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Abstract

In this paper, we consider the problem of disturbance
attenuation for a class of piece-wise linear systems.
The proposed control design ensures that the closed-
loop system is uniformly convergent. Uniform con-
vergence guarantees the existence of a unique globally
asymptotically stable steady-state solution for a given
periodic disturbance. This property allows to uniquely
assess the performance of the controller in terms of dis-
turbance attenuation. Both state-feedback and output-
feedback variants of the control design are presented.
The effectiveness of the strategy is shown by applica-
tion to a piece-wise linear beam system.

Key words
Convergence-based control, non-smooth dynamics

1 Introduction

The motivation for this work originates from the need
to analyse and control the dynamics of complicated en-
gineering constructions including structural elements
with piece-wise linear (PWL) restoring characteristics,
such as tower cranes, suspension bridges and solar pan-
els on satellites [Heertjes, 1999]. More specifically, the
disturbance attenuation problem is an important con-
trol problem to be solved to ensure the performance of
these systems and to avoid damage to the structures.
Since the dynamics of such systems are generally for-
mulated as PWL systems, we will investigate the dis-
turbance attenuation problem for PWL systems. PWL
systems are currently receiving a great deal of attention.

In [Johansson and Rantzer, 1998], a new framework
was developed, based on piece-wise quadratic Lya-
punov functions, to analyse the stability of piece-wise
affine (PWA) systems. In [Rantzer and Johansson,
2000] this framework was extended for performance
analysis and optimal control. In [Hassibi and Boyd,
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1998], a study related to stability analysis and con-
troller design for PWL systems was presented. This
study uses common and piece-wise quadratic Lya-
punov functions for stability purposes. Here, in the
case of a common quadratic Lyapunov function, both
the stability analysis and the state-feedback synthesis
can be expressed as a convex optimization problem
based on constraints in linear matrix inequality (LMI)
form. However, it has been pointed out that this is dif-
ficult in the case of a piece-wise quadratic Lyapunov
function. A solution for this problem has been given in
[Feng et al., 2002] and [Rodrigues et al., 2000]. [Feng
et al., 2002] presents a H, controller synthesis method
based on a piecewise quadratic Lyapunov function that
can be cast in the form of solving a set of LMIs using
standard LMI solvers. [Rodrigues et al., 2000] shows a
method used to design state- and output-feedback con-
trollers with constraints on the smoothness and con-
tinuity of the piecewise quadratic Lyapunov function.
However, the controller design of [Rodrigues et al.,
2000] is restricted, as it is mentioned in [Rodrigues et
al., 2000], by two fundamental assumptions: 1) there
are no sliding modes at the hyperplane boundaries be-
tween regions with different affine dynamics, 2) the ex-
amined PWL system and the controller are always in
the same region. [Rodrigues and How, 2001] exam-
ines the case where the assumptions in [Rodrigues et
al., 2000] are violated and presents a general stability
analysis of the closed-loop system for that case.

A common characteristic of the papers [Johansson and
Rantzer, 1998], [Rodrigues et al., 2000], [Hassibi and
Boyd, 1998] and [Rantzer and Johansson, 2000] is that
they guarantee stability of a PWL system for zero in-
puts. In the papers [Hassibi and Boyd, 1998], [Feng
et al., 2002], [Khalil, 2002] and [Rodrigues and How,
2001] it is assumed that given an initial condition for
a PWL system, an input signal, and a disturbance, the
systems has a unique solution for ¢ > 0.

In [Demidovich, 1967] (see also [Pavlov et al., 2004]),
the notion of convergence for nonlinear systems with
inputs is introduced. A system with this property has



a unique globally asymptotically steady-state solution attained by rendering the PWL beam system conver-
which is determined only by the system input and does gent by means of feedback.
not depend on the initial conditions. In [Paviov, 2004] The controller design strategy uses state- and output-
and [Pavlov et al., 2005], the notion of convergent sys- feedback control laws in order to render the closed-
tems is extended to the notion of (uniformly, exponen- loop system of the PWL beam convergent. The output-
tially) convergent systems and input-to-state conver- feedback controller is a combination of a model-based
gent systems (in section 2, further information about switching observer [Juloski et al., 2002] and a state-
these notions is given). Based on the extensions maddeedback controller.
in [Pavlov, 2004], the design of a controller that ren- The paper structure is as follows. The controller de-
ders a non-convergent system convergent, is pursuedsign strategy is introduced in section 2. In sections 3
Furthermore, in [Pavlov, 2004] the first result on con- and 4, state- and output-feedback controllers are de-
vergence for PWA systems is published. signed for a bi-modal PWL system, respectively. A de-
So far, results related to performance of PWL/PWA scription of the PWL beam system is given in section 5.
systems, in terms of disturbance attenuation, whereln section 6, simulation results related to the controller
given among others, in [Rantzer and Johansson, 2000] performance are presented. Conclusions and directions
[Hassibi and Boyd, 1998] and [Feng et al., 2002]. The for future work are given in section 7.
pgrformanpe regults of thesg papers, which are based 0o  controller design strategy
single or piecewise quadratic Lyapunov functions, pro- \ve consider the following class of bi-modal time-
vide an upper bound for the _system output by bounding gntinuous PWL systems:
the L, gain from the system input to the system output.
Nevertheless, these results are not very general, since
they have been derived under the assumption of zero; ;) {A1$(t) + Buw(t) + Byu(t) for H"z(t) <0
initial conditions. Aoz (t) + Bw(t) + Byu(t) for HTz(t) > 0
In this paper we propose a controller design strat- (1a)
egy for a class of bi-modal PWL systems, based on
the extended notions of convergence, in order to studyy(t) = Cz(t), (1b)
the performance of such systems for disturbance at-
tenuation. The convergence property is beneficial in Wherez(t) € R”, y(t) € R?, u(t) € R? andw(t) €
the scope of performance analysis of bi-modal PWL R™ are the state, the output, the control input and the
systems, because it ensures that these systems exhib@xogenous input of the system, respectively, depending
unique steady-state solutions. Due to the fact that con-0n timet € R. The inputw(t) acts as a disturbance
vergence is based on a quadratic Lyapunov function, On the system and it is considered to be periodic. The
we can provide an upper bound for the system states inmatricesA;, A, € R"*", B € R"*™, B; € R"*9,
(steady-state) given a bounded input which is similarto C € RP*™ and H € R". The hyperplane defined
the bounds presented in [Rantzer and Johansson, 2000y ker H” separates the state spae in two half-
[Hassibi and Boyd, 1998] and [Feng et al., 2002], for spaces. The considered class of bi-modal PWL systems
any initial condition. In addition to that, the uniqueness has identical input matrice8, B; and an identical out-
of the system steady-state response allows for a morePut matrixC' for both modes.
accurate evaluation of the performance based on com- The goal of the controller design strategy is the distur-
puted responses. In this paper, we focus on a specificddance attenuation of such systems for a range of peri-
class of disturbances, namely harmonic disturbances.odic excitations. Disturbance attenuation roughly mea-
The motivation for this choice lies in the fact that in sures to what extent the amplitude of a periodic distur-
engineering practice many disturbances can be approxbancew(t) = Asinwt is amplified/suppressed in the
imated by harmonic signals. output or in (each component of) the statg). Ob-
More specifically, this paper presents a controller de- Viously, such measure only makes sense if the steady-
sign strategy for a class of bi-modal PWL systems and Stateé response remains bounded and is unique under a
treats its application to a piece-wise linear model of an Periodic excitation. .
experimental beam system. This system consists of a Due to the fact that PWL systems are nonlinear, they
flexible steel beam, which is clamped on two sides and ©ften exhibit multiple steady-state solutions when ex-
is supported by a one-sided linear spring. Due to the C|te_d by periodic disturbances. In order to unlquely_
one-sided spring the beam has two different dynami- define the performan_ce of the closed—loop.system it
cal regimes, which both can be well described as being should not have multiple steady-state solutions. The

linear. This system is excited by exogenous periodic Present strategy focuses on attaining such property by

disturbances. making PWL systems globally, uniformly convergent.
A detailed treatment of convergent systems was given

in [Demidovich, 1967] (see also [Pavlov et al., 2004]).
Consider the system

The goal of the strategy is the performance of the
closed-loop PWL beam system in terms of disturbance
attenuation. In order to uniquely define the perfor-
mance of the closed-loop system it should not have
multiple steady-state solutions. This property can be z = F(z,w(t)), (2)
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with statez € R% and inputw € R™, whereF (z,w) is uniformly convergent for a class of piece-wise con-
locally Lipschitz inz and continuous inv. The input tinuous inputs, and for every input(¢) taken from
w(t) is a piecewise continuous functioniodefined for this class, the system is input-to-state stable [Khalil,
allt € R. 2002] with respect to the system’s solutian(t), i.e.
there exist akK' L-functiong(r, s) [Khalil, 2002] and a
class K »-function [Khalil, 2002]v(r) such that any
solution of this system corresponding to some input

Definition 1. Systen(2) with given inputw(t) is said
to be (uniformly, exponentially) convergent if

1. all solutionsz(¢) are well defined for allt €  w(t) := w(t) + Aw(?) satisfies
[to, +00) and all initial conditionsty € R, z(ty) €
R™; [2(t) — Zu(0)] <
2. there exists a unique solution, (t) defined and  3(|z(to) — Zw(to)],t — to) + Y(sup;, <, <; |Aw(7)]).
bounded for alk € (—oo, +00); o (5)
3. the solutiorg, (t) is globally (uniformly, exponen- 3 State-feedback controller design _
tially) asymptotically stable. In the controller design strategy, a static state-

feedback is chosen as the input for the system (1):
If system (2) is convergent for a class of inputs, then

for every input from this class it has a unique bounc_ied u(t) = —Ka(t), )
globally, asymptotically stable, steady-state solution
Zw(t).

If the input of a convergent system is periodic wit
periodT’, then the corresponding, (¢) is also periodic
with the same period’, see [Pavlov et al., 2004].

In the present work, given the fact that the (conver-

h Whereu(t) is the control action and( € RIX™ js
the controller gain. Consequently, the dynamics of the
closed-loop system (1) and (6) can be written as:

gent) closed-loop system exhibits periodic solutions | . Az (t) + Bw(t) for HT2(t) <0 7
with period?’, we can define performance more specif- @(t) = Ayz(t) + Bw(t) for H 2(t) > 0 (73)
ically by saying that we want to minimize
y(t) = Cx(t), (7b)
Ser[ﬂ?fﬂ |zi(s)], fori=1,..n, ©) whered, = A; — ByK andA, = A, — B1K. The

closed-loop system described by (7) is also a bi-modal

. e . PWL system with an identical input matri¥ and has
over a specific (excitation) frequency range. Herein, ap igentical output matrix” for both modes. Further-
x;(s) are the state components of system (1). more, the hyperplane defined byr H” separates the
The problem at hand is to provide a suitable control state-spac®” of the closed-loop system in two half-
inputw(t) to system (1) such that, for a given periodic, spaces.
continuous and bounded input?), 1) the closed-loop  The controller design problem can now be formally
system exhibits a unique periodic steady-state solutiongisied as:
and 2) the amplification of the bounded input amplitude pyoplem: Determine, if possible, the controller gain
in (each component of) the closed-loop system states isy; i, (6) such that 1) the closed-loop systdi) is
smaller than the amplification of the bounded inputam- g 5pajly, uniformly convergent for a class of piece-wise
plitude in (each component of) the open-loop system ~qntinuous inputsy : R+ — R™ and 2) for a given

states. Note that we will ensure the first property of the disturbancew(t) the maximum absolute value of the

closed-loop system by making it uniformly convergent gi5ia components of7), maz(|z;|), i = 1,..,n, is

by means of feedback. ) . lower than the maximum absolute value of the uncon-
Insection 5, the output feedback control design willbe ro|ied state componentsaz(|z;|),i = 1,...,n .

based on the input-to-state0 convergence (ISC) prop-Note that here we consider a class of bounded periodic
erty of the control system. Let us know introduce the gjsturbancesv(t) and that the uncontrolled system de-

ISC property. rives from (1) whenu=0.
Consider the system The first part of this problem can be solved using a
result in [Pavlov, 2004], which states conditions under
L= F(z,w,1), 4) which system (7) is globally uniformly convergent and

ISC for all piece-wise continuous disturbanees

Theorem 1. Consider the state-spa@®* which is di-
vided into regionsA;, ¢ = 1,...,1, by hyperplanes
given by equations of the fortHsz + h; = 0, for
someH; € R* andh; € R, j = 1,...k. Consider the
piece-wise affine system

teR, z € RY we R, whereF(z,w,t) is piece-
wise continuous irt, continuous inw and locally Lip-
schitz in z. The inputu(¢) is a piecewise continuous
function of t.

Definition 2. [Pavlov et al., 2004] Systern#) is said
to be input-to-state convergent (ISC) if it is globally 2= A,z+b; + Dw(¢t), for z€ A;, i =1,...,1. (8)
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Suppose that the right-hand side (&) is continuous Property 1. Consider the system
and there exists a positive definite maifx= Q" such

that
{2 = F(z,y,w), 2 € R?

. (11)
QA+ ATQ <0, i=1,..,1. ©) =Gz yw), y eRL

Then the syster(8) is globally exponentially conver- Suppose that the z-subsystem is input-to state-

gent and ISC for piecewise continuous bounded inputs.convergent with respect pandw. Assume that there
exists a clasg( L function 3,(r, s) such that for any

piece-wise continuous input(-), z(-)), any solution
of the y-subsystem satisfies

This Theorem 1s based on a quadratic Lyapunov func-
tion. For the proof ofTheorem 1he reader is referred

to [Pavlov et al., 2004]. It should be noted that input-to-
state convergence implies uniform convergence. Using
Theorem 1for (7), the following LMI constraints are ly(®)] < By(ly(to)l, t — to)- (12)
derived to guarantee global uniform convergence and

Input-to state convergence: Then the interconnected systéfrl) is input-to-state

convergent.
Q=0Q" >0, (10a)
In Figure 1 a schematic representation of the intercon-
nected system (11) is depicted.
ATQ+QA, <0, (10b)
w_ | y
) .| G F
Ay Q+ QA <0, (10c) w_

with A, = A; — BiK andA4, = A, — B1 K. The in-
equalities (10a)-(10c) are nonlinear matrix inequalities
in {Q7 K} but are linear in{Q7 KTQ}' and thus can Figure 1. Schematic representation of the interconnectsteisy
be efficiently solved using standard LMI solvers (such (17),

as the LMItool in Matlab). Note that these LMIs imply

stability of (7) for zero input. In addition to that, based

on the results on convergence [Pavlov et al., 2004] and

[Pavlov et al., 2005], these LMIs also imply that the In the following subsection, we will derive a set of
system (7) has a unique bounded globally asymptoti- LMIs that guarantee global, exponential stability of the

cally stable steady-state solution for every bounded in- Observer error dynamics. Then, we will show that the
put. closed-loop system consists of 1) the observer error dy-

namics (the y-subsystem) and 2) the PWL system in
_ closed-loop with the controller (the z-subsystem) has
4 Output-feedback controller design the form of (11). Next, we will show that the LMIs (10)
In general, the entire state of (1) will not be available gyarantee that the PWL system in closed-loop with the
for feedback. Therefore, the goal of this section is to controller is ISC (Definition 2) with respect to both the
construct an output-feedback controller that solves the gxogenous inputy and the observer error. Finally, we
problem stated in the previous section for the system || combine the achieved results using Property 1 in

. _ order to prove that the interconnected system (11) is
This output-feedback controller consists of a state- gopally uniformly convergent.

feedback controller as in (6) and a switching model-
based observer. This observer recovers the states of ) -
the system without any information on which linear dy- 41 ~Global exponential stability of the observer er-

namics of the system is currently active. ror— L i
Now, we will propose such observer/controller combi- W& consider a switching observer of the following

nation such that the resulting closed-loop system, here-Structure

after called the interconnected system, is globally, uni-

formly convergent. This will allow once more for a  z(t) =

unique performance evaluation. A12(t) + Bw(t) + Byu(t) + LiAy(t), if HT2 <0
The choice of the observer/controller combinationthat | A2 (t) + Bw(t) + Biu(t) + LaAy(t), if HT'& > 0,

renders the interconnected system globally, uniformly (13)

convergent is based on a property presented in [Pavlov,for the system (1), witll1, Ly € R**P andz(t) € R™.

2004]: The observer output i§(t) = C &(t) and Ay(t) =
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y(t) — g(t). The model outpuy is used as observer 4.2 Input-to-state convergence for the PWL sys-

output injection. tem in closed-loop with the state-feedback con-
The dynamics of the observer errae:(t) = z(t) — troller

#(t) is described by Using the control law

Ax(t) = u(t) = —K(t), (16)

(A; — L1C)Ax if HT'z <0 A HT2 <0
(AQ_LQ )Ax—i—AAm if H'z <0 A HT2 >0
(4 )Ax—AAx if HT2 >0 A HT# <0 in (1a) yields
( )Ax

AQ—LQ I](I{TCI?>O/\I{T.CIS>O7
(14)
whereAA = A; — A,. () = {Aax(t) + Bw(t) — BiKAx(t), if H 2 <0
In [Juloski et al., 2002] a result is proposed that pro- Apz(t) + Bw(t) — BiKAx(t), if H 'z > 0.
vides a set of LMI constraints that guarantees global 17)

asymptotic stability of the observer error dynamics de- Observing equations (14) and (17), itis straightforward
scribed in (14). Unfortunately, these constraints are not that the corresponding systems constitute an intercon-
sufficient in the present case. An extension of this the- nected system as in (11). Usifigeorem ¥or (17), we
orem is given in order to provide a set of LMI con- derive the inequalities (10a)-(10c). These inequalities
straints that guarantees gloledponentialstability of ~ guarantee that system (17) is input-to-state convergent
the observer error. with respect tau(t) and Az (t).

4.3 Global uniform convergence of the intercon-

Theorem 2. The observer error dynami¢$4)is glob- nected system

ally exponentially stable (GES) for all : Rt — R” By applying Property 1 to the interconnected system,
(in the sense of Lyapunov), if there exist matriées- we prove that the interconnected system is globally uni-
PT >0, L, L, and constants;, 7 > 0, & > 0 such formly convergent. Hereto, we use that: 1) (17) is ISC
that the following set of matrix inequalities is satisfied: With respect tow(t) and Az(t) and 2) (14) is GES.
This in fact means that the separation principle holds
for the observer/controller combination. Due to the fact
that 1) holds, the system state (17) always converges to
a unique, bounded steady state solution for every fi-
nite initial condition and for bounded inputs(¢) and

(A — LyC)T P+ PAA+
—|—P(A2 - LQC) + aP —f—%TlHHT

- - <0 (159) Ax(t). Therefore, the use of the observer (13), for sys-
AAI P+T —nHH tem state reconstruction, has no influence to the sta-
+rigHH bility of the interconnected system. Furthermore, due
to the fact that 2) holdsy,, o, Will converge to the
steady-state solution, Az—o (Tw,Az=0 IS the steady-
state solution of (17) foAz = 0).
. 1(;(1/11 ;Lfgiz . J:; ZA;XI}LT 5 APpIicatipn to a_piece—wise linear beam system
<0. (15b) I_n thls_ sec_tlon we introduce a PWL beam system _de-
_AAT P+ —rHHT picted in F|gur9 2. Th.e developed controller design
+7yl LT strategy is applied to this system.

The PWL beam system consists of a steel beam sup-

ported at both ends by two leaf springs. The beam
Hence, it can be very efficiently determined whether is excited by a forcev generated by a rotating mass-
there exists a quadratic Lyapunov function that proves unbalance, which is mounted at the middle of the beam,
global exponential stability of the observer error. For see Figure 3. A tacho-controlled motor, that enables a
the proof of Theorem 2the reader is referred to Ap- constant rotation speed, drives the mass-unbalance. An
pendix B. Note thatl,;, L, are non unique.Lq, Lo actuator applies a control foreeto the beam. A sec-
influence the rate of convergence of the observer er-ond beam, that is clamped at both ends, is located par-
ror to zero. In case there is measurement noise in theallel to the first one and represents a one-sided spring.
observer output injection, the choice bf, L, should This spring represents a non-smooth nonlinearity in the
be a balance between convergence rate and noise amdynamics of the PWL beam system and as a result the
plification. The inequalities in (15) are nonlinear ma- beam system (beam and one-sided spring) has nonlin-
trix inequalities i{ P, L1, Lo, A1, A2}, but are linearin ~ ear and non-smooth dynamics. The restoring charac-
{P,LTP LY P 1 ,m}. Thus, they can be efficiently teristic of the one-sided spring is assumed linear; con-
solved using linear matrix inequalities solvers (such as sequently, the beam system can be described as a piece-
the software LMItool for Matlab). wise linear system, as shown in the next section.
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Figure 2. Schematic view of the PWL beam system.
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Figure 3.

Elastic beam with one-sided support.

5.1 Dynamics of the PWL beam system

The dynamics of the PWL beam system can be de-
scribed by a three-degree-of-freedom (3DOF) model
[Doris et al., 2005] of the following form

M+ Bsq+Ksq+ fri(q) = by w(t)+hs u(t), (18)

whereh; = [1 0 0T, hy =[0 1 0]7 andg =
[@mid  Qact ge)*. Herein,g,,qq is the displacement
of the middle of the beam angl,.; is the displace-
ment of the point of the beam at which the actuator
is mounted, see in Figure 3. Moreovey, reflects the
contribution of the first eigenmode of the beam &gl

B and K, are the mass, the damping and the stiffness
matrices of the 3DOF model, respectively. We apply a
periodic (harmonic) excitation force

w(t) = Asinwt, (29)

0=[0 0 0]

In the examined case, the output of (&)t) = Cx(t),
describes a transversal displacement of a point 1 on the
beam, depicted in figure 3. The numerical values/ff

Bs, K, ky; andC are given in Appendix A.

6 Simulation of the PWL beam system

In order to illustrate the effectiveness of the control
strategy proposed in sections 2, 3, 4 and 5, simulation
results related to the PWL beam are presented.

In the first part of this section, it is shown that the ob-
server error converges to zero exponentially and in the
second part, it is shown that the interconnected system
consisting of (14) and (17) is globally uniformly con-
vergent. Note that in the examined case, the z- and
y-subsystems of (11) are represented by (17) and (14),
respectively.

6.1 Global exponential stability of the observer er-
ror

In order to design the observer (13) for the intercon-
nected system, the transversal displacement of a prop-
erly chosen point on the beam is used as observer out-
put injection. This displacement is the model output
y(t) = Cx(t), see figure 3. The position of this point
should be chosen such that the LMIs (15) are feasible.
By solving these LMIs the gaing,, L, that guaran-
tee global asymptotic stability of the observer error, are
calculated. The numerical values of these gains are
given in the Appendix A.

In figure 4, the observer error stateSz,(t)
Gmid(t) — qmia(t), Azs5(t) = Gact(t) — dact(t) and
Axg(t) = ge(t)—ge (t) and an exponential boundary of
the observer error are depicted. This boundary (dashed
line) has the form /\/Amin (P) |Az(to)|pe~ % andit
is derived from (31). The values fd?, o and Az (t)
are given in Appendix A. Based on this figure, the ob-
server error converges to zero exponentially. Therefore,

which is generated by the rotating mass-unbalance atthe Property 1 can be applied to the interconnected sys-

the middle of the beam. Herein,; is the excitation
frequency andd the amplitude of the excitation force.
Moreover, f,,; is the restoring force of the one-sided
spring:

fnl(q) = knl hl mln(oa h{Q) = knl hl mln(oa Qmid)a
(20)
wherek,,; is the stiffness of the spring. The for¢g;

acts when there is contact between the middle of the

beam and the one-sided spring.
In a state-space formulation, the model takes the form

of (1) and by using the observer-based state-feedback

(16) it can be written in the form of (17), where =
" ¢T)T andH = [nT 0T]T. Furthermore,

tem.

A(E5 (t), Ail?(j (t)v [m]

A$4 (t),

%
L ) L L ) L L ) ) )
0 001 0.02 003 004 005 006 007 008 0.09 0.1

time [sec]

Figure 4. Ax4(t) (dashed-dotted line)Ax5(t) (thick solid
line) andAmg(to) (solid line) for an excitation frequenay =

4 — 0 I
VT -MTY K+ ke b BT —MTIB, |
0 I
42 {—M—lKS —M—lBJ’
0 0
Bf |:M_1h1:|,B1 |:Z\/[_1h2:| and

2755 rad/ s and an excitation amplitudd = 121 N.
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6.2 Global uniform convergence of the intercon-
nected system and attained disturbance atten-
uation

In this subsection, we show that 1) the PWL beam sys-
tem in closed-loop with the observer-based controller

exhibits a unique asymptotically stable steady-state so-

lution and 2) the effect of the excitation foraeon the
systems response is significantly smaller in the closed-
loop system than in the open-loop system. More specif-
ically, we show that the maximum value of the transver-
sal displacement of the points on the beam are signifi-
cantly smaller when a control foreeis acting on the
beam than in the open-loop case.

Numerical computation of the periodic solutions of
the open-loop PWL beam system ((1) with= 0) for
harmonic disturbances, as in (19), shows that this sys-
tem is not globally uniformly convergent. Hereto, the
collocation method [Doedel et al., 1998] and the path-
following procedure [Ascher et al., 1995] are used.

More specifically, in figures 5, 7, and 8, the plots of
maz(|gmial), maz(|gact|) andmaz(|ge|) for such pe-
riodic solutions are depicted for an excitation frequency
range of10 — 60 [Hz]. ¢mid, Gact and ge are de-
rived from the open-loop system and they are divided
by the the input amplitudel in order to take a nor-
malized form. Based on these figures,:q, ¢..: and
ge exhibit two steady-state solutions for excitation fre-
quencies within the frequency range3sf — 56 [H z].

In this frequency range, the dashed line is an unstable

harmonic solution and the solid line is a stalélesub—
harmonic solution. Due to the fact that the open-loop
system exhibits two steady-state solutions, it is not con-
vergent.

By using numerical analysis for the PWL beam closed-
loop system (interconnected system (14) and (17)) for
such periodic disturbances, we show that this system
is globally uniformly convergent, as guaranteed by the
theory. In figures 5, 7, and 8, the plotsmofix(|¢mial),
maz(|¢act|) andmaz(|ge|) of the closed-loop system

are depicted (dash-dotted lines). Based on these fig-

Ures, ¢mid, dact andge exhibit a unique steady-state
solution in the frequency range d® — 60 [Hz|. This
fact indicates that the controlled system is convergent

and indeed a unique performance assessment in terms =

of disturbance attenuation can now be performed. For

a better understanding of these results also a time re-

sponse 0fg,,,;q is shown in figure 6. In this figure
the time response af,,;; is depicted for three differ-
ent initial conditionszg;, i = 1,2, 3 (for the numeri-
cal values ofry; see Appendix A). The excitation fre-
quency and the force amplitude for the examined case
aref = 45 Hz and A = 81 N, respectively. Figure
6 shows that the time responsef;; converges to a
unigue steady-state solution for different initial condi-
tions.

The comparison of the plots ofmaz(|gmial),
maxz(|¢act|) and maz(|ge|) calculated for the open-

and closed-loop systems shows that the closed-loop

system responses are significantly smaller than thos

e

of the open-loop system. Based on this comparison,
it is concluded that the effect of the disturbaneeto

the PWL beam is attenuated due to the control ferce
Note that especially the nonlinear resonances are sup-
pressed. This can also be noticed in figure 9, where the
time response af,,,;4 in steady-state is shown. In this
figure the dashed line is the open-loop solution,gf;,
while the solid line is the closed-loop solution. The ex-
citation frequency for this case 22 Hz and the force
amplitude isA = 18 N (see also the vertical dashed
line in Figure 5).

Remark: The control gaink is calculated initially by
solving LMI (10) using the toolbox LMItool of Mat-
lab. The elements oK derived in this way are in the
order of10°. Applying a high gain control in an ex-
perimental system may firstly, lead to noise amplifica-
tion, which is undesirable for the system performance,
and secondly, lead to actuator saturation. In addition to
that, high control gain implies big control effort for the
suppression of the system resonance peaks. Therefore,
a more sophisticated way to overcome such high gain
controller design is followed. Due to the fact that LMI
(10) provides sufficient conditions for convergengée,

is not unique. Based on engineering insight, we choose
a control gain that adds damping to the nonlinear res-
onances of the system. In this way, the system reso-
nance peaks are suppressed. By using LMI constraints
(10) we check whether the system remains convergent.
Based on trial and error technique, we notice that by
adding damping iny,.;q4), we render the system con-
vergent and reduce the resonance peaks in all system
states (see figures 5, 7, and 8). Based on this approach,
we achieve small control gain values with respect to
the initial ones. These values are in the ordei @f.

A more constructive way to choose a control g&iris

by using an LMI condition that ensures bounds on the
control action. The development of such LMl is subject
of future work.

maz(|gmiqa|) scaled byA
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= = unstable solution of the open-loop system
— - closed-loop solution
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Figure 5. Scaled maximum absolute values of the transversal di
placement of the middle of the beam, based on the open-loop sys-
tem (solid line, dashed line) and the interconnected sy§fef) and

(17) (dashed-dotted line).
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Figure 6. The transversal displacement of the middle of thenbea
for the interconnected syste{l4) and(17)and for different initial

cond

maz(|qact])/A [m/N]

Figure 7. Scaled maximum absolute values of the transversal di
placement ofj, .+, based on the open-loop system (solid line, dashed
line) and the interconnected systéh4) and (17) (dashed-dotted

line).
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Figure 8. Scaled maximum absolute values of the transversal di
placement ofj¢, based on the open-loop system (solid line, dashed
line) and the interconnected systdh4) and (17) (dashed-dotted

line).
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Figure 9. The steady-state solution of the transversalatisment
of the middle of the beam, based on the closed-loop (solid &ne)
the open-loop system (dashed line) for = 2722 rad/s and
A=18 N.

7 Conclusions and Future work

The controller design strategy developed in the
present work has proven to be suitable for disturbance
attenuation of bi-modal piece-wise linear (PWL) sys-
tems excited by periodic disturbances.

We propose a convergence-based controller design
for disturbance attenuation. More specifically, we use
the fact that a nonlinear system has a unique glob-
ally asymptotically stable solution when it is uniformly
convergent. Convergence has been used in this paper in
order to uniquely define the performance of the closed-
loop system.

In the present paper, we define disturbance attenuation
as the suppression of the vibrations of a PWL system,
caused by exogenous periodic disturbances, over a spe-
cific frequency range. By performance we indicate the
ability of the controller to achieve such disturbance at-
tenuation.

The strategy is applied to a bi-modal PWL beam sys-
tem. The control laws proposed to render the closed-
loop system of the PWL beam convergent and to attain
disturbance attenuation are 1) a static state-feedback
controller and 2) an output-feedback controller. For
the output-feedback controller, a model-based switch-
ing observer is used.

The simulation results show that the interconnected
system, consisting of the PWL beam in closed-loop
with the observer-based controller and the observer,
is globally uniformly convergent. In addition, the de-
signed controller has been shown to perform well, since
it suppresses all the (nonlinear) resonance peaks of the
beam’s transversal vibrations considerably in the pres-
ence of periodic disturbances.

Interesting extensions of the present work may include
the experimental implementation of the proposed con-
trol strategy for PWL systems; especially on the PWL
beam system.
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if H'x > 0andHT (x — Az) < 0then

V(Az) =
(A; — L,C)TP+ —PAA
{M]T +P(A; — L,C) {Am
v _AATP 0 .
(22¢)

and if H'z > 0 andH” (z — Az) > 0 then

V(Az) = AzT((Ay — LoC)T P+ P(Ay — Ly,0)) Az

(22d)

Multiplication of H”z < 0 andH” (x — Az) > 0 or
HTz >0andHT (z — Ax) < 0 leads to:

HTz <0andHT(z — Az) > 0= (23)
HTzHT (x — Az) <0

and

HTz >0andHT (z — Az) <0 =

HTzHT (x — Ax) <0. (24)

We can rewrite the inequality in (23) and (24) as fol-

lows:

HTzHT(z - Az) < 0=
T 1 T
[Ax} { 1O . sHH ][Am}go

HHT x
MoreoverV (Az), given by (21) can be written as:

(25)

T
o= [F ] e
It is known that the inequality
V(Az) < —aV(Ax) (27)

implies global exponential stability df (Azx). There-
fore, there exists & (t) = U(tg)e *, with U(ty) =
Az(ty)T PAx(ty) such that:

V(Az(t)) <U(®t) =

Az(t)TPAz(t) < U(tg)e t =

Az(t)TPAx(t) < Az(to)T PAz(tg)e ™ = (28)
Ba(Df < |An(tg) e =

Ax(t)]p < [Ax(to)pe,

where|Ax(t)|p is a norm ofAz(t) with the form

|Az|p = VAzT PAz, for Az € R" andP = PT > 0.
(29)

This norm is called th&®-normof Azx.
It is also known that,

Amin (P)|Az(t)* < |Az(t)[T PlAz(t)],  (30)

where\, ;. (P) is the minimum eigenvalue aP and
|Ax(t)| is theEuclidean nornof Az (t).
The combination of (29) and (30) yields

Amin(P)|Az(t)]* < |Ax(t)|" P|Az(t)| =
VAmin(P)Az()]? < v/[Az(t)[T PlAz(t)]
< |Az(ty)|pe =
VAmin(P) [Az(t)] < [Ax(to)|pe™
|Az(t)] < 1/v/Amin(P) |Az(to)|pe

(31)

E

=
=

at
2

|

Substituting (22) and (26) into (27) yields

AzT((Ay —L,C)' P+ P(A; — L,C) +aP)Az <0,

(32a)
if H'2 <0andHT (z — Ax) <0,
(Ay — Ly,C)T'P+ PAA
[Am}T +P(Ay — LyC) + P {Aﬂ Y
v AATP 0 vl
(32b)
if HT2 <0andHT (z — Ax) > 0,
(A; — LiC)YTP+ —PAA
v _AATP 0 vl
(32¢)

if H72z > 0andH” (x — Ax) < 0 and

AzT((Ay — LyC)T P+ P(Ay — LyC) + aP)Az < 0
(32d)

if H'z > 0andH” (z — Az) > 0.

Applying the S-procedure to the sets of inequalities

{(32h), (25} and {(32c), (25} the LMI constraints

(15a) and (15b) are derived, respectively.
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