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a b s t r a c t 

A methodology is proposed for the design of sampled-data fixed-order decentralised controllers for Mul- 

tiple Input Multiple Output (MIMO) Linear Time-Invariant (LTI) time-delay systems. Imperfections in the 

communication links between continuous-time plants and controllers arising due to transmission time- 

delays, aperiodic sampling, and asynchronous sensors and actuators are considered. We model the errors 

induced due to the control imperfections using an operator approach leading to a simple L 2 stability cri- 

terion. A frequency domain-based direct optimisation approach towards controller design is proposed in 

this paper. This approach relies on the minimisation of cost functions, for stability and robustness against 

control imperfections, as a function of the controller or design parameters. First, the proposed method to- 

wards controller design is applied to generic MIMO LTI systems with time-delays. Second, when the delay 

system to be controlled has the structure of a network of coupled quasi-identical subsystems, we use a 

scalable algorithm to design identical decentralised controllers through network structure exploitation. 

Quasi-identical subsystems are identical subsystems that have non-identical uncertainties or control im- 

perfections. By exploiting the structure, we improve the computational efficiency and scalability with the 

number of subsystems. The methodology has been implemented in a publicly available software, which 

supports system models in terms of delay differential algebraic equations. Finally, the effectiveness of the 

methodology is illustrated using a numerical example. 

© 2020 European Control Association. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

For large-scale systems, decentralised controllers are gener-

lly preferred over centralised controllers due to their practical-

ty and costs involved [28,40] . However, designing decentralised

ontrollers is challenging since they have to collectively meet

lobal objectives while acting (and sensing) locally. Time-delays
� This work was supported by the project C14/17/072 of the KU Leuven Research 

ouncil, by the project G0A5317N of the Research Foundation-Flanders (FWO - 

laanderen), and by the project UCoCoS, funded by the European Unions Horizon 

020 research and innovation programme under the Marie Sklodowska-Curie Grant 

greement No 675080. 
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re present in many large-scale systems as the transfer of energy,

aterial, or information is usually not instantaneous. Many appli-

ations such as power systems [29,44] and automated vehicular

latoons [45] could be modelled as interconnected time-delay sys-

ems. For these applications, stability and performance levels may

e guaranteed for their (respective) continuous time system mod-

ls. However, when implemented digitally, the information is not

vailable in continuous time [21] , the clocks at the sensors and ac-

uators may not be operating synchronously [21,26] , and the in-

ividual sampling sequences may be aperiodic [3,23,46] . For real-

orld applications, we can also encounter situations where the

ocal clocks at the sensor and at the actuator are not synchro-

ized [12,43] . In general, synchronization of clocks over networks

nduces fundamental limitations [14] . For power system applica-

ions, it has been shown in [22] that GPS synchronization may be

ulnerable against malicious attacks. This motivates the study of

ecentralised sampled-data controllers. To the best of the authors’

nowledge, this is largely an open problem. Some problem formu-
rved. 
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lations in the literature are close to the problem considered in this

paper. For example, the problem of how large the clock offset be-

tween actuator and sensor can be for the centralised control con-

figuration, without compromising the existence of a stabilizing lin-

ear time-invariant controller was already addressed in [43] . Other

problem formulations, related to the topic studied in this paper, in-

clude decentralised event triggered control [10] and decentralised

observer-based feedback control for plants with networked com-

munication (modelled as switched systems) [4] . In [10] , sampling

interval is considered to be a control parameter. In general, sam-

pling intervals could be arbitrary and cannot be controlled, simi-

lar to the case considered in this paper. The stability analysis of

LTI systems with distributed sensors and aperiodic sampling was

dealt with in [13] and was extended to include static decentralised

controllers and time-varying control computation delays in [41] .

However, designing the decentralised sampled-data controllers for

time-delay systems is largely an open problem. 

In the literature, sampled-data systems are modelled as Time-

Delay Systems (TDSs) [15,34] , hybrid systems [10,37] , discrete-time

switched systems with varying parameters [11] , feedback intercon-

nections of systems [16] , etc. We refer to the recent survey paper

of [20] for a general overview of the topic. In this paper, the case of

Linear Time-Invariant (LTI) systems with time-delays (at state, con-

trolled input, and measured output) of retarded type is addressed

from a feedback interconnection point of view. We focus on both

stability conditions and design approaches for sampled-data fixed-

order decentralised controllers for LTI systems with constant de-

lays. For generality, we take into account several imperfections in

control implementation such as aperiodic sampling, time-delays,

and asynchronous operation of controllers. Moreover, two types

of time-delays are considered in this paper. First, constant time-

delays which are present in the continuous-time system models.

Second, time-varying delays in the communication network be-

tween plants and controllers. 

The main contributions of this paper are three-fold. First, sta-

bility conditions are presented for generic LTI systems with con-

stant time-delays (at input, output, and state) stabilised by fixed-

order decentralised controllers taking into account control imper-

fections (induced by the implementation of the sampled-data con-

troller with feedback delays). The approach is based on rewrit-

ing the closed-loop system of the Multiple Input Multiple Output

(MIMO) plant and sampled-data fixed-order controllers as a feed-

back interconnection of a nominal (continuous time) Delay Differ-

ential Algebraic Equations (DDAEs) and an uncertainty block. Then,

an input-output L 2 stability criterion is proposed. All the control

imperfections are “absorbed” at the uncertainty (operator) block in

this feedback interconnection [17,24,25] . 

As a second contribution, we propose to optimise the controller

parameters for robustness against control imperfections by min-

imising the H ∞ 

norm of an appropriately defined transfer function.

Additionally, it is shown that the conservatism of the optimised

robustness criterion can be reduced by exploiting the structure

of the uncertainty block using “scaling” parameters. The method-

ology used to design these parameters is grounded in the fre-

quency domain-based direct optimisation approach of [9,18,32] ,

where objective functions specifying performance criteria are opti-

mised as a function of the controller parameters. The adopted fre-

quency domain-based optimisation approach for controller param-

eters complements the approach for infinite dimensional systems

considered in [2] . This approach is flexible in exploiting the struc-

ture of the controller. Structures such as decentralised, distributed,

overlapping, lower-order, and PID 

1 controllers can be handled. 
1 See the recent survey of [38] , wherein PID controllers still have a strong indus- 

trial impact. 

f  

(  

i  
As a third contribution and main result of this paper, a scal-

ble controller design approach is proposed for large-scale sys-

ems composed of quasi-identical subsystems connected through

ome delayed network. This case is inspired from real-world appli-

ations of multi-agent systems and consensus or synchronization

roblems, for example, an automated vehicular platoon may be

onsidered as a group of quasi-identical systems which are com-

unicating through a network [9,45] . Moreover, many researchers

cknowledge the need to develop scalable and computationally ef-

cient algorithms for control that have the following features: dis-

ributed and deployable at large scales, supported by local deci-

ions and global coordination, and robust against asynchronous

peration and inconsistent information [26] . In applications such

s power systems [44] and automated vehicular platoons [45] ,

ontrollers are often implemented as algorithms programmed on

mbedded processors manufactured by different companies which

ight work at different tem poral frequencies. In this paper, iden-

ical subsystems that have non-identical uncertainties or control

mperfections are considered to be quasi-identical subsystems. The

ontrol design problem is solved for a lower-dimensional system

sing network structure exploitation (see [9] ) while guaranteeing

tability of the large network. 

The remainder of the paper is organised as follows.

ection 2 introduces the MIMO time-delay plants which are to be

tabilised by sampled-data decentralised controllers. Section 3 re-

asts the problem of maximizing robustness against the control

mperfections to a standard H ∞ 

norm optimisation problem.

ection 4 presents the direct optimisation approach in the fre-

uency domain to optimise robustness (in terms of H ∞ 

norm)

f the controllers against control imperfections. This H ∞ 

norm

haracterises the maximum allowable uncertainty. Section 4.2 re-

alls the concept of network structure exploitation and how it

ay be utilised to improve computational efficiency in designing

ecentralised controllers that are robust (against control imper-

ections). A numerical example is presented in Section 5 . Finally,

ome concluding remarks are given in Section 6 . 

We use the following notations throughout the paper. N is the

et of all natural numbers. R is the set of all real numbers. R 

n is

he n -dimensional real vector space. Z , Z 

+ 
0 
, and Z 

− are the sets of

ll integers, non-negative integers, and negative integers, respec-

ively. The Kroneckor product is denoted by �. R (λ) is the real

art of complex number λ. σ 1 ( G ) is the maximum singular value

f matrix G . L 2 e (a, b) is the extended L 2 -space of all square inte-

rable and Lebesgue measurable functions defined on the interval

 a , b ) of appropriate dimension. 

. MIMO plant and decentralised controllers 

In many applications, communication of sensor data and ac-

uation commands are distributed over different communication

hannels which may function aperiodically and asynchronously. In

his paper, we first consider a generic Multiple Input Multiple Out-

ut (MIMO) continuous time plant with N ∈ N inputs and outputs,

o be controlled by N decentralised dynamic controllers. The dy-

amics of the Linear Time Invariant (LTI) MIMO plants with con-

tant time-delays considered in this paper are described by 
 

 

 

 

 

 

 

 

 

 

 

 

 

˙ ψ p (t) = A ψ p , 0 ψ p (t) + 

m ∑ 

j=1 

A ψ p , j ψ p (t − τψ, j ) 

+ 

N ∑ 

i =1 

B ψ p ,i u i (t − τu,i ) , 

y i (t) = C ψ p ,i ψ p (t − τy,i ) , i = 1 , . . . , N, 

(1)

or almost all t ≥ 0, where ˙ ψ p is the right-hand derivative of the

instantaneous) state vector ψ p , u i ∈ R 

n ui is the i th controlled-

nput, y i ∈ R 

n yi is the i th measured-output, ψ p ∈ R 

n p is the
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Fig. 1. The closed-loop system of the decentralised controllers ( K i ) and the MIMO 

plant ( P ) with constant time-delays and control imperfections. S p 
i 

− H p 
i 

and S c 
i 
− H c 

i 

represent the sample and hold functions from the i th sensor to the i th con- 

troller and from the i th controller to the i th actuator, respectively, i = 1 , . . . , n . 

{ s i 
k 
} k ∈ Z + 

0 
, { ρ i 

k 
} k ∈ Z + 

0 
, { ζ i 

k 
} k ∈ Z + 

0 
, and { a i 

k 
} k ∈ Z + 

0 
are the corresponding sequences in time 

when the sample and hold functions are implemented. 
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lant state vector, τψ , j , τ y , i , τ u , i > 0 are constant delays, and

 ψ p , 0 , A ψ p , j , C ψ p ,i , B ψ p ,i are real valued constant matrices, i =
 , . . . , N, j = 1 , . . . , m . It has been shown in [8,9,32] that plants

f the form (1) can be rewritten in the general DDAE form with

ime-delays present only at the state. Plants of the form (1) can be

ewritten in the DDAE form as 
 

 

 

E p ̇ x p (t) = A p0 x p (t) + 

m n ∑ 

j=1 

A p j x p (t − τ j ) + 

N ∑ 

i =1 

B pi u i (t) , 

y i (t) = C pi x p (t) , i = 1 , . . . , N, 

(2) 

here x p = [ ψ 

T 
p γ T 

ψ,y 
γ T 

ψ,u 
] T is the augmented (instantaneous)

tate vector, γ ψ , y and γ ψ , y are dummy vectors used for rep-

esenting output vector y = [ y T 
1 
, . . . , y T 

N 
] T and input vector u =

 u T 1 , . . . , u 
T 
N ] 

T respectively, and E p may be singular. Notice that all

he time-delays are now associated with the augmented state

ector, that is, { τ1 , . . . , τm n } = { τψ, 1 , . . . , τψ,m 

} ∪ { τy, 1 , . . . , τy,N } ∪
 τu, 1 , . . . , τu,N } . Then, m is the number of distinct time-delays

resent at the state and m n is the number of distinct time-delays

resent at the state, inputs, and outputs ( m n ≥ m ). Sections 2.1 and

.2 will introduce sampled-data controllers for plants of form

2) and a related input-output L 2 stability criterion. 

Furthermore, a particular class of systems of form (2) is also

onsidered, for which the computational efficiency of the controller

esign algorithm can be improved. The particular class of sys-

ems consists of “N ” identical subsystems coupled through a net-

ork graph. We consider a network described by a directed graph

 = {V, E, A M 

} with a set of nodes V = { 1 , 2 , . . . , N} and a set of

dges E ⊂ V × V . The edge (i, j) ∈ E connects from node j ∈ V to

ode i ∈ V . A M 

is the adjacency matrix of the corresponding net-

ork structure, with a Mi , j ≥ 0 being the entry at row i and col-

mn j . The adjacency matrix is a square matrix with zero diago-

al elements and its off-diagonal element ( a Mi , j ) is considered to

e the weight of the corresponding edge ( i , j ). The graph G does

ot need to be strongly connected. We assume that the associated

ime-delays and the information exchange between these subsys-

ems are identical. Then, the particular class of MIMO systems of

orm (1) can be rewritten as 
 

 

 

 

 

 

 

 

 

˙ ψ pi (t) = Ā ψ p , 0 ψ pi (t) + 

m ∑ 

j=1 

Ā ψ p , j ψ pi (t − τψ, j ) 

+ B̄ ψ p 
u i (t − τu ) + B̄ uc u ci (t − τuc ) , 

y i (t) = C̄ ψ p 
ψ pi (t − τy ) , i = 1 , . . . , N, 

(3) 

hich corresponds to the nodal dynamics and their interconnec-

ion is described by the coupling term 

 ci (t) = 

N ∑ 

j =1 , j � = i 
a Mi, j ψ p j (t) , (4)

here ˙ ψ pi is the right-hand derivative of the state vector ψ pi cor-

esponding to subsystem i , τ uc > 0, τ y > 0, τ u > 0 are constant de-

ays, and Ā ψ p , 0 , Ā ψ p , j , C̄ ψ p 
, B̄ ψ p 

, B̄ uc are real valued constant ma-

rices, i = 1 , . . . , N. Similar to generic plants of form (1) , plants of

orm (3) and (4) can also be re-written in the DDAE form as 
 

 

 

 

 

 

 

 

 

 

 

 

 

Ē p ˙ x pi (t) = Ā p0 x pi (t) + 

N ∑ 

j =1 , j � = i 
a Mi, j ̄F p x p j (t) 

+ 

m n ∑ 

k =1 

Ā pk x pi (t − τk ) + B̄ p u i (t) , 

y i (t) = C̄ p x pi (t) , i = 1 , . . . , N. 

(5) 

he above system model is also in the most general DDAE form

ince Ē p is allowed to be singular. Hence, this system can also be

sed to represent subsystems which are delay coupled with the
elp of an augmented state vector [9] . The design of robust (iden-

ical) decentralised controllers for such systems can be made com-

utationally efficient using the network structure exploitation ap-

roach developed in [9] . The corresponding approach will be dis-

ussed in Section 4.2 . 

In this paper, we focus on the (non-identical) control imper-

ections induced by aperiodic and asynchronous sample and hold

unctions at the interconnections between sensors, decentralised

ontrollers, and actuators. However, as we shall illustrate with an

xample in Section 5 , the adopted approach based on the small

ain theorem trivially extends to combining other ( L 2 -bounded)

ncertainties such as parametric uncertainties. That is, for the par-

icular case where (sub-)systems are coupled in a network, the as-

umption of identical subsystems can be relaxed (only the nominal

ubsystem models need to be identical) [27] . In the following sec-

ion, we define the decentralised sampled-data controllers used to

tabilize systems of form (1) . 

.1. Sampled-data decentralised control 

The sampling and actuation sequences for control are intro-

uced in this section. An overview of the sampled-data control

onfiguration is shown in Fig. 1 and the corresponding symbols are

efined as follows. The i th measured output ( y i ( t )) is sampled ac-

ording to a sampling sequence { s i 
k 
} k ∈ Z + 

0 
, represented using a set

f instants, where s i 
0 

∈ (0 , ̄h i ] , 

 

i 
k +1 = s i k + h 

i 
k , (6)

nd h i 
k 

∈ (0 , ̄h i ] , k ∈ Z 

+ 
0 
, i = 1 , . . . , N. The sampling intervals ( h i 

k 
)

onsider imperfections in sampling such as jitters and data packet

ropouts. The sequence of instants at which the i th controller re-

eives the sampled output is denoted by { ρ i 
k 
} k ∈ Z + 

0 
, where 

i 
k = s i k + ϑ 

i 
k , (7) 

nd ϑ 

i 
k 

∈ [0 , ϑ̄ i ] , k ∈ Z 

+ 
0 
, i = 1 , . . . , N. The asynchrony between sen-

ors and controllers are denoted by ϑ 

i 
k 
, k ∈ Z 

+ 
0 
, i = 1 , . . . , N. We

onsider the sampled-output received at the controller to be 

ˆ 
 i (t) = 

{ 

y i (0) , ∀ t ∈ [0 , ρ i 
0 ) , 

y i (s i 
k 
) , ∀ t ∈ [ ρ i 

k 
, ρ i 

k +1 
) , 

(8) 
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Fig. 2. A random output signal ( y i ( t )) is sampled according to a sampling se- 

quence { s i 
k 
} k ∈ Z + 

0 
, i = 1 , . . . , N. The signal available at the i th controller ( ̂ y i (t) ) is an 

implementation of the sampled output ( y i (s i 
k 
) ) at an interval [ ρ i 

k 
, ρ i 

k +1 
) , k ∈ Z + 

0 
, 

i = 1 , . . . , N. 

Fig. 3. A random input signal ( ̂ u i (t) ) computed at the i th controller is sampled ac- 

cording to a sampling sequence { ζ i 
k 
} k ∈ Z + 

0 
, i = 1 , . . . , N. The signal available at the i th 

actuator ( u i ( t )) is an implementation of the sampled input ( ̂ u i (ζ
i 
k 
) ) at an interval 

[ a i 
k 
, a i 

k +1 
) , k ∈ Z + 

0 
, i = 1 , . . . , N. The generated input signal ( ̂ u i (t) ) is the sum of the 

continuous-time signal corresponding to the state of the controller ( C ci x ci ( t )) and 

the piecewise continuous signal corresponding to the sampled output received at 

the controller ( D ci ̂ y i (t) ). 
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f  
for all k ∈ Z 

+ 
0 
, i = 1 , . . . , N, see Fig. 2 . We consider the dynamics of

the i th fixed-order controller to be 

˙ x ci (t) = A ci x ci (t) + B ci ˆ y i (t) , 

ˆ u i (t) = C ci x ci (t) + D ci ̂  y i (t) , 
(9)

for almost all t ≥ 0, where the controller state is denoted by x ci (t) ∈
R 

n ci , the controller coefficient matrices A ci , B ci , C ci , and D ci are

constant and real valued. The i th input computed by the con-

troller ( ̂  u i (t) ) is sampled according to a sequence { ζ i 
k 
} k ∈ Z + 

0 
where

ζ i 
0 

∈ (0 , κ̄i ] , 

ζ i 
k +1 = ζ i 

k + κ i 
k , (10)

and κ i 
k 

∈ (0 , κ̄i ] , k ∈ Z 

+ 
0 
, i = 1 , . . . , N. Asynchrony may occur when

there are time-delays in the feedback or when controller update

instants are different from the sampling instants of the measure-

ments. The controlled-input is implemented at the plant according

to actuation instants { a i 
k 
} k ∈ Z + 

0 
, where 

a i k = ζ i 
k + � i 

k , (11)

and � i 
k 

∈ [0 , � i ] , k ∈ Z 

+ 
0 
, i = 1 , . . . , N. Here, � i 

k 
denote the asyn-

chrony between controllers and actuators (which includes compu-

tation delays in the controllers). The controlled-input implemented

at the plant is 

u i (t) = 

{ 

ˆ u i (0) , ∀ t ∈ [0 , a i 0 ) , 

ˆ u i (ζ
i 
k 
) , ∀ t ∈ [ a i 

k 
, a i 

k +1 
) , 

(12)

for all k ∈ Z 

+ 
0 
, i = 1 , . . . , N, see Fig. 3 . Now, we consider the fol-

lowing assumption corresponding to the ordering of sampling and

receiving instants of the closed-loop system (with control imper-

fections). 

Assumption 1. We assume that the k th closed-loop control se-

quence satisfies 

0 < s i ≤ ρ i ≤ ζ i ≤ a i , ∀ k ∈ Z 

+ , i = 1 , . . . , N. (13)
k k k k 0 p  
The above assumption (similar to that considered in [19,35] )

nsures that the output sampled at the instant s i 
k 

from the sen-

or is used for the computation of controlled-input at the instant
i 
k 

which is implemented at the instant a i 
k 
. That is, the actua-

ion data and control data are ordered with respect to the mo-

ents of time when sensor data is transmitted. This ensures that

he control input based on y i (s i 
k 
) can be applied at time-interval

 a i 
k 
, a i 

k +1 
) , k ∈ Z 

+ 
0 

. Notice that the contrary case ρ i 
k 

> ζ i 
k 

would vi-

late the causality principle where the k th sequence input to the

ontroller is received before the k th sequence controlled input is

omputed. Also, the cases ρ i 
k 

> a i 
k 

or ζ i 
k 

> a i 
k 

correspond to the

ases where the k th sequence control data is processed before the

 th sequence actuation data is applied. Then, the asynchrony be-

ween sensors and actuators can be described by { ηi 
k 
} k ∈ Z + 

0 
, where

i 
k = a i k − s i k , (14)

nd ηi 
k 

∈ [0 , η̄i ] , k ∈ Z 

+ 
0 
, i = 1 , . . . , N. We recall from

ssumption 1 that x ci ( ζ k ) and y i ( s k ) are the i th controller state

nformation and the measured-output from i th plant, respectively,

sed for computing ˆ u i (ζ
i 
k 
) . Under Assumption 1 , we have 

ˆ u i (0) = C ci x ci (0) + D ci ̂  y i (0) = C ci x ci (0) + D ci y i (0) , 

ˆ u i (ζ
i 
k 
) = C ci x ci (ζ

i 
k 
) + D ci ̂  y i (ζ

i 
k 
) 

= C ci x ci (ζ
i 
k 
) + D ci y i (s i 

k 
) , 

(15)

 ∈ Z 

+ 
0 
, i = 1 , . . . , N. 

emark 1. The dynamics of PID controller may be represented in

he frequency domain using the transfer function matrix 

 PID (s ) = K P + 

K I 

s 
+ 

sK D 

1 + τd s 
, 

here K P , K I , K D are real valued gain matrices, s is the Laplace vari-

ble, and τ d is the time constant of the filter applied to the deriva-

ive action [30,42] . Hence, it is also possible to represent decen-

ralised PID controllers as (9) with some structure and tune their

atrix gains for robustness against control imperfections using the

pproach proposed in this paper, see [8] for more details. 

.2. A feedback interconnection interpretation 

In this section, we rewrite the closed-loop system of (2), (8),

9) and (12) as a feedback interconnection of a nominal system

nd an uncertainty block. This allows us to use a simple input-

utput L 2 stability criterion, extending the work of [13,41] for

ynamic controllers for DDAEs. For this purpose, we represent

he piecewise-constant controlled-input and measured-output in

ontinuous-time using time-varying errors, that is, 

˙ x ci (t) = A ci x ci (t) + B ci (y i (t) + e i 1 (t) ) , 

u i (t) = (C ci x ci (t) + e i 2 (t) ) + D ci (y i (t) + e i 3 (t) ) , 
(16)

or all t ≥ 0 , i = 1 , . . . , N, where the error signals are 

 

i 
1 (t) = 

{
y i (0) − y i (t) , ∀ t ∈ [0 , ρ i 

0 ) , 

y i (s i 
k 
) − y i (t) , ∀ t ∈ [ ρ i 

k 
, ρ i 

k +1 
) , 

(17)

 

i 
2 (t) = 

{
C c,i x ci (0) − C ci x ci (t) , ∀ t ∈ [0 , a i 0 ) , 

C c,i x ci (ζ
i 
k 
) − C ci x ci (t) , ∀ t ∈ [ a i 

k 
, a i 

k +1 
) , 

(18)

 

i 
3 (t) = 

{
y i (0) − y i (t) , ∀ t ∈ [0 , a i 0 ) , 

y i (s i 
k 
) − y i (t) , ∀ t ∈ [ a i 

k 
, a i 

k +1 
) , 

(19)

or all k ∈ Z 

+ 
0 
, i = 1 , . . . , N. Here, e i 

1 
(t) arises due to the sam-

led output implemented at the controller, e i (t) arises due to

2 
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Fig. 4. A signal y i ( t ) used to illustrate that the errors e i 1 and e i 3 due to sampling 

need not be same. 
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Fig. 5. The control imperfections in Fig. 1 are “absorbed” in the operators ˜ i , i = 

1 , . . . , N. 
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a

T  

z  
he sampled controller-state implemented at the input, and e i 
3 
(t)

rises due to the sampled output implemented at the input. No-

ice that e i 
1 

and e i 
3 

need not be same due to the transport de-

ay, this is evident in Fig. 4 . Now we define the uncertainty op-

rator. For this purpose, consider z i = [ z T 
i, 1 

z T 
i, 2 

] T , z i ∈ L 2 e [0 , ∞ ) ,

 i = [ e i 
1 

e i 
3 

e i 
2 
] T , w i ∈ L 2 e [0 , ∞ ) , and the (bounded) integral oper-

tors i 
1 
, i 

2 
and i 

3 
on L 2 e [0 , ∞ ) , i = 1 , . . . , N, such that 

e i 1 (t) = (i 
1 z i, 1 )(t) 

:= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

−
∫ t 

0 

z i, 1 (θ )d θ, ∀ t ∈ [0 , ρ i 
0 ) , 

−
∫ t 

s i 
k 

z i, 1 (θ )d θ, ∀ t ∈ [ ρ i 
k 
, ρ i 

k +1 
) , 

(20) 

e i 2 (t) = (i 
2 z i, 2 )(t) 

:= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

−
∫ t 

0 

z i, 2 (θ )d θ, ∀ t ∈ [0 , a i 0 ) , 

−
∫ t 

ζ i 
k 

z i, 2 (θ )d θ, ∀ t ∈ [ a i 
k 
, a i 

k +1 
) , 

(21) 

e i 3 (t) = (i 
3 z i, 1 )(t) 

:= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

−
∫ t 

0 

z i, 1 (θ )d θ, ∀ t ∈ [0 , a i 0 ) , 

−
∫ t 

s i 
k 

z i, 1 (θ )d θ, ∀ t ∈ [ a i 
k 
, a i 

k +1 
) , 

(22) 

or all k ∈ Z 

+ 
0 
, i = 1 , . . . , N. Let ˜ i be an (uncertainty) operator on

 2 e [0 , ∞ ) defined by 

 i (t) = ( ̃  i z i )(t) := 

⎡ 

⎢ ⎣ 

(i 
1 z i, 1 )(t) 

(i 
3 z i, 1 )(t) 

(i 
2 z i, 2 )(t) 

⎤ 

⎥ ⎦ 

, i = 1 , . . . , N, (23)

here w i (t) is an exogenous input to the nominal system and z i ( t )

s an exogenous output from the nominal system. We introduce the

ollowing proposition to recast the closed-loop system as a feed-

ack interconnection of a continuous-time nominal system and an

ncertainty block. 

roposition 2.1. Closed-loop system (2) , (8) , (9) and (12) can be

ewritten as a feedback interconnection of a nominal system in the

DAE form (see Fig. 5 ), using an augmented state vector x ∈ R 

n cl , 

 

 

 

E ̇ x (t) = A 0 x (t) + 

m n ∑ 

j=1 

A j x (t − τ j ) + Bw (t) , 

z(t) = Cx (t) , 

(24) 
nd an uncertainty operator on L 2 e [0 , ∞ ) defined by 

 (t) = ( ̃  z)(t) := 

⎡ 

⎢ ⎣ 

( ̃  1 z 1 )(t) 
. . . 

( ̃  N z N )(t) 

⎤ 

⎥ ⎦ 

, (25)

here w = [ w 

T 
1 . . . w 

T 
N ] 

T , z = [ z T 1 . . . z T N ] 
T , and E , A i , B , C , i =

 , . . . , n, are real-valued coefficient matrices. Here, E is allowed to be

 singular matrix. 

roof. Since the controlled-inputs are piecewise constant and

here is no feed-through, the outputs y i , i = 1 , . . . , N, are piece-

ise continuously differentiable. That is, for any t 2 > t 1 ≥ 0,

e can expess y i (t 2 ) − y i (t 1 ) = 

∫ t 2 
t 1 

˙ y i (θ )d θ ∀ i = 1 , . . . , N. Simi-

arly, the functions C ci x ci , i = 1 , . . . , N, are also piecewise contin-

ously differentiable, then we can express C ci x ci (t 2 ) − C ci x ci (t 1 ) =
 t 2 
t 1 

C ci ̇ x ci (θ )d θ, i = 1 , . . . , N. Therefore, the errors can be rewritten

s 

e i 1 (t) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

−
∫ t 

0 

˙ y i (θ )d θ, ∀ t ∈ [0 , ρ i 
0 ) , 

−
∫ t 

s i 
k 

˙ y i (θ )d θ, ∀ t ∈ [ ρ i 
k 
, ρ i 

k +1 
) , 

e i 2 (t) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

−
∫ t 

0 

C ci ̇ x ci (θ )d θ, ∀ t ∈ [0 , a i 0 ) , 

−
∫ t 

ζ i 
k 

C ci ̇ x ci (θ )d θ, ∀ t ∈ [ a i 
k 
, a i 

k +1 
) , 

e i 3 (t) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

−
∫ t 

0 

˙ y i (θ )d θ, ∀ t ∈ [0 , a i 0 ) , 

−
∫ t 

s i 
k 

˙ y i (θ )d θ, ∀ t ∈ [ a i 
k 
, a i 

k +1 
) , 

(26) 

or all k ∈ Z 

+ 
0 
, i = 1 , . . . , N. Then closed-loop system (2) and

16) can be rewritten in the feedback interconnection form of 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E p ̇ x p (t) = A p0 x p (t) + 

m n ∑ 

j=1 

A p j x p (t − τ j ) + 

N ∑ 

i =1 

B pi u i (t) , 

y i (t) = C pi x p (t) , 

˙ x ci (t) = A ci x ci (t) + B ci y i (t) + 

[
B ci 0 0 

]
w i (t) , 

u i (t) = C ci x ci (t) + D ci y i (t) + 

[
0 I D ci 

]
w i (t) , 

z i (t) = 

[
˙ y i (t) 

C ci ̇ x ci (t) 

]
, i = 1 , . . . , N, 

(27) 

nd 

w i (t) = ( ̃  i z i )(t) , i = 1 , . . . , N. (28) 

he plant in (24) is another simplified DDAE form of (27) where

 i, 1 (t) = ˙ y i (t ) , z i, 2 (t ) = C ci ̇ x ci (t) , i = 1 , . . . , N, and the coefficient
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matrices in (24) are given by 

A 0 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

A p0 B p 0 0 0 0 

0 −I B w 1 0 C c D c 

0 0 −I 0 0 0 

0 0 0 I 0 0 

0 0 B w 2 0 A c B c 

C p 0 0 0 0 −I 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

A i = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

A pi 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

 = 

[
0 0 0 I 0 0 

]
, 

B = 

[
0 0 I 0 0 0 

]T 
, 

B p = 

[
B p1 . . . B pN 

]
, C p = 

⎡ 

⎣ 

C p1 

. . . 
C pN 

⎤ 

⎦ , 

E = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

E p 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

C z1 0 0 0 C z2 0 

0 0 0 0 I 0 

0 0 0 0 0 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

 c = 

⎡ 

⎢ ⎣ 

C c1 0 

. . . 

0 C cN 

⎤ 

⎥ ⎦ 

, D c = 

⎡ 

⎢ ⎣ 

D c1 0 

. . . 

0 D cN 

⎤ 

⎥ ⎦ 

, 

A c = 

⎡ 

⎢ ⎣ 

A c1 0 

. . . 

0 A cN 

⎤ 

⎥ ⎦ 

, B c = 

⎡ 

⎢ ⎣ 

B c1 0 

. . . 

0 B cN 

⎤ 

⎥ ⎦ 

, 

B w 1 = 

⎡ 

⎢ ⎣ 

0 I D c1 0 

. . . 

0 0 I D cN 

⎤ 

⎥ ⎦ 

, 

B w 2 = 

⎡ 

⎢ ⎣ 

B c1 0 0 0 

. . . 

0 B cN 0 0 

⎤ 

⎥ ⎦ 

, 

 z1 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

C p1 

0 

. . . 

C pN 

0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, C z2 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

0 

C c1 
0 

. . . 

0 

0 

C cN 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. 

The proof is complete. �

Remark 2. Plant (24) is obtained by using the augmented state

vector x = [ x T p u 
T γ T 

w 

γ T 
z x 

T 
c y 

T ] T , where γw 

and γ z are dummy vectors

for w and z , respectively, x c = [ x T c1 . . . x T cN ] 
T , u = [ u T 1 . . . u T N ] 

T , and

y = [ y T . . . y T ] T . 

1 N w
emark 3. Plant (2) has no exogenous inputs or outputs. However,

t is possible to consider other exogenous inputs (which will arise

n the first line of (27) ) or outputs in its dynamics in addition to

he control imperfections. Such a system can also be recast into the

orm of (24) with minor changes in the coefficient matrices, input

ector, and output vector. 

Notice that by rewriting the system in the DDAE form (24) , we

ave enforced all the controller parameters to be contained within

 0 . 

. Stability criterion: generic case 

Using the problem described in the previous section as our mo-

ivation, we study the feedback interconnection of a plant G and an

ncertainty block ˜ 

z = G w + f, 

w = 

˜ z + g, 
(29)

here f, g ∈ L 2 e [0 , ∞ ) . The operator G on L 2 e [0 , ∞ ) describes the

nput-output map of system (24) . In the frequency domain, it is

escribed by the transfer function matrix 

 (s ) := C 

( 

sE − A 0 −
m n ∑ 

j=1 

A j e 
−sτ j 

) −1 

B. (30)

he operator ˜  is already defined in (25) . The feedback intercon-

ection (29) can represent the decentralised control system given

y (2) and (16) , affected by perturbations, represented by the sig-

als f and g , at the state and with zero initial condition. Since G is

inear and time-invariant, the induced- L 2 norm satisfies || G || L 2 =| G || H ∞ 

. We recall the small gain theorem that has been adapted

rom [15] for our problem setting as follows. 

heorem 3.1. The mapping 

f 
g 

]
−→ 

[
w 

z 

]
, (31)

esulting from the feedback interconnection of (29) has a finite L 2 

ain if || G || H ∞ 

· || ̃  || L 2 < 1 . 

We consider a feedback interconnection of the form (29) to be

nput-output L 2 stable when its mapping (31) has a finite L 2 gain.

ased on Assumption 1 , we introduce the following lemma. 

emma 3.2. The integral operators i 
1 
, i 

2 
, and i 

3 
satisfy 

| i 
j || L 2 ≤ γ i 

j , j = 1 , 2 , 3 , i = 1 , . . . , N, (32)

here 

γ i 
1 = h̄ i + ϑ̄ i , 

γ i 
2 = κ̄i + �̄i , 

γ i 
3 = h̄ i + η̄i , i = 1 , . . . , N. 

(33)

roof. The proof is given in the appendix. �

To determine a condition for input-output stability of the feed-

ack interconnection of (29) , the following lemma is presented. 

emma 3.3. The L 2 gain of the operator ˜ i can be bounded as fol-

ows, 

| ̃  i || L 2 ≤ γ̄i , (34)

here 

¯i := max { 
√ 

(γ i 
1 
) 2 + (γ i 

3 
) 2 , γ i 

2 } , i = 1 , . . . , N. (35)

roof. The proof follows from Lemma 3.2 and by considering the

orst-case L gain. �
2 
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Combining the above results, a sufficient condition for input-

utput stability of the feedback interconnection of (29) is pre-

ented in the following theorem. 

heorem 3.4. Assume that the nominal system described using the

ransfer function matrix defined in (30) is exponentially stable. Then,

he feedback interconnection (29) (as in Fig. 5 ) is guaranteed to be

nput-output L 2 stable if it satisfies the condition, 

max 
 ∈{ 1 , ... ,N} 

γ̄i < ( || G ( jω) || H ∞ ) 
−1 

, 

here the transfer function G ( j ω) from w to z is defined in (30) and γ̄i 

re defined in terms of the sampling interval and asynchrony bounds

n (33) and (35) . 

roof. The proof follows directly by virtue of Theorem 3.1 and

emma 3.3 . �

Next, we introduce a less conservative robust stability condition

y exploiting the structure of the operator ˜ . To do so, we rely on

caling the feedback connection according to the structure of the

lock diagonal operator ˜  (see [33,39] and the references therein

or more details). We define (diagonal) scaling matrices X and 

˜ X ,

uch that 

X := 

⎡ 

⎣ 

δ̆1 . . . 0 

. . . 
. . . 

. . . 

0 . . . δ̆N 

⎤ 

⎦ , ˜ X := 

⎡ 

⎣ 

ˆ δ1 . . . 0 

. . . 
. . . 

. . . 

0 . . . ˆ δN 

⎤ 

⎦ , 

δ̆i = 

[ 
δi, 1 0 

0 δi, 2 

] 
, ˆ δi = 

[ 
δi, 1 I 2 ×2 0 

0 δi, 2 

] 
, i = 1 , . . . , N, 

(36) 

nd δi, j ∈ R \ { 0 } , i = 1 , . . . , N, j = 1 , 2 , are scalar parameters. No-

ice that X and 

˜ X have a structure related to ˜ , and 

˜ X � = X because

he dimensions of input and output vectors are different. For sim-

licity of the presentation, we combine all the scalar parameters

n a vector δ̄ where δ̄ = [ δ1 , 1 δ1 , 2 . . . δN, 1 δN, 2 ] 
T . For the block-

iagonal operator considered we have, by definition, X −1 ˜  ˜ X = 

˜ .

ue to the feedback interconnection of (27) and (28) , we know

hat introducing the scaling matrices does not affect its stabil-

ty property. We are now ready to improve the criterion from

heorem 3.4 using the following proposition. 

roposition 3.5. Assume that the nominal system (30) is exponen-

ially stable. Then, a sufficient condition for the feedback interconnec-

ion of (29) to be input-output L 2 stable is 

max 
 ∈{ 1 , ... ,N} 

γ̄i < 

(
inf 
δ̄

|| X ( ̄δ) G ( jω) ̃  X 

−1 ( ̄δ) || H ∞ 

)−1 

. (37) 

For simplicity of the presentation, we define a new (transfer)

unction 

ˆ G ( jω, ̄δ) := X G ̃

 X −1 ( jω, ̄δ) . 

emark 4. The values for the scaling parameters ( ̄δ) in (37) are

etermined by solving a non-convex optimisation problem. This

roblem will be shown later in Section 4.1 . 

. Controller design 

We build on the approach of [9,18,32] to directly optimise the

obustness against control imperfections (by minimising || G || H ∞ 

)

f the nominal time-delay system (24) as a function of the con-

roller parameters. Notice that an exponentially stable nominal

ontinuous-time system (24) is required to initialise the optimi-

ation of objective functions involving the H ∞ 

norm. If this is not

he case, a preliminary stabilisation phase is conducted based on

ptimising the spectral abscissa. The spectral abscissa (stability)

nd H ∞ 

norm (robustness) are, in general, non-smooth non-convex

unctions of fixed-order controller parameters [18,32] . The work

f [18,32] generalises the one underlying the HIFOO package (see
5] ) and the MATLAB function hinfstruct (see [1] ) from finite-

imensional systems to that considering time-delay systems. 

The vector p̄ contains the tunable parameters of the decen-

ralised controllers 

p̄ T = [ ̄p T 1 . . . p̄ T N ] , where p̄ i = vec 

([
A ci B ci 

C ci D ci 

])
, (38)

 = 1 , . . . , N. For the special case of static controller (as considered

y [41] ), only elements of D ci exist. In the following sections, we

escribe the objective functions for which the controller parame-

ers may be optimised. 

.1. Generic case 

The spectral abscissa of the nominal system (24) with w ≡ 0 is

efined as follows, 

c( ̄p ) = sup λ∈ C { R (λ) : det M(λ, p̄ ) = 0 } , (39) 

here the characteristic matrix 

(λ, p̄ ) := λE − A 0 ( ̄p ) −
m n ∑ 

i =1 

A i e 
−λτi . 

ote that the dependence of functions on p̄ is only made explicit

n the notation when necessary. The exponential stability of the

ull solution of (24) is determined by the condition c( ̄p ) < 0 (see

32] ). We know that the null solution of (24) is exponentially sta-

le iff c( ̄p ) < 0 . With respect to the optimisation problem, the ob-

ective function is tuned with respect to the controller parameters

 ̄p ). To obtain a exponentially stable system that maximises the ex-

onential decay rate of the solutions, the controller parameters (in

p̄ ) are optimised for the minimum of spectral abscissa, that is, they

re obtained by 

in 

p̄ 
c( ̄p ) . (40) 

The transfer function from w to z of the nominal system repre-

ented by (24) is given by 

 (s, p̄ ) = C 

(
sE − A 0 ( ̄p ) −

m n ∑ 

i =1 

A i e 
−sτi 

)−1 

B. (41)

iven that system (24) is exponentially stable, that is c( ̄p ) < 0 , the

 ∞ 

norm of the transfer function given in (41) can be expressed

s 

| G ( jω, p̄ ) || H ∞ = sup 

ω∈ R 
σ1 (G ( jω, p̄ )) . (42)

o improve robustness against control imperfections written in

erms of the H ∞ 

norm of (42) , controller parameters (in p̄ ) may

e optimised by minimising the function 

in 

p̄ 
|| G ( jω, p̄ ) || H ∞ . (43)

hereby improving the maximum allowable upper-bound for the

ampling intervals and asynchrony for which the closed-loop sys-

em is stable. The objective functions maybe minimised using the

lgorithm in [9,18] , which uses the gradient based optimisation al-

orithm HANSO [36] to handle the non-smooth optimisation prob-

em. 

For a less conservative result, it also possible to consider

roposition 3.5 and simultaneously tune parameters in both δ̄ and

p̄ to minimise 

in 

δ̄, p̄ 

|| ̂  G ( jω, p̄ , δ̄) || H ∞ . (44)

lternatively, it is possible to consider a two layer (min-min) opti-

isation problem, wherein the outer layer tunes p̄ and inner layer
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Fig. 6. The structured MIMO system considered in this paper. Identical subsystems 
˜ P (with constant time-delays at input, output, and state) connected through some 

network (described by the adjacency matrix A M ) are to be stabilised by identical 

local (fixed-order) controllers with non-identical control imperfections. 
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tunes δ̄ for minimising the function 

min 

p̄ 

(
min 

δ̄
|| ̂  G ( jω, p̄ , δ̄) || H ∞ 

)
. (45)

Although optimisation problems (44) and (45) have the same so-

lution, the numerical implementation may lead to different results.

Since these optimisation problems are in general non-convex, the

local minima found may not correspond to each other. We use the

gradient based optimisation algorithm HANSO to solve the optimi-

sation problems of (44) and (45) . We compute gradients for the

optimisation problems using the approach in [18] . 

4.2. Network structure exploitation 

In this section, the special case of structured MIMO plant as

in (5) is considered. Assume that the identical subsystems are

to be controlled using identical fixed-order controllers, that is,

A ci = Ā c , B ci = B̄ c , C ci = C̄ c , and D ci = D̄ c ∀ i = 1 , . . . , N in (27) , see

Fig. 6 . Let us consider an augmented (sub-)system state vector

x T 
i 

= [ x T 
pi 

u T 
i 

γ T 
wi 

γ T 
zi 

x T 
ci 

y T 
i 
] ∀ i = 1 , . . . , N, where γ zi and γwi are

dummy vectors used to represent z i and w i respectively. Then, we

can rewrite the closed-loop system of (5) and identical fixed-order
ontrollers using the state vector x T = [ x T 
1 

. . . x T n ] as 
 

 

 

 

 

 

 

I � Ē cl ˙ x (t) = (I � Ā cl, 0 + A M 

� F̄ cl ) x (t) 

+ 

m n ∑ 

k =1 

I � Ā cl,k x (t − τk ) + I � B̄ cl w (t) , 

z(t) = I � C̄ cl x (t) , 

(46)

nd at the level of uncertainty operator, there is no change from

25) . The coefficient matrices in (46) are 

¯
 cl, 0 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

Ā p0 B̄ p 0 0 0 0 

0 −I 
[
0 I D̄ c 

]
0 C̄ c D̄ c 

0 0 −I 0 0 0 

0 0 0 I 0 0 

0 0 

[
B̄ c 0 0 

]
0 Ā c B̄ c 

C̄ p 0 0 0 0 −I 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

¯
 cl,k = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

Ā pi 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, 

¯
 cl = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

Ē p 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 [
C̄ p 
0 

]
0 0 0 

[
0 

C̄ c 

]
0 

0 0 0 0 I 0 

0 0 0 0 0 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

 ̄cl = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

F̄ p 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, B̄ cl = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

0 

0 

I 
0 

0 

0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, 

¯
 cl = 

[
0 0 0 I 0 0 

]
. 

emark 5. Plant (5) has no exogenous inputs or outputs; however,

t is possible to consider other exogenous inputs or outputs (with

dentical coefficient matrices) in the nodal dynamics in addition to

he control imperfections. Such a system can also be recast into the

orm of (46) with minor changes in the coefficient matrices, input

ector, and output vector. 

According to the complex Schur decomposition theorem [31] ,

here always exists an unitary matrix T such that 

 M 

= T ZT ∗, (47)

here Z is an upper triangular matrix. Then, by performing a simi-

arity transformation using x̄ = (T � I) x and using the property that

ome matrices commute (like (T � I)(I � B̄ cl ) = (I � B̄ cl )(T � I) ) we

btain 

z(t) = (T ∗ � I)(I � C̄ cl ) ̄x (t) . (48)

t is clear from above that omitting the transformation by ( T �I )

t input side and ( T ∗�I ) at output side in (48) does not affect the

 ∞ 

norm since T is unitary. In this paper, the control imperfections

re considered only at the communication between controllers and

lants. We recall the main result of authors in [9] which is sum-

arised in the following theorem. 

heorem 4.1. Let { λa 1 , . . . , λaN } denote the spectrum of A M 

. Also, we

onsider the group of subsystems 

Ē cl 
˙ x̄ i (t) = 

(
Ā cl, 0 + λai ̄F cl 

)
x̄ i (t) + 

m n ∑ 

k =1 

Ā cl,k ̄x i (t − τk ) + B̄ cl w̄ i (t) , 

z̄ i (t) = C̄ cl ̄x i (t) , i = 1 , . . . , N. 
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(49) 

hen, the following results hold: 

1. System (46) with w ≡ 0 is exponentially stable if and only if the

system (49) with w̄ i ≡ 0 for all i = 1 , . . . , N is exponentially stable.

Moreover the spectral abscissa c( ̄p ) of (46) satisfies 

c( ̄p ) = max 
i ∈{ 1 ,..,N} 

˜ c ( ̄p , λai ) , (50)

where 

˜ c ( ̄p , λai ) = sup 

λ∈ C 
{ R (λ) : det M̄ (λ, λai , p̄ ) = 0 } , (51)

and the characteristic matrix 

M̄ (λ, λai , p̄ ) := λĒ cl − Ā cl, 0 ( ̄p ) − λai ̄F cl −
m n ∑ 

k =1 

Ā cl,k e 
−λτk . (52)

2. If A M 

is a normal matrix, then 

|| G ( jw, p̄ ) || H ∞ = max 
i ∈{ 1 ,..,N} 

|| ̃  G ( jw, λai , p̄ ) || H ∞ , (53)

where ˜ G ( jw, λai , p̄ ) is the transfer functions of system (49) from

w̄ i to z̄ i . 

roof. The assertions for the first part of Theorem 4.1 directly fol-

ow from the block-triangular structure of (48) , with (49) appear-

ng as the diagonal blocks, and from the structure of the associ-

ted eigenvalue problem. For the second part, recall that the Schur

omplex decomposition and spectral decomposition coincide for

ormal matrices. We refer to [9] for the extended version of the

roof. �

orollary 4.2. Assume that A M 

is normal. Then, a sufficient condition

or the feedback interconnection of (29) , for the case where system

24) is structured as in (46) , to be input-output L 2 stable becomes 

max 
 ∈{ 1 , ... ,N} 

γ̄i < 

(
max 

i ∈{ 1 , ... ,N} 
|| ̃  G ( jw, λai , p̄ ) || H ∞ 

)−1 

, (54) 

here 

˜ 
 (s, λai , p̄ ) = C̄ cl 

(
M̄ (s, λai , p̄ ) 

)−1 

B̄ cl . 

roof. The proof follows from Theorem 3.4 and the latter part of

heorem 4.1 . �

In order to design (more efficiently) identical decentralised con-

rollers of the form (16) that are robust against control imperfec-

ions, we replace the minimisation objective (40) with 

in 

p̄ 
max 

i ∈{ 1 ,..,N} 
˜ c ( ̄p , λai ) , (55) 

or faster exponential decay rate of the solutions and (43) with 

in 

p̄ 
max 

i ∈{ 1 ,..,N} 
|| ̃  G ( jw, λai , p̄ ) || H ∞ , (56)

or improving robustness against control imperfections. The net-

ork structure exploitation is performed by transforming the cou-

ling between subsystems to some kind of self-coupling through

ai . The transformation matrices used to diagonalise the adjacency

atrix must be unitary, which is satisfied when the adjacency ma-

rix is a symmetric, corresponding to bi-directional coupling, or a

irculant matrix. 

The decoupling transformation based on Theorem 4.1 , reduces

he problem of a large system consisting of N subsystems to a

arametrised subsystem (of lower dimension) [9] . Here, the param-

ters correspond to the eigenvalues of the adjacency matrix of the

etwork graph through which the subsystems are connected. Re-

all that the dominant computational cost of evaluating the spec-

ral abscissa and the H ∞ 

norm amounts to computing the right-

ost eigenvalues of a DDAE and the imaginary axis solutions of an
ssociated Hamiltonian eigenvalue problem, respectively. In both

ases the number of operations with the algorithms proposed in

18,32] and the references therein scales with the cube of the di-

ension. That is, the computational complexity (or the number

f operations with the algorithms) for optimising the spectral ab-

cissa and H ∞ 

norm of the overall system is reduced from the or-

er of ( N · n cl ) 
3 to N · ( n cl ) 

3 . Notice that there is potential to arrive

t scalable design methods whose cost does not depend on the

umber of subsystems (by handling the eigenvalue parameters as

n uncertainty bounded in real interval using methods from robust

ontrol). This will be worked out in Section 5 . 

Notice that using the approach of network structure exploita-

ion implies that we can no longer reduce conservatism using the

caling approach presented at the end of Section 3 , since the scal-

ng would not correspond to a unitary transformation. 

. Numerical example 

In this section, we perform simulation-based studies on a nu-

erical example made up of N identical third-order subsystems

ubject to different network and input perturbations. This exam-

le provides a simple illustration for the systems in Section 4.2 .

he simulations are performed using the MATLAB software tool de-

cribed in [7] , which relies on extending the results in [18,32] to-

ards scalable algorithms for the design of sampled-data decen-

ralised controllers. We specify the plant (5) as ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

˙ x pi (t) = 

[ −10 0 0 

1 0 0 

0 1 0 

] 
x pi (t) + 

[ 
10 

0 

0 

] 
u i (t) + �i (t) 

+ 

N ∑ 

j=1 

a Mi, j 

[ 
1 0 0 

0 1 0 

0 0 0 

] 
x p j (t − 0 . 2) , 

y i (t) = 

[
0 1 0 

0 0 1 

]
x pi (t − 0 . 1) , i = 1 , . . . , N, 

(57) 

here the normal adjacency matrix A M 

has the elements 

 Mi, j = 

{
0 . 5 , if | i − j| = 1 , 

0 , otherwise , 
(58) 

or all i, j = 1 , . . . , N. In (57) , there is an additional exogenous input

ector �i ( t ) whose role will be discussed later on. The above plant

s to be controlled by identical dynamic controllers of the form (9) .

he third and fourth equations of (corresponding) system (27) then

ake the form 

 

˙ x ci = Ā c x ci + B̄ c y i + 

[
B̄ c 0 0 

]
w i (t) , 

u i = C̄ c x ci + D̄ c y i + 

[
0 I D̄ c 

]
w i (t) , i = 1 , . . . , N. 

(59) 

he exogenous outputs are 

 i (t) = 

[
C g ̇ x pi (t) 

C̄ c ̇ x ci (t) 

]
, ϒi (t) = x pi (t) , i = 1 , . . . , N. (60)

otice that closed-loop system (57) –(60) is an example of the form

46) and hence we can exploit the network structure. However,

e also consider new exogenous inputs ( �i ( t )) to the subsystems

n (57) and new exogenous outputs ( ϒ i ( t )) in (60) . These terms

llow us to consider some additional disturbances to the subsys-

ems, besides the control imperfections. For example, these terms

ould provide an insight on the allowable parametric uncertainties

n the plant’s state-coefficient matrix. However, it can be easily

hown that all the results presented in the previous sections still

arry over to this situation. 
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Fig. 7. Simulation of the closed-loop system (57) and K b , when N = 3 , for the ini- 

tial value x pi (0) = 1 , x ci (0) = 1 ∀ i = 1 , 2 , 3 . For clarity of presentation, we use only 

e T 3 x p2 , where e 3 is the 3 rd column vector of the identity matrix. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. The closed-loop system of plant (57) and K with control imperfections, when 

N = 3 , is stable even though it is slower than K b . The spectral abscissa of plant 

(57) and K when ˆ w ≡ 0 is -0.3569. The upper-bounds for sampling intervals and 

asynchrony used in this simulation were defined to satisfy (54) (to verify the result 

presented in the previous section) and were identical to that used for the simula- 

tion of Fig. 7 b. 

Fig. 9. The input signals (received at plant) and output signals (received at con- 

trollers) corresponding to the plant (57) and K with control imperfections (using 

the settings same as Fig. 8 ), when N = 3 . 
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First, we consider system (57) –(60) to be a small network with

three subsystems ( N = 3 ). To illustrate the instability that may be

caused due to the control imperfections in Fig. 7 , we use a second-

order controller K b , whose coefficient matrices are 

Ā c = 10 

3 ·
[−2 . 4639 −0 . 9459 

2 . 796 −2 . 2546 

]
, 

B̄ c = 10 

3 ·
[

0 . 0 6 60 −0 . 4056 

−0 . 21 02 0 . 1232 

]
, 

C̄ c = 10 

3 ·
[
7 . 8543 1 . 0195 

]
, 

D̄ c = 10 

3 ·
[
−0 . 2953 1 . 0865 

]
, 

(61)

for each of the three subsystems in (57) . The spectral abscissa of

the closed-loop system of (57) and K b is -2.050, when N = 3 , w i ≡
0 , �i ≡ 0 , i = 1 , 2 , 3 . 

For the purpose of illustration, controller K b was selected in

such a way that the H ∞ 

norm of the transfer function resulting

from the corresponding closed-loop system was high. 

We obtain a new controller K by minimising the H ∞ 

norm

of the transfer function of the system in (57) –(60) , when N = 3 ,

from 

ˆ w = [ w 

T 
1 w 

T 
2 w 

T 
3 �

T 
1 �

T 
2 �

T 
3 ] 

T , 

to 

ˆ z = [ z T 1 z T 2 z T 3 ϒ
T 
1 ϒ

T 
2 ϒ

T 
3 ] 

T , 

to 9.93 using the network structure exploiting algorithm. That is,

a feedback interconnection of (57) –(60) and any bounded uncer-
ainty operator with an induced- L 2 norm less than 

1 
9 . 93 is input-

utput L 2 stable. For example, in addition to the control imper-

ections, closed-loop system (57) –(60) , when N = 3 , is also input-

utput L 2 stable for any (non-identical) perturbation on the sub-

ystem’s state ( x pi ) coefficient matrices which has an induced- L 2 

orm less than 

1 
9 . 93 . We observe that the H ∞ 

norm corresponding

o (only) control imperfections, when N = 3 , from w = [ w 

T 
1 

w 

T 
2 

w 

T 
3 
] T

o z = [ z T 
1 

z T 
2 

z T 
3 
] T while we assume �i ≡ 0 , i = 1 , 2 , 3 , in (57) –(60)

s equal to 5.81. The H ∞ 

synthesis controller K has the coefficient

atrices 

Ā c = 

[
−6 . 8101 −0 . 0109 

−0 . 3745 −4 . 5357 

]
, B̄ c = 

[
−2 . 9243 1 . 8633 

−4 . 0221 −4 . 0900 

]
, 

C̄ c = 

[
0 . 0524 0 . 5468 

]
, D̄ c = 

[
−0 . 6876 −0 . 4615 

]
. 

(62)

he simulation results for initial conditions of x pi (t 0 ) = 1̄ , x ci (t 0 ) =
¯
 , i = 1 , 2 , 3 , t 0 ≤ 0 are presented in Figs. 8 and 9 , where 1̄ is

sed to represent a matrix or vector of appropriate dimension hav-

ng all elements equal to 1. Note that the control imperfections

or the upper-bounds for the sampling intervals and asynchrony)

ere ensured to be the same ( 1 
5 . 8 ) for obtaining results using K b 

n Fig. 7 and using K in Figs. 8 and 9 (see [7] for details on the

oftware and numerical data used for the example). 

Additionally, we note that the conservatism in these results was

ot negligible in simulations. Therefore, we aim at reducing the

onservatism using the approach of Section 4.1 . For this purpose,

he scaling parameters ( δi, j , i = 1 , 2 , 3 , j = 1 , 2 in (36) ) are opti-

ised using “1” (no scaling) as their initial value while not exploit-

ng the network structure. Among other experiments, the “scaled”

 ∞ 

norm as in (45) , when N = 3 , from w to z was minimised (by

uning only δ̄) from 5.81 to 4.86 for the plant (57) and controller

 in (62) . 
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Table 1 

The H ∞ norms computed for the closed- 

loop system of (57) –(60) , when N > 3, 

from ˆ w (= [ w 

T 
1 . . . w 

T 
N �T 

1 . . . �T 
N ] 

T ] T ) to 

ˆ z (= [ z T 1 . . . z T N ϒ
T 
1 . . . ϒT 

N ] 
T ) with K̄ in (64) using 

the network structure exploitation approach. 

N H ∞ norm 

10 11.8721 

50 12.8393 

100 12.8770 

300 12.8885 

500 12.8895 

Fig. 10. The closed-loop system of plant (57) and K̄ with control imperfections, 

when N = 500 , is stable. The upper-bounds for sampling intervals and asynchrony 

used in this simulation were defined to satisfy (54) (to verify the result presented 

in the previous section). 

Fig. 11. The input signals (received at plant) and output signals (received at con- 

trollers) corresponding to the plant (57) and K̄ with control imperfections (using 

the settings same as Fig. 10 ), when N = 500 . 
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Suppose now that system (57) –(60) has a large number of sub-

ystems ( N  3), while retaining the same topology, then the gen-

ral approach proposed in Section 4.1 becomes computationally

umbersome. The eigenvalues ( λai ) of A M 

in (58) can be expressed

s 

ai = cos 

(
i 

π

N + 1 

)
, i = 1 , . . . , N, (63)

hat is, λai ∈ [ −1 , 1] ∀ i = 1 , . . . , N. Therefore, an increase in the

umber of subsystems ( N ) results in a denser distribution of the

igenvalues ( λai ) in the interval [ −1 , 1] . This allows us to extend

he scalable algorithm for the design of stabilising controllers de-

cribed in [6] . More precisely, λai is interpreted as an uncertain pa-

ameter confined to the interval [ −1 , 1] and the worst case value

f the H ∞ 

norm is optimised over this interval (solving a min-max

ptimisation problem) to obtain a controller K̄ whose coefficient

atrices are 

Ā c = 

[
−7 . 4310 0 . 9451 

−1 . 7851 −6 . 9873 

]
, B̄ c = 

[
−3 . 5450 1 . 8700 

−2 . 2913 −4 . 4404 

]
, 

C̄ c = 

[
−2 . 8900 1 . 5787 

]
, D̄ c = 

[
−3 . 3538 −0 . 0728 

]
. 

(64) 
¯
 guarantees an upper bound on the H ∞ 

norm (from ˆ w to ˆ z ) of 

2.89, which is independent of the number of subsystems N in

57) –(60) and asymptotically exact as N → ∞ (see Table 1 ). Simula-

ion based studies were also performed for the closed-loop system

f (57) –(60) , when N = 500 , with K̄ in (64) . Also, the sampling in-

tants and delays were defined to satisfy the criterion in (54) . The

imulation results for the initial condition of x pi (t 0 ) = 1̄ , x ci (t 0 ) =
¯
 , i = 1 , . . . , 500 , t 0 ≤ 0 , are presented in Figs. 10 and 11 . For sim-

licity of the presentation, simulation results of only three subsys-

ems ( i = 1 , 250 , 500 ) are shown in Figs. 10 and 11 . 

. Conclusion 

In this paper, an approach to design stabilising decentralised

ontrollers for generic MIMO plants which are robust against con-

rol imperfections (due to sampling and delays) and other input

isturbances was proposed. The closed-loop system (with control

mperfections) was rewritten as a feedback interconnection of a

ontinuous-time closed-loop system and a bounded (integral) op-

rator. The continuous-time closed-loop systems are modelled us-

ng DDAEs, which are flexible in modelling interconnected systems.

parsity constraints are enforced in the parameterisation process

ithin the optimisation to ensure that decentralised controllers are

btained. 

The closed-loop system (with the sampled-data decentralised

ontrollers) was rewritten as a feedback interconnection of a

ontinuous-time closed-loop system and a bounded (integral) op-

rator. This approach allowed us to use a a simple input-output L 2 

tability criterion based on the small gain theorem. Additionally,

e proposed a method to reduce some conservativeness in the re-

ult, which exploits the structure of the operator. Furthermore, the

omputational efficiency of the controller design algorithm is sig-

ificantly improved in the case of structured MIMO plant, wherein

he plant is composed of quasi-identical subsystems, at the price

hat the local controllers need to be identical and the scaling ap-

roach to reduce conservatism is not applicable anymore. 

A frequency domain-based direct optimisation technique is pro-

osed in this paper for controller design. Hence, issues related

on-convexity and non-smoothness of the optimisation problem in

eneral (especially for H ∞ 

norm) are carried over from the cen-

ralised setting. We use the special algorithm HANSO to handle the

on-smoothness. With respect to the non-convexity, the algorithm

onverges to local optima which may not global. This is mitigated

y using sufficiently large number of randomly generated (or user

pecified) starting points for the optimisation problem. 

ppendix A. Upper-bound for the operators 

In this section of Appendix, we present the preliminary lemmas

equired to prove Lemma 3.2 followed by the proof itself. First, we

eneralise the proof of Lemma 1 in [41] . For this purpose, we de-

ne new sequences { b l } l∈ Z where 

 l+1 = b l + δb l , l ∈ Z , (A.1)

 0 ∈ (0 , δ̄b ] , and δb l ∈ (0 , δ̄b ] , l ∈ Z , δ̄b ∈ R 

+ . Also, the sequences

 c l } l∈ Z satisfy 

 l = b l + δc l , l ∈ Z , (A.2)

here δc l ∈ [0 , δ̄c ] ∀ l ∈ Z , δ̄c ∈ R 

+ . Also, we define a general

ounded integral operator � on L 2 e (−∞ , ∞ ) that operates on the

nput based on the above sequences, that is 

ˆ w (t) = (�({ b l , c l } l∈ Z ) ̂ z )(t) 

:= 

∫ t 

b 

ˆ z (θ )d θ, ∀ t ∈ [ c l , c l+1 ) , l ∈ Z . 
(A.3) 
l 
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We abuse the notation for the operator as shown above, for

�({ b l , c l } l∈ Z ) , to generalise it for any two sets of sequences that

satisfy the above conditions as { b l } l∈ Z and { c l } l∈ Z . Now we prove

the following lemma for this general operator. 

Lemma A.1. The operator �({ b l , c l } l∈ Z ) has an L 2 induced norm

which is upper-bounded by δ̄b + δ̄c , that is, 

|| �({ b l , c l } l∈ Z ) || L 2 ≤ δ̄b + δ̄c 

Proof. By definition, we have 

ˆ w (t) = 

∫ t 

b l 

ˆ z (θ )d θ, ∀ t ∈ [ c l , c l+1 ) , l ∈ Z . (A.4)

Then by virtue of Jensen’s inequality, we can write 

ˆ w (t) T ˆ w (t) = 

(∫ t 

b l 

ˆ z (θ )d θ

)T (∫ t 

b l 

ˆ z (θ )d θ

)
, 

≤ (t − b l ) 

∫ t 

b l 

ˆ z T (θ ) ̂ z (θ )d θ, ∀ t ∈ [ c l , c l+1 ) , 

≤ ( δ̄b + δ̄c ) 

∫ t 

b l 

ˆ z T (θ ) ̂ z (θ )d θ, ∀ t ∈ [ c l , c l+1 ) , 

(A.5)

since we know that t ∈ [ c l , c l+1 ) 

 − b l ≤
≤δ̄c ︷ ︸︸ ︷ 

c l+1 − b l+1 + 

≤δ̄b ︷ ︸︸ ︷ 
b l+1 − b l ∀ t ∈ [ c l , c l+1 ) , l ∈ Z . 

Substituting θ = t + p in the above equation and using the fact t ∈
[ c l , c l+1 ) , we get 

ˆ w (t) T ˆ w (t) ≤ ( δ̄b + δ̄c ) 

∫ 0 

−( ̄δb + ̄δc ) 

ˆ z T (t + p) ̂ z (t + p)d p. (A.6)

Integrating both the sides with respect to t in (A.6) , we get ∫ ∞ 

−∞ 

ˆ w (t) T ˆ w (t)d t 

≤ ( δ̄b + δ̄c ) 

∫ ∞ 

−∞ 

(∫ 0 

−( ̄δb + ̄δc ) 

ˆ z T (t + p) ̂ z (t + p)d p 

)
d t, 

≤ ( δ̄b + δ̄c ) 

∫ 0 

−( ̄δb + ̄δc ) 

(∫ ∞ 

−∞ 

ˆ z T (t + p) ̂ z (t + p)d t 

)
d p, 

(A.7)

where θ = t + p, since θ → ∞ as t → ∞ and θ → −∞ as t → −∞ ,

then we have ∫ ∞ 

−∞ 

ˆ w (t) T ˆ w (t)d t 

≤ ( δ̄b + δ̄c ) 

∫ 0 

−( ̄δb + ̄δc ) 

(∫ ∞ 

−∞ 

ˆ z T (θ ) ̂ z (θ )d θ

)
d p. 

(A.8)

Consequently, we have 

|| ̂  w || 2 L 2 ≤ ( δ̄b + δ̄c ) 2 || ̂ z || 2 L 2 , (A.9)

hence proved. �

The idea underlying the proof of Lemma 3.2 is that the opera-

tors on L 2 e [0 , ∞ ) considered in this paper can be seen as a special

case of the operators on L 2 e (−∞ , ∞ ) considered by [41] . To illus-

trate this, we define the new sequences { ̂ s i 
l 
} l∈ Z in time to satisfy

ˆ s i l+1 = 

ˆ s i l + ̂

 h 

i 
l , l ∈ Z , i = 1 , . . . , N, (A.10)

where ˆ s i 
k 

= s i 
k 

∀ k ∈ Z 

+ 
0 
, and 

ˆ h i 
l 
∈ (0 , ̄h i ] ∀ l ∈ Z . Also, the se-

quences { ̂  a i 
l 
} l∈ Z satisfy 

ˆ a i l = 

ˆ s i l + ˆ ηi 
l , l ∈ Z , i = 1 , . . . , N, (A.11)

where ˆ a i 
k 

= a i 
k 

∀ k ∈ Z 

+ 
0 
, ˆ ηi 

l 
∈ [0 , η̄i ] ∀ l ∈ Z , and ˆ a i 

l 
< 0 ∀ l ∈ Z 

−.

Using Appendix A.1 , we know that 

|| �({ ̂  s i , ̂  a i } l∈ Z ) || L 2 ≤ h̄ i + η̄i , 
l l 
or any input (with finite energy) to the operator. We define two

ew operators, an extension operator D : L 2 e [0 , ∞ ) → L 2 e (−∞ , ∞ )

uch that 

(D ̃

 z )(t) := 

{
˜ z (t) , ∀ t ∈ [0 , ∞ ) , 

0 , ∀ t ∈ (−∞ , 0) , 
(A.12)

nd a restriction operator R : L 2 e (−∞ , ∞ ) → L 2 e [0 , ∞ ) such that

˜  (t) = (R ̂ z )(t) := ˆ z (t) ∀ t ∈ [0 , ∞ ) , then, we have the following

emma. 

emma A.2. The following relation holds true, 

(i 
3 ̃  z )(t) = (R �({ ̂  s i l , ̂  a i l } l∈ Z ) D ̃

 z )(t) . (A.13)

roof. For the case when t ∈ [ ̂  a i −1 
, ̂  a i 

0 
) , we know that ˆ a i −1 

< 0 < ˆ a i 
0

hen using (A.12) we have 

 t 

ˆ s i −1 

D ̃

 z (θ )d θ = 

{ ∫ t 

0 

˜ z (θ )d θ, ∀ t ∈ [0 , ̂  a i 0 ) , 

0 , ∀ t ∈ [ ̂  a i −1 , 0) , 
(A.14)

sing the fact that ˆ a i 
l 
< 0 ∀ l ∈ Z 

−, we also have 

(�({ ̂  s i l , ̂  a i l } l∈ Z ) D ̃

 z )(t) 

= 

⎧ ⎨ 

⎩ 

∫ t 

ˆ s i 
l 

D ̃

 z (θ )d θ, ∀ t ∈ [ ̂  a i 
l 
, ̂  a i 

l+1 
) , l ∈ Z 

+ 
0 

∪ {−1 } , 
0 , ∀ t ∈ (−∞ , ̂  a i −1 ) . 

(A.15)

hen we can rewrite (A.15) using (A.14) as 

(�({ ̂  s i l , ̂  a i l } l∈ Z ) D ̃

 z )(t) 

= 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

∫ t 

s i 
k 

˜ z (θ )d θ, ∀ t ∈ [ a i 
k 
, a i 

k +1 
) , k ∈ Z 

+ 
0 
, ∫ t 

0 

˜ z (θ )d θ, ∀ t ∈ [0 , a i 0 ) , 

0 , ∀ t ∈ (−∞ , 0) , 

(A.16)

ence proved. �

roof of Lemma 3.2.. From Appendix A.1 and Appendix A.2 , we

irectly have 

| i 
3 || L 2 ≤ || �({ ̂  s i l , ̂  a i l } l∈ Z ) || L 2 ≤ h̄ i + η̄i , 

r || i 
3 
|| L 2 ≤ γ i 

3 
, i = 1 , . . . , N. Similarly, using Appendix A.1 and

lightly modifying Appendix A.2 (by changing the sequences in

A.10) and (A.11) accordingly), it can also be shown that || i 
1 
|| L 2 ≤

i 
1 

and || i 
2 
|| L 2 ≤ γ i 

2 
, i = 1 , . . . , N. Hence, Lemma 3.2 has been

roved. �

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.ejcon.2020.02.002 . 
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