function β : R+

0 × R+
0 → R+

0 is said to belong to class KL
if, for each fixed s, the map β(r, s) belongs to class K∞ with
respect to r and, for each fixed nonzero r, the map β(r, s)
is decreasing with respect to s and β(r, s) → 0 as s→∞.
A function d : Rn × Rn → R+

0 is a metric on Rn if for any
x, y, z ∈ Rn, the following three conditions are satisfied: i)
d(x, y) = 0 if and only if x = y; ii) d(x, y) = d(y, x); and
iii) (triangle inequality) d(x, z) ≤ d(x, y) + d(y, z). Given
measurable functions f : R+

0 → Rn and g : R+
0 → Rn, we

define d(f, g)∞ := (ess)sup{d(f(t), g(t)), t ≥ 0}.

B. Control systems
The class of control systems that we consider in this paper

is formalized in the following definition.
Definition 2.1: A control system is a quadruple Σ =

(Rn,U,U , f), where:
• Rn is the state space;
• U ⊆ Rm is the input set;
• U is the set of all measurable and locally essentially

bounded functions of time from intervals of the form
]a, b[⊆ R to U with a < 0 and b > 0;

• f : Rn × U→ Rn is a continuous map satisfying the
following Lipschitz assumption: for every compact set
Q ⊂ Rn, there exists a constant Z ∈ R+ such that
‖f(x, u) − f(y, u)‖ ≤ Z‖x − y‖ for all x, y ∈ Q and
all u ∈ U.

A curve ξ :]a, b[→ Rn is said to be a trajectory of Σ if
there exists υ ∈ U satisfying:

ξ̇(t) = f (ξ(t), υ(t)) , (II.1)

for almost all t ∈ ]a, b[. We also write ξxυ(t) to denote the
point reached at time t under the input υ from initial con-
dition x = ξxυ(0); the point ξxυ(t) is uniquely determined,
since the assumptions on f ensure existence and uniqueness
of trajectories [21].

A control system Σ is said to be forward complete
if every trajectory is defined on an interval of the form
]a,∞[. Sufficient and necessary conditions for a system to
be forward complete can be found in [2]. A control system
Σ is said to be smooth if f is an infinitely differentiable
function of its arguments.

C. Stability notions
Here, we recall the notions of incremental global asymp-

totic stability (δ∃-GAS) and incremental input-to-state sta-
bility (δ∃-ISS), presented in [25].

Definition 2.2: A control system Σ is incrementally glob-
ally asymptotically stable (δ∃-GAS) if it is forward complete
and there exist a metric d and a KL function β such that for
any t ∈ R+

0 , any x, x′ ∈ Rn and any υ ∈ U the following
condition is satisfied:

d (ξxυ(t), ξx′υ(t)) ≤ β (d (x, x′) , t) . (II.2)
The notion of incremental global asymptotic stability (δ-

GAS), defined in [1], requires the metric d to be the
Euclidean metric. However, Definition 2.2 only requires the
existence of a metric. We note that while δ-GAS is not
generally invariant under changes of coordinates, δ∃-GAS is.
When the origin is an equilibrium point for Σ, with υ(t) = 0
for any t ∈ R+

0 , and the map ψ : Rn → R+
0 , defined by

ψ(·) = d(·, 0), is continuous4 and radially unbounded, both
δ∃-GAS and δ-GAS imply global asymptotic stability.

Remark 2.3: Note that any smooth control system Σ ad-
mitting a contraction metric G, with respect to states, in the
sense of Definition 2.4 in [25] or Definition 1 in [11] satisfies
the property (II.2) with the Riemannian distance function,
defined in [10], provided by the Riemannian metric G.

Definition 2.4: A control system Σ is incrementally input-
to-state stable (δ∃-ISS) if it is forward complete and there
exist a metric d, a KL function β, and a K∞ function γ such
that for any t ∈ R+

0 , any x, x′ ∈ Rn, and any υ, υ′ ∈ U the
following condition is satisfied:

d (ξxυ(t), ξx′υ′(t)) ≤ β (d (x, x′) , t) + γ (‖υ − υ′‖∞) .
(II.3)

By observing (II.2) and (II.3), it is readily seen that δ∃-ISS
implies δ∃-GAS while the converse is not true in general.
Moreover, whenever the metric d is the Euclidean metric,
δ∃-ISS becomes δ-ISS as defined in [1]. We note that while
δ-ISS is not generally invariant under changes of coordinates,
δ∃-ISS is. When the origin is an equilibrium point for Σ, with
υ(t) = 0 for any t ∈ R+

0 , and the map ψ : Rn → R+
0 , defined

by ψ(·) = d(·, 0), is continuous4 and radially unbounded,
both δ∃-ISS and δ-ISS imply input-to-state stability.

Remark 2.5: Note that any smooth control system Σ
admitting a contraction metric G, with respect to states
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and inputs, in the sense of Definition 2.6 in [25] satisfies
the property (II.3) with the Riemannian distance function,
defined in [10], provided by the Riemannian metric G.

D. Characterizations of incremental stability
This section contains characterizations of δ∃-GAS and δ∃-

ISS in terms of existence of incremental Lyapunov functions.
We start by recalling the notions of incremental global
asymptotic stability (δ∃-GAS) Lyapunov function and incre-
mental input-to-state stability (δ∃-ISS) Lyapunov function,
presented in [24].

Definition 2.6: Consider a control system Σ and a con-
tinuous function V : Rn × Rn → R+

0 which is smooth on
{Rn × Rn}\∆, where ∆ = {(x, x) | x ∈ Rn}. Function V
is called a δ∃-GAS Lyapunov function for Σ, if there exist
a metric d, K∞ functions α, α, and κ ∈ R+ such that:
(i) for any x, x′ ∈ Rn

α(d(x, x′)) ≤ V (x, x′) ≤ α(d(x, x′));
(ii) for any x, x′ ∈ Rn and any u ∈ U

∂V
∂x f(x, u) + ∂V

∂x′ f(x′, u) ≤ −κV (x, x′).
Function V is called a δ∃-ISS Lyapunov function for Σ, if
there exist a metric d, K∞ functions α, α, σ, and κ ∈ R+

satisfying conditions (i) and:
(iii) for any x, x′ ∈ Rn and for any u, u′ ∈ U

∂V
∂x f(x, u) + ∂V

∂x′ f(x′, u′) ≤ −κV (x, x′) + σ(‖u− u′‖).
Remark 2.7: It can be readily verified that for any smooth

control system Σ admitting a contraction metric G, with
respect to states and inputs (resp. with respect to states), in
the sense of Definition 2.6 (resp. 2.4 or 1) in [25] (resp. [25]
or [11]), the Riemannian distance function, defined in [10],
provided by the Riemannian metric G, is a δ∃-ISS (resp.
δ∃-GAS) Lyapunov function.

The following theorem, see [26], provides characteriza-
tions of δ∃-ISS (resp. δ∃-GAS) in terms of existence of δ∃-
ISS (resp. δ∃-GAS) Lyapunov functions.

Theorem 2.8: Consider a control system Σ. If U is com-
pact and d is a metric such that the function ψ(·) = d(·, y)
is continuous4 for any y ∈ Rn, then the following statements
are equivalent:
(1) Σ is forward complete5 and there exists a δ∃-ISS (resp.

δ∃-GAS) Lyapunov function, equipped with the metric
d.

(2) Σ is δ∃-ISS (resp. δ∃-GAS), equipped with the metric
d.

In the next section, we propose a design approach, pro-
viding controllers rendering control systems incrementally
input-to-state stable as well as providing incremental Lya-
punov functions.

III. CONTROLLER DESIGN APPROACH

The controller design approach proposed here is inspired
by the backstepping method described in [14]. Consider the
following subclass of control systems:

Σ :

{
η̇ = f(η, ζ),
ζ̇ = υ,

(III.1)

where x =
[
yT , zT

]
∈ Rnη+nζ is the state of Σ, y and z are

the states η, ζ-subsystems, respectively, and υ is the control
input.

4Here, continuity is understood with respect to the Euclidean metric.
5Here, forward completeness is understood with respect to the Euclidean

metric, as in [2].

In order to show the main theorem, we need the following
technical result, see [26] for a detailed proof.

Lemma 3.1: Consider the following interconnected con-
trol system:

Σ :

{
η̇ = f(η, ζ, υ),
ζ̇ = g(ζ, υ).

(III.2)

Let the η-subsystem be δ∃-ISS with respect to ζ, υ and let
the ζ-subsystem be δ∃-ISS with respect to υ for some metrics
dη and dζ , respectively, such that the solutions ηyζυ6 and
ζzυ satisfy the following inequalities:

dη (ηyζυ(t), ηy′ζ′υ′(t)) ≤ βη (dη (y, y′) , t)

+ γζ (dζ(ζ, ζ
′)∞) + γυ (‖υ − υ′‖∞) ,

dζ (ζzυ(t), ζz′υ′(t)) ≤ βζ (dζ (z, z′) , t) + γ̃υ (‖υ − υ′‖∞) ,

where y, y′ and z, z′ are the initial conditions for the η,
ζ-subsystems, respectively. Then, the overall system Σ in
(III.2) is δ∃-ISS with respect to υ.

Inspired by the work in [14], we can now state the main
result on a backstepping controller design approach rendering
the control system Σ in (III.1) δ∃-ISS.

Theorem 3.2: Consider the control system Σ of the form
(III.1). Suppose there exists a continuously differentiable
function ψ : Rnη → Rnζ such that the control system

Ση : η̇ = f(η, ψ(η) + υ̃) (III.3)

is δ∃-ISS with respect to the input υ̃. Then for any λ ∈ R+,
the state feedback control law:

υ = k(η, ζ, υ̂) = −λ(ζ − ψ(η)) +
∂ψ

∂y
(η)f(η, ζ) + υ̂

(III.4)

renders the control system Σ δ∃-ISS with respect to the input
υ̂.

Proof: Consider the following coordinate transforma-
tion:

χ =

[
χ1

χ2

]
= φ(ξ) =

[
η

ζ − ψ(η)

]
, (III.5)

where ξ =
[
ηT , ζT

]T
. In the new coordinate χ, we obtain

the following dynamics:

Σ̂ :

{
χ̇1 = f (χ1, ψ(χ1) + χ2) ,
χ̇2 = υ − ∂ψ

∂y (χ1)f (χ1, ψ(χ1) + χ2) .

The proposed control law (III.4), given in the new coordi-
nates χ by

υ =k(χ1, χ2 + ψ(χ1), υ̂) (III.6)

=− λχ2 +
∂ψ

∂y
(χ1)f (χ1, ψ(χ1) + χ2) + υ̂,

transforms the control system Σ̂ into:

Σ̃ :

{
χ̇1 = f(χ1, ψ(χ1) + χ2),
χ̇2 = −λχ2 + υ̂. (III.7)

Due to the choice of ψ, the χ1-subsystem of Σ̃ is δ∃-ISS with
respect to χ2. It can be easily verified that the χ2-subsystem
is input-to-state stable with respect to the input υ̂. Since any
ISS linear control system is also δ-ISS [1], χ2-subsystem

6Notation ηyζυ denotes a trajectory of η-subsystem under the inputs ζ
and υ from initial condition y ∈ Rnη .
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is also δ-ISS7 with respect to υ̂. Therefore, using Lemma
3.1, we conclude that the control system Σ̃ is δ∃-ISS with
respect to the input υ̂. Since δ∃-ISS property is coordinate
invariant [25], we conclude that the original control system
Σ in (III.1) equipped with the state feedback control law in
(III.4) is δ∃-ISS with respect to the input υ̂ which completes
the proof.

Remark 3.3: The δ∃-ISS property of system Ση in (III.3)
can be established, for example, using the controller syn-
thesis approaches provided in [14], [23] for some classes
of control systems such as e.g. piece-wise affine systems or
Lur’e-type systems.

Remark 3.4: The result of Theorem 3.2 can be extended to
the case in which we have an arbitrary number of integrators:

Σ :


η̇ = f(η, ζ1),
ζ̇1 = ζ2,

...
ζ̇k = υ.

Note that in this case, the functions f and ψ must be
differentiable sufficiently many times.

Although the proposed approach in Theorem 3.2 provides
a controller rendering the control system Σ of the form (III.1)
δ∃-ISS, it does not provide a way of constructing δ∃-ISS
Lyapunov functions. In the next theorem, we show how to
recursively construct incremental Lyapunov functions for the
overall system. We note that the availability of incremental
Lyapunov functions are essential e.g. in the context of the
analysis in [4], [8]. In particular, these analyses exploit the
fact that the incremental Lyapunov function provides an
equivalent relation between the control system and its finite
abstraction [22].

Theorem 3.5: Consider the control system Σ of the form
(III.1). Suppose there exists a continuously differentiable
function ψ : Rnη → Rnζ such that the smooth function
V̂ : Rnη × Rnη → R+

0 is a δ∃-ISS Lyapunov function for
the control system

Ση : η̇ = f(η, ψ(η) + υ̃), (III.8)

with respect to the control input υ̃. Assume that V̂ satisfies
condition (iii) in Definition 2.6 for some κ ∈ R+ and some
σ ∈ K∞, satisfying σ(r) ≤ κ̂r2 for some κ̂ ∈ R+ and any
r ∈ R+

0 . Then the function Ṽ : Rnη+nζ × Rnη+nζ → R+
0 ,

defined as

Ṽ (x, x′) = V̂ (y, y′) + ‖(z − ψ(y))− (z′ − ψ(y′))‖2,

where x =
[
yT , zT

]T
and x′ =

[
y′T , z′T

]T
, is a δ∃-ISS

Lyapunov function for Σ, as in (III.1), equipped with the
state feedback control law (III.4) for all λ ≥ κ+κ̂+1

2 .
Proof: As explained in the proof of Theorem 3.2,

using the proposed state feedback control law (III.4) and
the coordinate transformation φ in (III.5), the control system
Σ of the form (III.1) is transformed to the control system Σ̃
in (III.7). Now we show that

V (x̂, x̂′) = V̂ (x̂1, x̂
′
1) + (x̂2 − x̂′2)T (x̂2 − x̂′2),

is a δ∃-ISS Lyapunov function for Σ̃, where x̂ =
[
x̂T1 , x̂

T
2

]T
and x̂′ =

[
x̂′T1 , x̂

′T
2

]T
are the states of Σ̃ and x̂1, x̂

′
1 and

7We recall that δ-ISS property is equivalent to δ∃-ISS property whenever
the metric is the Euclidean one.

x̂2, x̂
′
2 are the states of χ1, χ2-subsystems, respectively. Since

V̂ is a δ∃-ISS Lyapunov function for χ1-subsystem when χ2

is the input, it satisfies condition (i) in Definition 2.6 using
a metric d as follows:

α(d(x̂1, x̂
′
1)) ≤ V̂ (x̂1, x̂

′
1) ≤ α(d(x̂1, x̂

′
1)),

for some α, α ∈ K∞. Now we define a new metric
d̂ : Rnη+nζ × Rnη+nζ → R+

0 by

d̂(x̂, x̂′) = d(x̂1, x̂
′
1) + ‖x̂2 − x̂′2‖.

It can be readily checked that d̂ satisfies all three conditions
of a metric. Using metric d̂, function V satisfies condition
(i) in Definition 2.6 as follows:

µ
(
d̂(x̂, x̂′)

)
≤ V (x̂, x̂′) ≤ µ

(
d̂(x̂, x̂′)

)
,

where µ, µ ∈ K∞, µ
(
d̂(x̂, x̂′)

)
= α(d(x̂1, x̂

′
1)) + ‖x̂2 −

x̂′2‖2, and µ
(
d̂(x̂, x̂′)

)
= α(d(x̂1, x̂

′
1)) + ‖x̂2 − x̂′2‖2. Now

we show that V satisfies condition (iii) in Definition 2.6 for
Σ̃. Since V̂ is a δ∃-ISS Lyapunov function for χ1-subsystem
when χ2 is the input, λ ≥ κ+κ̂+1

2 , σ(r) ≤ κ̂r2, and using
the Cauchy Schwarz inequality, we have:

∂V

∂x̂

[
f(x̂1, ψ(x̂1) + x̂2)T ,−λx̂T2 + ûT

]T
+
∂V

∂x̂′
[
f(x̂′1, ψ(x̂′1) + x̂′2)T ,−λx̂′T2 + û′T

]T
≤ ∂V̂

∂x̂1
f(x̂1, ψ(x̂1) + x̂2) +

∂V̂

∂x̂′1
f(x̂′1, ψ(x̂′1) + x̂′2)

+ 2(x̂2 − x̂′2)T (−λx̂2 + û)− 2(x̂2 − x̂′2)T (−λx̂′2 + û′)

≤ −κV̂ (x̂1, x̂
′
1) + σ(‖x̂2 − x̂′2‖)− 2λ‖x̂2 − x̂′2‖2

+ 2(x̂2 − x̂′2)T (û− û′)
≤ −κV̂ (x̂1, x̂

′
1) + κ̂‖x̂2 − x̂′2‖2 − 2λ‖x̂2 − x̂′2‖2

+ 2‖x̂2 − x̂′2‖‖û− û′‖
≤ −κV̂ (x̂1, x̂

′
1) + κ̂‖x̂2 − x̂′2‖2 − 2λ‖x̂2 − x̂′2‖2

+ ‖x̂2 − x̂′2‖2 + ‖û− û′‖2 ≤ −κV (x̂, x̂′) + ‖û− û′‖2.
The latter inequality implies that V is a δ∃-ISS Lya-
punov function for Σ̃. Since δ∃-ISS Lyapunov functions
are coordinate-invariant [24], we conclude that the function
Ṽ : Rnη+nζ × Rnη+nζ → R+

0 , defined by

Ṽ (x, x′) =V (φ(x), φ(x′))

=V̂ (y, y′) + ‖(z − ψ(y))− (z′ − ψ(y′))‖2,
is a δ∃-ISS Lyapunov function for Σ, as in (III.1), equipped
with the state feedback control law in (III.4).

Remark 3.6: Note that the results in Theorem 3.5 differ
from the classical ones [9] in the following ways: first, it
is a result for incremental stability rather than for mere
asymptotic stability; second, the resulting overall incremental
Lyapunov function is equipped with the product topology
induced by the metric d on Rnη and the Euclidean metric
on Rnζ , rather than the Euclidean metric on Rnη × Rnζ .

Remark 3.7: One can, for example, use the LMI-based
results in [14], [23] to find a quadratic δ∃-ISS Lyapunov
function for system Ση in (III.8).

Remark 3.8: It can be verified that the backstepping
design approach for strict-feedback form control systems,
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proposed in [24], is a special case of the results in Theorem
3.5. The results in [24] can be easily obtained by recursively
applying the results proposed in Theorem 3.5.

IV. EXAMPLE

Here, we study a non-smooth control system and use the
results in this paper to explicitly construct a δ∃-ISS Lyapunov
function, which, in turn, is employed to construct a finite
equivalent abstraction using the results in [4, Theorem 4.1].
Consider the following non-smooth control system:

Σ :

{
η̇1 = sat(η1) + η1 + 5ζ1,
ζ̇1 = ζ2

1 + η2
1 + υ,

(IV.1)

where sat : R→ R is the saturation function, defined by:

sat(x) =

{ −1 if x < −1,
x if |x| ≤ 1,
1 if x > 1.

Note that here we require δ∃-ISS and a δ∃-ISS Lyapunov
function in order to construct a finite equivalent abstraction
using the results in [4, Theorem 4.1]. By introducing the
feedback transformation υ̂ = ζ2

1 +η2
1 +υ, the control system

Σ is transformed into the following form:

Σ̂ :

{
η̇1 = sat(η1) + η1 + 5ζ1,
ζ̇1 = υ̂.

Now by choosing ψ(η1) = −η1 and substituting ψ(η1) + υ̃
instead of ζ1, we obtain the following η-subsystem:

Σ̂η : { η̇1 = sat(η1)− 4η1 + 5υ̃.

It remains to show that Σ̂η is δ∃-ISS with respect to υ̃. By
choosing the function V1(y1, y

′
1) = (y1−y′1)2, where y1 and

y′1 are states of Σ̂η , and using the Cauchy Schwarz inequality,
we have that:
∂V1

∂y1
(sat(y1)− 4y1 + 5ũ) +

∂V1

∂y′1
(sat (y′1)− 4y′1 + 5ũ′) ≤

−8(y1 − y′1)2 + 2|y1 − y′1||sat(y1)− sat(y′1)|
+10(y1 − y′1)(ũ− ũ′) ≤

−8(y1 − y′1)2 + 2(y1 − y′1)2 + 10(y1 − y′1)(ũ− ũ′) ≤
−5(y1 − y′1)2 + 25(ũ− ũ′)2,

showing that V1 is a δ∃-ISS Lyapunov function for Σ̂η and,
hence, Σ̂η is δ∃-ISS with respect to υ̃. By using the results
in Theorem 3.2 for the control system Σ̂, we conclude that
the state feedback control law:

υ̂ =k(η1, ζ1, ῡ) = −λ(ζ1 − ψ(η1)) +
∂ψ

∂y1
η̇1 + ῡ

=− λ (ζ1 + η1)− (sat(η1) + η1 + 5ζ1) + ῡ,

makes the control system Σ̂ δ∃-ISS with respect to input ῡ,
for any λ ∈ R+. Therefore, the state feedback control law

υ = k̂(η1, ζ1, ῡ) = k(η1, ζ1, ῡ)− η2
1 − ζ2

1 , (IV.2)

makes the control system Σ δ∃-ISS with respect to input ῡ.
Using Theorem 3.5, we conclude that the function V :

R2 × R2 → R+
0 , defined by:

V (x, x′) = V1(y1, y
′
1) + | (z1 − ψ(y1))− (z′1 − ψ(y′1)) |2

= (x− x′)T P (x− x′)

= (x− x′)T
[

2 1
1 1

]
(x− x′) ,

where x = [y1, z1]
T is the state of Σ, is a δ∃-ISS Lyapunov

function for the control system Σ equipped with the state
feedback control law k̂ in (IV.2) with λ > 25+5+1

2 . Here, we
choose λ = 16.

It can be readily verified that the function V̂ (x, x′) =√
V (x, x′) is also a δ∃-ISS Lyapunov function for the control

system Σ equipped with the state feedback control law k̂ in
(IV.2) with λ > 25+5+1

2 , satisfying:
(i) for any x, x′ ∈ R2,√

λmin(P ) ‖x− x′‖ ≤ V̂ (x, x′) ≤
√
λmax(P )‖x −

x′‖;
(ii) for any x, x′ ∈ R2, such that x 6= x′, and for any

ū, ū′ ∈ U ⊆ R,
∂V̂
∂x f

(
x, k̂(x, ū)

)
+ ∂V̂

∂x′ f
(
x′, k̂(x′, ū′)

)
≤

−2.5V̂ (x, x′) + |ū−ū′|
λmin(P ) ;

(iii) for any x, y, z ∈ R2∣∣∣V̂ (x, y)− V̂ (x, z)
∣∣∣ ≤ λmax(P )√

λmin(P )
‖y − z‖,

where λmin(P ) and λmax(P ) stand for minimum and max-
imum eigenvalues of P . Note that the property (iii) is a
consequence of Proposition 10.5 in [22].

For constructing a bisimilar finite abstraction, using the
results in [4, Theorem 4.1] which does not impose any re-
striction on the sampling time, the control system is required
to be incrementally stable and to exhibit an incremental
Lyapunov function.

Now, we construct a finite abstraction S(Σ) for the control
system Σ, equipped with the control input υ in (IV.2), using
the results in [4, Theorem 4.1]. We assume that ῡ(t) ∈
U = [−10, 10], for any t ∈ R+

0 , and ῡ belongs to set U
that contains piecewise constant curves of duration τ = 0.1
second (τ is the sampling time) taking values in

[
U
]
0.5

={
ū ∈ U | ū = 0.5k, k ∈ Z

}
. We work on the subset D =

[−1, 1]×[−1, 1] of the state space Σ. For a given precision8

ε = 0.1 and using properties (i), (ii), and (iii) of V̂ , we
conclude that D should be quantized with resolution of η =
0.009, using the results in Theorem 4.1 in [4]. The state set
of S(Σ) is [D]η = {x ∈ D | xi = kiη, ki ∈ Z, i = 1, 2}. It
can be readily seen that the set [D]η is finite. The computation
of the finite abstraction S(Σ) was performed using the tool
Pessoa [13]. Using the computed finite abstraction, we
can synthesize controllers, providing ῡ in (IV.2), satisfying
specifications difficult to enforce with conventional controller
design methods. Here, our objective is to design a controller
navigating the trajectories of Σ, equipped with the control
input υ in (IV.2), to reach the target set W = [−0.05, 0.05]×
[−0.05, 0.05], indicated with a dark gray box in Figure 2,
while avoiding the obstacles, indicated as light gray boxes in
Figure 2, and remain indefinitely inside W . If we denote by
φ and ψ the predicates representing the target and obstacles,
respectively, this specification can also be expressed by
the LTL formula 32φ ∧ 2¬ψ [22]. Furthermore, to add
a discrete component to the problem, we assume that the
controller is implemented on a microprocessor, which is
executing other tasks in addition to the control task. We
consider a schedule with epochs of three time slots in which
the first slot is allocated to the control task and the other
two to other tasks. A time slot refers to a time interval of
the form [kτ, (k + 1)τ [ with k ∈ N ∪ {0} and where τ is

8The parameter ε is the maximum error between a trajectory of the control
system and its corresponding trajectory from the finite abstraction at times
kτ , k ∈ N0, with respect to the Euclidean metric.
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q1

a
q2

u
q3

u

Fig. 1. Finite system describing the schedulability constraint. The lower
part of the states are labeled with the outputs a and u denoting availability
and unavailability of the microprocessor, respectively.
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initial condition: (0.8, 0.9)
initial condition: (−0.8, −0.9)

Fig. 2. Evolutions of the closed-loop system with initial conditions
(0.8, 0.9), and (−0.8, − 0.9) (left panel) and evolutions of the cor-
responding input signals.

the sampling time. Therefore, the microprocessor schedules
is given by (depending on the initial slot):

|auu|auu|auu| · · · , |uua|uua|uua| · · · , |uau|uau|uau| · · · ,

where a denotes a slot available for the control task and
u denotes a slot allotted to other tasks. We assume that
in unallocated time slots, the input ῡ is identically zero.
The schedulability constraint on the microprocessor can be
represented by the finite system in Figure 1.

A controller, providing ῡ in (IV.2) and enforcing the
specification has been designed by using standard algorithms
from game theory, implemented in Pessoa, where the finite
system is initialized from state q2, see second sequence
above. In Figure 2, we show the closed-loop trajectories of
Σ, equipped with the control input υ in (IV.2) (including the
additional controller for ῡ) and stemming from the initial
conditions [0.8, 0.9] and [−0.8,−0.9] as well as the evolution
of the corresponding input signals ῡ. It is readily seen that
the specifications are satisfied. It can be easily seen that the
schedulability constraint is also satisfied, implying that the
control input ῡ is identically zero at unallocated time slots.

V. DISCUSSION

In this paper, we developed a synthesis approach for
controllers enforcing incremental input-to-state stability. The
proposed approach in this paper generalizes the work in [6],
[20], [19], [25], [24] by being applicable to larger classes of
control systems and the work in [14] by enforcing incremen-
tal input-to-state stability rather than input-to-state conver-
gence. Moreover, in contrast to the proposed design approach
in [14], here we provided a way of constructing incremental
Lyapunov functions which are known to be a key tool in the
analysis provided in [4], [8]. As we showed in the example,
the explicit existence of an incremental Lyapunov function
helps us to use the results in [4, Theorem 4.1] to construct
a finite bisimilar abstraction for a resulting incrementally
stable closed-loop (non-smooth) control system. Using the
constructed finite abstraction, we have synthesized another
controller for the incrementally stable closed-loop system
enforcing the satisfaction of logic specifications, which is

difficult (or even impossible) to enforce using conventional
approaches.
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