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Abstract— Virtually all industrial control systems are im-
plemented digitally by a sample-and-hold device. The design
and performance analysis of sampled-data control systems for
large-scale systems, represented by a set of high-dimensional
differential equations, is challenging. Therefore, commonly, the
complex high-dimensional system (plant) model is reduced to
1) support computationally efficient performance analysis for a
given digital controller or 2) support (sampled-data) controller
synthesis. This paper proposes a novel approach for reduction
of such systems taking the sampled-data effects into account in
the reduction process. In addition, we propose a condition under
which stability of the closed-loop sampled-data control system is
preserved in the reduction. This easy-to-check condition depends
on 1) reduction error on the continuous-time plant model, 2)
the sampling interval, 3) the controller gain. Finally, under this
condition also an error bound for the reduced-order system is
provided. The proposed methodology is illustrated by numerical
examples of a controlled structural dynamical system.

I. INTRODUCTION

In industry, almost all controllers are implemented digitally.
A sample-and-hold (S&H) device prepares the sensor data for
the controller logic, the microprocessor calculates the proper
control action in discrete time, and the S&H transforms the
discrete-time command signal to a continuous-time form [1].

Due to the sample-and-hold effects, and also the time delay
between the measured output and the real output, stability
analysis of sampled-data systems requires special attention [2].
Different methods have been proposed for this purpose, such
as passivity-type stability analysis [7], L2-stability analysis
[20] and Lyapunov-based analysis [14]. Moreover, sampled-
data systems can be described by a time-varying delayed
system [6]. Stability analysis of such systems have been
investigated in [9], [23]. However, these stability analyses
rely on solving some linear matrix inequality conditions,
which becomes computationally infeasible for large-scale
systems.

The dynamics of complex (engineering) systems are usually
governed by a set of high-dimensional differential equations.
As a consequence, the design of sampled-data control systems
for such large-scale systems and the corresponding stability
analysis are challenging. This also holds when we are
dealing with simulation-based performance analysis of such
controllers. For example, when the control system is going
to operate under wide range of disturbance scenarios, a large

*This publication is part of the project Digital Twin project 6.1 with
project number P18-03 of the research programme Perspectief which is
(mainly) financed by the Dutch Research Council (NWO).

1 Dynamics & Control group, Department of Mechanical Engineering,
Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
{m.h.abbasi},{n.v.d.wouw}@tue.nl

2 Department of Civil, Environmental and Geo-Engineering, University
of Minnesota, U.S.A.

number of simulations are required to evaluate controller
performance, which is computationally expensive. Therefore,
Model order reduction (MOR) plays a role to act against
such curse of dimensionality.

MOR of the high-dimensional plant model can be exploited,
first, to facilitate controller design, and second, to render
such simulation-based performance analysis computationally
feasible. The literature on the MOR of sampled-data control
systems is rather limited. In [3], an approximate balancing
method is proposed, which becomes more accurate when
the sampling time decreases. In [4], a moment matching
approach is introduced, where the stability of the open-loop
system after reduction is analyzed. However in these research
works, closed-loop stability of the sampled-data system after
reduction is not studied. On the other hand, sampled-data
systems have been modelled and analyzed as systems with
time-varying (saw-tooth) delays [16], [11], [17]. MOR of
time delay systems has been studied in many research works
[21], [12], [10], [13], [15], [8]. However, in those works,
mostly only the constant delay case is addressed and the
delay is an innate property of the dynamical model itself, as
opposed to digital controller implementation. Therefore, the
nature of the problem considered in this paper intrinsically
differs from the problems investigated in those works.

In this paper, we focus on resolving the computational
complexity of simulation-based performance analysis of
sampled-data systems by addressing two challenges. Firstly, if
the plant model of a sampled-data control system is reduced
ignoring the fact that it is going to be controlled through
a S&H device (we call this standard MOR in this paper),
the closed-loop sampled-data reduced-order model (ROM)
may become unstable and the ROM may not represent the
original sampled-data system accurately. Therefore, a new
perspective to reduce such systems should be introduced
that takes into account the effect of the S&H device during
reduction (called sampled-data aware MOR in this paper),
which is the first contribution of this paper. Secondly, the
reduction affects the accuracy of the model, also in terms of
its performance characteristics. For the sampled-data aware
reduction strategy we propose a condition under which 1)
a bound on the reduction error and 2) a guarantee on the
performance for the sampled-data ROM can be provided.
This easy-to-check condition depends on the reduction error
of the continuous-time plant, the sampling interval and the
L2-gain of the designed controller and the full-order model
(FOM) with respect to specific input-output channels. This
represents the second contribution of this paper.

This paper is organized as follows. Section II defines
the problem statement and presents a motivating test-case
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Fig. 1: Left: closed-loop system together with S&H and
static controller K; Right: Alternative closed-loop system
representation with operator ∆.

to demonstrate the relevance of problems identified above.
Section III presents the sampled-data aware MOR strategy
solving these problems. Section IV shows an illustrative test-
case for our methodology. Finally, Section V concludes the
paper.
Notation. The field of real numbers is denoted by R. For
a vector x ∈ Rn, |x|2 = xTx with superscript T denoting
the transpose operation. The L2−norm of a signal is defined
as ‖u‖2 =

∫∞
0
|u(t)|2 dt. A system has a L2-gain of κ from

any input u to the output y with zero initial condition if
‖y‖ ≤ κ ‖u‖.

II. PROBLEM STATEMENT

In this section, we first formulate the problem and, second,
we give a motivating example on the importance of sampled-
data effects on model reduction.

A. Problem formulation

Consider linear time-invariant (LTI) open-loop dynamics
G described by

G :


ẋ(t) = Ax(t) +Bu(t) +Bdd(t),

y(t) = Cx(t),

yd(t) = Cdx(t)

(1)

with x ∈ Rn states of the system, t time, u ∈ Rm control
input, d ∈ Rmd disturbance, y ∈ Rp measured output, and
yd ∈ Rpd the performance output. Additionally, n,m,md, p
and pd are, respectively, the dimension of the states, the
input, the disturbance, the measured and the performance
outputs. In this setting, n is a large number, which motivates
model reduction. Moreover, A,B,Bd, C and Cd are the state
matrices of the system with appropriate dimensions.

We consider static output-feedback controller u = Ky that
is implemented in a sampled-data fashion. The closed-loop
plant controlled by the controller K equipped with a S&H
implementation is shown on the left side of Figure 1. The
S&H in this study has a fixed sampling-and-hold interval T .
The sampler block samples a continuous signal, i.e., for the
signal y(t), the output of the sampler is yk = y(kT ) with
k ∈ {1, 2, 3, · · · }. The hold block generates a continuous
signal from a discrete signal, i.e., for the discrete input uk,
the output is u(t) = uk ∀t ∈ [kT, (k + 1)T ). This value is
kept constant until the next sampling and hold action takes
place.

The sampled-data-controller introduces the following
closed-loop system dynamics Gcl:

Gcl :

{
ẋ(t) = Ax(t) +Bdd(t),

yd(t) = Cdx(t),
∀t ∈ [0, T )

Gcl :


ẋ(t) = Ax(t) +Bdd(t)

+BKCx(kT ),

yd(t) = Cdx(t).

∀t ∈ [kT, (k + 1)T )

(2)

Here, we have assumed that the controller generates a zero
command signal before receiving the first measurement. The
S&H device challenges the MOR procedure as demonstrated
by a motivating example below.

B. A motivating example

To shed light on the importance of the S&H effect in the
scope of the model reduction of sampled-data control systems,
we present a simple test-case of a two mass-spring-damper
system, see Figure 2. The location of one mass (the output
y) is controlled by applying force u to the other mass (the
input), generated by a proportional controller, u = Ky. The
performance output yd is considered to be the same as the
output y and the disturbance d is assumed to be zero.

Here, we design a stabilizing controller for the FOM,
which is subsequently employed in both the continuous-time
and sampled-data setting. Then, we reduce the open-loop
plant in a standard manner (from input u to output y) by
balanced residualization [5] and apply the same controller to
the ROM. Then, we investigate how well the sampled-data
ROM represents the original sampled-data control system. It
should be noted that the stability of the FOM is checked by
only simulation.

The result of the standard MOR approach is reported in
Figure 3. The dimension of the FOM and the ROM is 4
and 3, respectively. Notably, the closed-loop response of the
both FOM and ROM for a continuous-time implementation
of the controller is stable and accurate; however, although
the sampled-data implementation of the controller stabilizes
the FOM, this implementation destabilizes the ROM. This
result affirms that taking the sampled-data effect into account
during reduction is crucial and MOR should take place in a
sampled-data aware manner (by performing reduction with
respect to additional input-output channels as advocated in
Section III-B below).

In the next section, we will develop such a sampled-
data aware reduction strategy that addresses the challenge
illustrated by the above example.

III. METHODOLOGY

In this section, we propose an approach for sampled-data
aware model reduction.

m1

K1

C1

K2

C2

m2
u(t)

y(t)

Fig. 2: Motivating example.
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Fig. 3: Closed-loop system response of the FOM and the
standard ROM of order 3. Continuous-time and sampled-
data implementation of the controller with K = −275 and
T = 0.02 s; controller designed for stabilizing the FOM.

A. Reformulation of model dynamics

To facilitate sampled-data aware model reduction, we
rewrite the closed-loop system Gcl in (2) in another form
[20], [18]:

Ḡ :


ẋ = Ax+BKCx+Bw +Bdd,

z = KCẋ,

yd = Cdx,

(3)

w(t) = ∆(z(t)) =

{
0 t ∈ [0, T ),

−
∫ t
kT
z(s)ds t ∈ [kT, (k + 1)T ),

(4)

where w is introduced into the governing equations due to
the presence of the sampling-and-hold effects (see the right
side of Figure 1). In fact, w represents the difference between
sampled-data control action and the ideal, continuous-time
control action KCx. Note that we assume that the controller
generates no command before receiving the first measurement.

We conjecture that taking into account the input-output
pair w and z, associated to the sampling-and-hold effects,
in the reduction improves the quality of the reduction in
the sampled-data setting. This is further detailed in the next
section.

B. Model order reduction

The design of the controller, and/or its (simulation-based)
performance analysis may be obstructed by the high dimen-
sion of the open-loop plant G. Therefore, typically MOR is
needed to construct a model suitable for controller synthesis
or for closed-loop performance analysis. Then, constructing
an appropriate reduction in this context is challenged by the
sampled-data effects (see the example in Section II-B).

As mentioned in (3) and in Figure 1, the sampled-data
effect is associated to an additional input-output pair z, w.
When employing standard MOR, the effect of this extra
input-output pair is ignored while this may lead to instability.
Therefore, we propose to take this extra input-output pair

explicitly into account during reduction (sampled-data aware
MOR).

To perform reduction with the new input-output terms, we
rewrite (3)-(4) as follows:

Ḡ∗ :


ẋ = Ax+Bu+Bw +Bdd,

z = KCẋ,

y = Cx,

yd = Cdx,

w =∆(z),

u =Ky

(5)

with ∆ as in (4). This closed-loop system is shown in Figure
4. This reformulation suggests that reducing the system while
taking only the input-output pairs [u d]T and [y yd]

T into
account might not suffice (standard MOR) in the sampled-data
context. Instead, we propose to reduce the system while taking
into account the inputs [u d w]T and outputs [y yd z]T

(sampled-data aware MOR).
With the above vision on the model reduction of sampled-

data systems in mind, we propose to reduce Ḡ∗ in (5) with
these extended input-output pairs in mind. In the next section,
we address the challenge of guaranteeing the stability of the
sampled-data ROM and also its accuracy given a stabilizing
controller designed for the FOM.

C. Preservation of stability, accuracy and performance in
sampled-data aware reduction

Since the ∆-operator in (4) is L2−gain bounded with gain
2T
π [7], i.e., ‖∆‖ ≤ 2T

π , the stability analysis of closed-loop
FOM in the transformed version (3)-(4) can be performed
by the following small-gain condition [19] (see right side of
Figure 1): ∥∥Ḡ∥∥∞ 2T

π
< 1, (6)

where Ḡ is governed by (3) and
∥∥Ḡ∥∥∞ is the H∞-norm of

Ḡ from input w to output z. Based on this inequality, we can
decide either on the maximum allowable sampling time T
or the requirement on H∞-norm of the transformed system
Ḡ, which can be tuned by designing the controller K. Here,
we assume that the controller K is already designed and
we aim at performing many simulations to study the effect
of the disturbance d on the system. In the following, we
will extend this result for the closed-loop system (5) and its
reduced-order version. Before going into details, we adopt
the following assumption.

Assumption 1: There exists an asymptotically stabilizing
static output-feedback controller u = Ky for the sampled-data

y

yd

z

u

d
w

∆

KH

Ḡ∗

Fig. 4: Closed-loop system reformulation.
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FOM as in (2). This controller renders the matrix A+BKC
Hurwitz.

We aim to derive conditions under which the closed-
loop sampled-data ROM is also asymptotically stable with
the sampled-data controller designed for the FOM. To this
end, the controller is incorporated within the linear FOM to
construct the system H , as shown in Figure 4, which shows
the closed-loop system if the controller was implemented in
a continuous-time manner, i.e., with w = 0. This system is
governed by the following equation:

u = Ky
(5)−→ H :


ẋ =(A+BKC)x+Bw +Bdd,

z =KCẋ

yd =Cdx.

(7)

The ROM obtained from applying balanced truncation or
balanced residualization [5] 1 to H , which gives the ROM
Ĥ , is governed by the following system of equations:

Ĥ :


˙̂x =(Â+ B̂KĈ)x̂+ B̂ŵ + B̂dd,

ẑ =KĈ ˙̂x

ŷd =Ĉdx̂,

(8)

where it will be closed by ŵ = ∆(ẑ) with ∆ as in (4). Here,
(̂·) denotes the reduced-order matrices and variables. Here,
x̂ ∈ Rn̂ with n̂� n, where n̂ is the dimension of the reduced-
order model. To analyze the stability of Ĥ with w = ∆(ẑ),
i.e., the reduced-order sampled-data control system, we will
use the following lemma.

Lemma 1: The L2-gain from input ŵ to output ẑ for the
ROM Ĥ , denoted by γ̂zw, abides by the following inequality

γ̂zw ≤ γzw + εzw, (9)

where γzw is the L2-gain of H from input w to output z and
εzw is the error bound due to the reduction of H to Ĥ from
input w to output z.

Remark 1: An error bound is readily available when using
balancing-based methods for the LTI system H , i.e., εzw =∑n
i=n̂+1 σi, where σi’s are the discarded Hankel singular

values. If balanced residualization is used to obtain the ROM,
a feedthrough term appears in (8), which can be handled in
a straightforward manner.

To ensure the stability of the closed-loop sampled-data
ROM, we use the following theorem.

Theorem 1: Consider Assumption 1. If the inequality

2T

π
(γzw + εzw) < 1 (10)

is satisfied, then the closed-loop sampled-data ROM is
asymptotically stable.

Proof: A direct application of small-gain theorem to
(8) closed with ŵ = ∆(ẑ) enforces ‖∆‖ γ̂zw < 1 for
stability. Replacing ‖∆‖ with its L2-gain bound, 2T

π and
using inequality (9) to replace γ̂zw yields (10).

Remark 2: Equation (10) suggests that for stabilizing the
ROM with the sampled-data controller designed for the FOM,

1For simplicity, the feed-through term coming from balanced residualiza-
tion is not considered here.

1) the sampling interval should be low enough, and/or 2) the
ROM Ĥ should be close enough to the FOM H (i.e., εzw
small enough).

Suppose a sampled-data controller u = Ky is given. The
following theorem gives an error bound on the performance
output error induced by reduction. In the following theorem,
γij denotes the L2-gain of system H from input j to output
i. Moreover, εij is the reduction error bound from H to Ĥ
from input j to output i.

Theorem 2: Adopt Assumption 1 and suppose inequality
(10) holds. Then, the following error bound on the perfor-
mance output holds, ‖yd − ŷd‖ ≤ ε ‖d‖ with

ε =εydd + εydw

2T
π
γzd

1− 2T
π
γzw

+
(γydw + εydw)

1− 2T
π

(γzw + εzw)

(
εzd + εzw

2T
π
γzd

1− 2T
π
γzw

)
.

(11)

Proof: For this proof, we introduce the notation yd(w, d)
denoting the performance output of the FOM for inputs w
and d. Similar signals are defined for different inputs. To
derive the error bound (11), we write:

‖yd(w, d)− ŷd(ŵ, d)‖ =

‖yd(w, d)− ŷd(w, d) + ŷd(w, d)− ŷd(ŵ, d)‖ ≤
‖yd(w, d)− ŷd(w, d)‖+ ‖ŷd(w, d)− ŷd(ŵ, d)‖ ≤
εydw ‖w‖+ εydd ‖d‖+ γ̂ydw ‖w − ŵ‖ .

(12)

Here, γ̂ydw can be replaced by γydw + εydw similar to the
inequality in (9). To bound ‖w‖, we exploit the Lipschitz
boundedness of operator ∆ as follows:

‖w‖ ≤ 2T

π
‖z‖ ≤ 2T

π
(γzw ‖w‖+ γzd ‖d‖)

⇒ ‖w‖ ≤
2T
π
γzd

1− 2T
π
γzw
‖d‖ .

(13)

To compute a bound for the rightmost term in the right-hand
side of (12), we use the gain of the operator ∆ again, i.e.,

‖w − ŵ‖ ≤ 2T

π
‖z(w, d)− ẑ(ŵ, d)‖ , (14)

where z(w, d) is defined similarly to yd(z, w) above. Follow-
ing similar steps, we define a bound on ‖z(w, d)− ẑ(ŵ, d)‖
as follows:

‖z(w, d)− ẑ(ŵ, d)‖ =

‖z(w, d)− ẑ(w, d) + ẑ(w, d)− ẑ(ŵ, d)‖ ≤
‖z(w, d)− ẑ(w, d)‖+ ‖ẑ(w, d)− ẑ(ŵ, d)‖ ≤
εzw ‖w‖+ εzd ‖d‖+ γ̂zw ‖w − ŵ‖ .

(15)

Using (14) in (15) and then inserting (12) yields:

‖w − ŵ‖ ≤
εzw

2T
π
γzd

1− 2T
π
γzw

+ εzd

1− 2T
π
γ̂zw

‖d‖ .
(16)

Here, γ̂zw can be replaced by γzw + εzw as in (9). Inserting
(16) and (13) into (12) yields the desired result.

Remark 3: Since balancing methods do not provide a priori
reduction error bounds for individual input-output pairs, we
need to use the overall error bound for the entire input-output
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pairs instead of all εij’s in (11) to obtain an a priori error
bound for the sampled-data ROM.

Remark 4: A less-conservative but a posteriori error bound
can be derived similar to (11) by replacing (γydw + εydw)
and (γzw + εzw) with γ̂ydw and γ̂zw, respectively.

We can also use the error bound (11) to obtain a bound
on the L2-gain of the closed-loop sampled-data ROM.

Corollary 1: Consider a sampled-data controller u = Ky
that asymptotically stabilizes the FOM (5) satisfying the
condition in (10). The L2-gain of the closed-loop sampled-
data ROM is bounded by (κ+ ε), i.e.:

‖ŷd‖ ≤ (κ+ ε) ‖d‖ , (17)

where κ is the L2-gain of the FOM from d to yd and ε is
given in (11).

Proof: This can be proved by using the triangular
inequality.

In the next section, we show the results of applying the
samples-data aware reduction method and analysis results to
the motivating example in Section II-B and also to a more
extensive illustrative test case.

IV. RESULTS

In this section, we first apply our methods to the motivating
example in Figure 2 and then introduce an illustrative test
case.

A. Mass-spring-damper test-case

Performing the sampled-data aware MOR to the example
in Section II-B yields the result in Figure 5. In this scenario,
a stabilizing sampled-data controller is given for the FOM
and we desire to construct a stable, accurate sampled-data
ROM. Standard MOR did not provide such result as shown
in Figure 3. Figure 5 shows that using the proposed sampled-
data aware MOR approach, stability is preserved for the
ROM and the ROM accurately described the response of the
FOM. For this test case, we did not even satisfy (10), and
as can be seen, stability is preserved. This is related to the
conservativeness of (10). To satisfy (10), i.e., guaranteeing
having a stable sampled-data ROM with K = −275, the
sampling time should be less than 0.014 s.

To compare the small-gain conditions for the FOM as in
[20] and for the ROM as in (10), stability regions for the
closed-loop sampled-data FOM and closed-loop sampled-data
ROM is reported in Figure 6. This result confirms that the
stability regions of the FOM and ROM are very similar to
each other, and, therefore, the ROM-based simulation analysis
of the controller can lead to significant speedup.

B. An illustrative test case

The test-case considered here is based on [22]. It is an
Euler-Bernoulli beam with the location of the inputs, measure
outputs, disturbance and performance measure shown in
Figure 7. The slender beam has the following dimensions:
length×height×width = 1.3 m×3 mm×0.1 m. Moreover, the
beam material properties are as follows: a mass density of
7746 kg/m3 and Young’s modulus of 200 GPa. Moreover,

the beam is subject to a disturbance d = 0.1 sin(10t) N
representing an external force, which causes the beam to
vibrate in the vertical plane. To attenuate the effect of this
disturbance, an actuation force u can be applied by a static
sampled-data controller, which acts on a measurement y of the
vertical deflection at some point of the beam, at a different
location than the performance measure. The dynamics of
the beam is modelled using Euler-Bernoulli beam elements,
leading to a linear time-invariant dynamical system of the
form

Mq̈ +Dq̇ +Kbeamq = buu+ bdd, (18)

with nodal coordinates q containing the deflection and rotation
of each node and M,D, and Kbeam representing the mass
matrix, damping matrix, and stiffness matrix, respectively.
Moreover, bu and bd are vectors with appropriate dimension,
which take into account the effect of the respective forces at
the right locations. Equation (18) can easily be written in the
form of (1).

Considering 20 elements, the model written in form of (1)
contains n = 80 states. Reducing from n = 80 to n̂ = 20 by
balanced residualization yields εzw = 36.8 (this value can be
used for all εij’s in (11)). We synthesize the feedback gain for
the FOM: K = −1200. Using (10), we restrict T = 0.0081
s to obtain a stable closed-loop ROM. Figure 8 compares
ŷd for the closed-loop sampled-data ROM with yd from the
closed-loop sampled-data FOM. This figure confirms that
the 1) ROM with the additional input-output channel is an
accurate representation of the original model, 2) stability of
the closed-loop ROM is preserved by the sampled-data aware
reduction method.

V. CONCLUSIONS

Sampled-data control systems are ubiquitous in industry.
Model order reduction of such systems requires special atten-
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Fig. 5: Closed-loop system response of the FOM and the
sampled-data aware ROM of order 3. Continuous-time and
sampled-data implementation of the controller with K =
−275 and T = 0.02 s; controller designed for stabilizing the
FOM even without satisfying (10) and just by enriching the
input-output channels.
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Fig. 6: Comparison of stability regions; sampling time T vs
controller gain −K; blue circle: both closed-loop sampled-
data FOM and ROM are stable; green rectangle: stable closed-
loop sampled-data FOM; red cross: stability of FOM and
ROM cannot be deduced from [20] and (10).

tion due to the sampling and hold effect, since it can destroy 1)
the quality of the reduction and 2) stability through reduction.
In this paper, first, a new perspective for model order reduction
of sampled-data systems is introduced (sampled-data aware
model order reduction). Second a condition is formulated
under which stability is preserved, where the easy-to-check
condition depends on the controller gain, the error bound
on the reduction of the linear time-invariant continuous-time
(reduced-order) plant and the sampling interval. Moreover,
an error bound for the sampled-data reduced-order system is
provided. The illustrative examples show the effectiveness of
the proposed approach.
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