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Abstract

In a novel approach to model stick-slip vibrations oc-
curring when drilling with drag bits, the axial and tor-
sional dynamics are coupled through the boundary con-
ditions via a state-dependent delay. Moreover, friction
is modelled by a rate-independent discontinuous term.

A regime characterized by a low amplitude of the tor-
sional vibrations and a high drilling efficiency is nu-
merically observed for some sets of parameters. In this
regime, the axial fast vibrations have a stabilizing effect
on the torsional equilibrium.

To understand this stabilizing mechanism, we are
studying the decoupled axial equation obtained by
freezing the delay. This approximation reflects the
small variations of the delay when the bit experiences
small torsional vibrations. Axial periodic solutions
may be analysed independently. Particularities of this
equation lie in the presence of a delayed term and a
non-smooth non linearity.

In this paper, we apply different well-known meth-
ods to study the periodic orbits of the axial dynamics.
The results and limitations of semi-analytical (Describ-
ing Functions Method) and numerical procedures (Fi-
nite Difference Method, Shooting Method) are exposed
here. We use these numerical techniques to investigate
some particular properties of the system, such as the
dependency of period time with the delay.
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1 Introduction
Self-excited vibrations are common phenomena ob-

served in drilling systems used by oil industries. Most
frequent models in the literature use a single DOF in
torsion with a velocity weakening law at the bit/rock
interface, as an intrinsic property of the bit/rock inter-
action (Brett, 1992; Challamel, 2000).
A novel approach with 2 DOF’s in axial and torsion

presented in (Richard et al., 2004) exhibits similar be-
haviors although all parameters are rate independent
(Detournay and Defourny, 1992). The apparent de-
crease of the friction coefficient is shown to be directly
related to axial vibrations of the bit and more precisely
to intermittent losses of frictional contact.
Because of the helicoidal motion of the bit, the cutting

forces depend on a varying delayed axial position of the
bit. This delay dependence is ultimately responsible
for the coupling of the two modes of oscillations and
for the existence of self-excited vibrations. Numerical
simulations show that they may degenerate into stick-
slip oscillations or bit bouncing for sets of parameters
in accordance with quantities measured in real field op-
erations (Richard et al., 2004). Such extreme types of
vibrations are at the origin of important bit or drillstring
failures.
In the 2 DOF model, another regime, characterized by

a low amplitude of the torsional vibrations and a high
drilling efficiency, is numerically observed for some
sets of parameters. In this regime, the fast axial vi-
brations have a stabilizing effect on the torsional equi-
librium. In order to understand the stabilizing mech-
anism, we first study the axial equation with a fixed
delay, an approximation averaging the small variations
of the angular velocity of the bit. The approximated
model becomes decoupled from the torsional equation.



Particularities of this equation lie in the delayed term
and a non-smooth non linearity.
We present results and limitations of semi-analytical

(Describing Function Method) and numerical proce-
dures (Finite Difference Method, Shooting Method)
used to characterize the limit cycling in this DDE with
a non-smooth nonlinearity. Moreover, we will use the
shooting method to investigate some particular proper-
ties of this system such as the evolution of the period
time of the limit cycles with the delay.
In Section 2, we present the drilling model and

some typical numerical results. We describe the anti-
resonance regime and motivate the analysis of the ax-
ial dynamics with a fixed delay. In Section 3, we dis-
cuss some qualitative observations made on this partic-
ular equation, the results and limitations of the different
methods applied to analyze the periodic orbits. Conclu-
sions are drawn in Section 5.

2 Drilling Model
The model of the drillstring consists in an angular

pendulum of stiffness C ended with a punctual iner-
tia I and a punctual mass M free to move axially (see
Fig. 1(a)). The boundary conditions applied to that
mechanical system are: (i) at the top, a constant up-
ward force Ho and a constant angular velocity Ωo and
(ii) at the bottom, bit/rock interactions laws based on
a phenomenological model accounting for cutting and
a rate-independent frictional processes (Detournay and
Defourny, 1992).
During a slip phase (angular velocity of the bit is pos-

itive), the equations of motion of the drill bit are given
by

I
d2Φ

dt2
+ C (Φ− Ωot) = −T, (1)

M
d2U

dt2
= Wo −W, (2)

where U and Φ are the vertical and angular positions
of the drag bit, respectively. The quantity Wo repre-
sents the effective weight transmitted to the drag bit by
the drilling structure. Its amplitude is controlled by the
hook force Ho.
For the sake of simplicity, the idealized drag bit con-

sidered here consists of n identical radial blades regu-
larly spaced by an angle equal to 2π/n, see Fig. 1(b).
The weight and the torque required by the cutting ac-
tion, W and T respectively, account for both indepen-
dent cutting and frictional processes

T = Tc + Tf (3)
W = Wc +Wf , (4)

denoted respectively by the subscripts c and f .
The rate independent frictional process is mobilized

at the wears/rock contacts only when the bit is mov-

Figure 1. (a) Simplified model of a drilling system; (b) section of
the bottom-hole profile located between two successive blades of a
drill bit.

ing downward dU
dt ≥ 0. Otherwise, the frictional con-

tacts vanish. The pure cutting forces are, among other
things, proportional to the rock thickness dn that is re-
moved instantaneously. When the bit experiences axial
vibrations, the rock ridge facing the blades may vary.
Because of the helicoidal motion (the bottom hole pro-
file was dictated by the passage of the previous blade),
it brings into the equations the delayed axial position
of the bit

Tc(t) ∝ dn(t) = U(t)− U(t− tn), (5)
Wc(t) ∝ dn(t) = U(t)− U(t− tn). (6)

The delay tn is the time required for the bit to rotate by
an angle of 2π/n to reach its current angular position.
If the bit experiences torsional vibrations, the delay is
not constant. It is the solution of

Z t

t−tn

dΦ

dt
dt = Φ(t)− Φ(t− tn) =

2π

n
. (7)

A conceptual sketch is depicted in Fig. 1(b). Because
of the torsional vibrations, the bit angular velocity may
fall to zero. Then, it enters a stick phase during which
the bit is considered to be stuck. Since the top is still
rotating, the elastic energy builds up in the spring until
it becomes sufficient to provide a positive acceleration.
The bit starts rotating again.
The expression of the dimensionless and perturbed

form of the equations governing the bit motion of this
discrete model during slip phase yields

ü = ψn (−vo (τn − τno)− (u− ũ) + g(u̇)) (8)
ϕ̈ = n (−vo (τn − τno)− (u− ũ))

+nβg(u̇)− ϕ (9)
0 = ωo (τn − τno) + ϕ− ϕ̃, (10)

where u(τ) and ϕ(τ) represent, respectively, the di-
mensionless perturbed axial and angular positions to



the trivial bit motion while the dot denotes differen-
tiation with respect to the dimensionless time τ =
t/
p
I/C. The variables ũ = u (τ − τn) and ϕ̃ =

ϕ (τ − τn) correspond to delayed axial and angular po-
sitions, respectively.
The boundary conditions complicate significantly the

model since the set of equations is non-linear and fully
coupled with a state-dependent delay. Indeed, the solu-
tion of the axial equation (8) is exciting the torsional
mode of vibrations (9). The state-dependent delay,
which is the solution of the implicit torsional equa-
tion (10), affects the axial equation through the terms
related to the pure cutting process. Finally, the fric-
tion process, represented by g(u̇), is responsible for the
presence of a discontinuous term in both equations that
depends on the sign of the axial velocity. The discon-
tinuous function that represents the frictional contacts
occurring at the wears/rock interface yields

g(u̇) =
λn
2
(1− sign(u̇+ vo)) . (11)

Rate independent dimensionless parameters of the
model are:

(i) The quantities ωo and vo are the trivial angular and
axial bit velocity, respectively.

(ii) The parameter β characterizes the geometry of the
bit.

(iii) The number λn is proportional to the lengths of
the wears. It is a direct measure of the bluntness of
the bit.

(iv) The drill string design is embedded into the
lumped parameter ψ.

(v) The trivial dimensionless delay is τno = 2π/nωo.

The typical range of variation of both parameters ωo
and vo is [1, 10]. The bluntness number λn is of order
1, while the bit-rock interaction number β is typically
within the interval [0.1, 1]. The parameter ψ is large in
the range

£
102, 103

¤
.

The term −vo (τn − τno)− u+ ũ represents the per-
turbed thickness of rock that is cut instantaneously by
each blade. In absence of any torsional vibrations

τn = τno, (12)

while in absence of any axial vibrations

u = ũ = 0. (13)

The solutions of the discontinuous differential equa-
tion are defined using Filippov’s solution concept. Fil-
ippov’s convex method treats the discontinuous term in
the right-hand side of (8) and (9) as a set-valued map-
ping on the hyperplane u̇ = −vo. The magnitude of ψ
will separate the dynamics associated to both equations
(8) and (9). Indeed, we can roughly conclude that the

axial dynamics will evolve
√
ψ faster than the dynam-

ics related to the torsional equation.

The numerical simulations reveal different regimes
such as:

1. The stick-slip vibrations are characterized by
large amplitude torsional vibrations. Dominant
frequencies in both modes differ strongly. The
dominant frequency in torsion is directly related
to the characteristic time of the torsional oscil-
lator (

p
C/I) while axial dominant frequency is

clearly larger. Stick-slip vibrations are undesired
because they are the most frequent cause of drill-
string breakage by fatigue.

2. The anti-resonance regime is characterized by
small oscillations of ϕ̇ around the steady-state
value. The dominant frequency in both modes co-
incides and is larger than the natural frequency of
the drillstring in torsion. It occurs mainly at low
RPM (ωo).

2.1 Anti-resonance mode

For some sets of parameters, the limit cycle of the tor-
sional vibrations is characterized by small variations of
the bit angular velocity around its steady state value.
The natural frequency of the torsional mode has disap-
peared to make place for high frequency oscillations.
These vibrations are directly linked to the axial dynam-
ics that remain clearly observable (see Fig. 2). The two
time scales are also clearly visible during the transient.
The variables related to torsion evolve with a charac-
teristic time of 2π while the axial oscillations have a
period close to 1.

As said above, this regime is particularly interesting
since it should reduce considerably the risks of failure
by fatigue of the drill string.

In the anti-resonance mode, numerical observations
show that the variable u̇ is periodic. Therefore, the
mean value of ü on a period time, denoted hüi is zero
and the position u can be written as the superposition
of a periodic signal up of zero mean and linear growth
with time

u = up + hu̇i τ (14)

However, the variable u − ũ is purely periodic but of
mean value equal to hg (u̇)i .

Therefore, we introduce a new set of variables x1 =
u − ũ, x2 = u̇, x3 = ϕ and x4 = ϕ̇. After some ma-



Figure 2. Anti-resonance Regime.

nipulations, we can rewrite (8), (9) and (10) as follow:

ẋ1 = x2 − x̃2 (15)
ẋ2 = ψn (−vo (τn − τno)− x1 + g(x2)) (16)
ẋ3 = x4 (17)
ẋ4 = −x3 + n (β − 1) [vo (τn − τno) + x1]

+
β

ψ
ẋ2 (18)

τn = −
x3 − x̃3
ωo

+ τno. (19)

We must emphasize that the solution of (8) is only a
particular solution of formulation (15) and (16). In-
deed, we suppress one internal constrain of the system
when derivating x1 = u − ũ to obtain (15). In that
respect, by using relation (14), we can write that

x1 = up − ũp + hu̇i τn (20)
x2 = u̇p + hu̇i . (21)

Therefore, the integration of (15) when considering

(21) gives

x1 =

Z τ

0

u̇p(t)dt−
Z τ−τn

−τn
u̇pdt

= up − ũp + C, (22)

where C is a constant that depends on the initial condi-
tions. Therefore, the solution of (8) is only a particular
solution of (15) and (16) when C = hu̇i τn.
By assuming small variations of the angular position

and velocity around the equilibrium point, we can lin-
earize (19) around its trivial value

τn ≈
2π

n (ωo + x4)
= τno −

2π

nω2o
x4. (23)

Substituting (23) in (17) and (18), we obtain

ẋ3 = x4 (24)

ẋ4 = −x3 − (β − 1)
vo2π

ω2o
x4

+n (β − 1)x1 +
β

ψ
ẋ2 (25)

τn = −
x3 − x̃3
ωo

+ τno. (26)

It is therefore the coupling between the torsional dy-
namics and the axial dynamics that has a stabiliz-
ing effect on the torsional equilibrium. To simplify
the analysis, we exploit the time scales separation
(Strogatz, 1994) between the "fast" axial dynamics and
the "slow" torsional dynamics. The "fast" axial dynam-
ics is decoupled from the torsional dynamics by treat-
ing the delay as a fixed parameter. In the rest of the
paper, we focus on this simplified axial equation, post-
poning the analysis of the slow dynamics to a future
work.

3 Decoupled Axial Equation
Equations (15) and (16) with a fixed delay can be

rewritten as

ẘ1 = w̃2 − w2 (27)
ẘ2 = w1 + ḡ(w2) (28)

where w1 = −x1 (τ̄) and w2 = x2 (τ̄) /
√
nψ

with τ̄ = τ
√
nψ, τ̄no = 2π

√
nψ/nωo, ḡ(w2) =

λn
2 (1− sign (w2 + v̄o)) and v̄o = vo/

√
nψ. The

round dot denotes differentiation with respect to the
time τ̄ . Initial conditions required to solve this system
consist of

½
w1(0)
w2(τ̄) for τ̄ ∈ [−τ̄no, 0]

(29)



Figure 3. Different modes of the vector field in the vincinity of the
hyperplaneΣ when w̃2 > −vo.

System (27-28) is infinite dimensional because of the
delay and it contains a discontinuous function.
The equilibrium point is the trivial solution w1 =
w2 = 0. It can be shown that the poles of the trans-
fer function of this system are purely imaginary when
τ̄no = (2k + 1)π/

√
2, k ∈ N. Numerical simula-

tions confirm that the equilibrium point is asymptoti-
cally stable for τ̄no < π/

√
2, marginally stable when

τ̄no = π/
√
2 and unstable otherwise.

In the last case, the system evolves towards a stable
limit cycle for τ̄no < τ̄∗no that depends on the para-
meters of the system. Otherwise, the amplitude of the
solutions grows without bound as t→∞.

3.1 Qualitative analysis of the limit cycle in the
state space

Let us define the subspace V+ (V−) as the semi-
infinite plane in the state space such that w2 > −v̄o
(w2 < −v̄o). Focusing on the vicinity of Σ (hyper-
plane w2 = −v̄o), we can directly define three different
zones:

1. T−; w1 < −λn, the vector field is pushing the so-
lution from V+ into the subspace V− (Transversal
Intersection I)

2. U ; 0 > w1 > −λn, the vector field in each sub-
space drives the solution toward the hyperplane Σ
(Attraction sliding mode)

3. T+;w1 > 0, the vector field is pushing the solution
from V− in the subspace V+ (Transversal intersec-
tion II)

These three zones and the vector field are depicted into
the Fig. 3.
In Figure 4, a typical periodic solution is depicted.

Note that the space (w1, w2) is not the state space,
which is infinite dimensional due to the delay τ̄no.
In that figure, particular points of the limit cycle
are shown. Points A and C are characterized by
dw1/dw2 = 0. Therefore, it yields that w2(τ̄) =
w2(τ̄ − τ̄no). The delay τ̄no is therefore the time
elapsed to cover the trajectory from state position B
to state position A, and from D to C, respectively. It
can not be a transition from point A to A since the de-
lay is always less than the period of the limit cycle (see

Figure 4. Sketch of a typical limit cycle in the spacew1, w2.

section 3.2.3).
The limit cycle will always leave the stick phase when
w1 becomes equal to 0 since it enters the subspace
(V+,T+) characterized by ḡ(w2) = 0.

Now that we have a qualitative understanding of the
limit cycle, we proposed to use well-known semi-
analytical or numerical methods to determine the limit
cycle and stability properties more precisely while
changing the delay since it varies slowly in the solu-
tion of the complete model.

3.2 Semi-analytical and numerical methods
Several methods exist to analyze the limit cycles of

nonlinear dynamical systems. The describing function
method and two numerical methods (finite difference
method and the shooting method) are applied to the
problem at hand. The results obtained by application
of these methods and their limitations while applying
it to a discontinuous delay differential equation as (27)
and (28) are discussed below.

3.2.1 Describing Function Methods The general
idea of the describing function method is to use the
Fourier series property that says that any periodic sig-
nal can be represented as the sum (finite or infinite) of
distinct harmonic functions (Khalil, 1996). One has
to identify a minimum number of coefficients of this
Fourier series in order to obtain a good estimate of the
real limit cycle. In the case where only few harmonics
(ideally one) are sufficient to describe the limit cycle,
this tool may be efficient. It provides an estimate of the
dominant frequency ωs, an estimate of the amplitude
of the vibrations a and an estimate of the mean value
of the vibrations âo.
Here, the estimation ωs of the frequency of the peri-

odic orbit is matching the dominant frequency of the
signal obtained when integrating the equation of mo-
tion. However, contradictions occurred when evaluat-
ing âo and a. For some set of parameters (τ̄no, λn, v̄o),
no solutions for a exists although limit cycle was
clearly observed when integrating numerically. These
issues are probably due to the lack of the stick phase
when using only the first mode of the Fourier series.
Clearly, higher harmonics are needed to describe a
stick-slip limit cycle as in Fig. 4.



Figure 5. Sketch of the Finite Difference Method. f(x) is the vec-
tor field in the state space while h is the time step chosen in the
numerical method.

3.2.2 Finite Difference Method The finite differ-
ence method approximates the periodic limit cycle with
linear segments that are in the direction of the vector
field (see Fig. 5). An algebraic system of equations is
then derived. Solutions gives increments of the node
positions to converge towards the periodic orbit. This
method is recognized to have a fast convergence and
large basins of attraction but it can only be applied to
smooth systems (?).
Therefore, one must smoothen the discontinuity using

for example

ḡ(w2) ≈
λn
2

µ
1− 2

π
Arc tan ( (w2 + v̄o))

¶
(30)

with large. However, the equations become stiff re-
quiring a large number of nodes to obtain a good
estimate.
Furthermore, the resolution of the algebraic system

remains always singular whatever the set of parame-
ters considered. As we will see later, it can possibly
be explained by the existence of a continuum of limit
cycles due to the change of variable done before that
ultimately removes an internal constrain.

3.2.3 Shooting Method The shooting method
aims to find initial conditions belonging to the limit
cycle by solving a two-point boundary-value problem
(see Fig.6). On top of that, this method also provides
Floquet’s multipliers that give information on the sta-
bility of the limit cycle. In principle, this method can
easily deal with discontinuous differential equations
(?).
If an initial state xo = x(τ̄ o) belongs to a periodic

solution of period T , we can obviously write

H(xo, T ) ≡ xT − xo = 0, (31)

where xT = x(τ̄ o + T ). Therefore, this two-point
boundary-value problem is solved when a zero of
H(xo, T ) is found. By using a Newton-Raphson pro-
cedure and after the evaluation of the partial derivative,

Figure 6. Graphical representation of the shooting method.

the set of equations to solve yields

(ΦT (xo)− I)∆xo + f (xT )∆T = xo − xT , (32)

where ΦT (xo) is the monodromy matrix and f (x) is
the vector field in the state space. The stability property
of periodic solutions can be derived from the knowl-
edge ofΦT (xo). The periodic solutions will be asymp-
totically stable if all the eigenvalues of the monodromy
matrix (called Floquet’s multipliers) lie within the unit
circle in the complex plane, except one which must be
equal to 1 for autonomous systems. It corresponds to
the perturbation along the periodic orbit.
Referred to as anchor equation, one additional equa-

tion will be provided to define uniquely the solution of
the system. Its choice is more or less arbitrary. One
possibility consists in fixing one coordinate of one of
the nodes if the periodic solution is shown to have at
least one intersection with the hyperplane Σ. Alterna-
tively, orthogonality conditions can be imposed to en-
sure that the increment∆xj is transversal to the vector
field.
The application to DDE’s is particular since the initial

condition is infinite dimensional. In order to apply the
shooting method, we first discretize the initial condi-
tion over the delay interval

xo,i = x(τ̄ o − τ̄no + ih) (33)

for i = 0, ...,m and m is defined as m = τ̄no/h. Since
the delay appears only in the second state variable, the
number of initial conditions needed will be m + 1 (m
for w2 and 1 for w1).
This method is time consuming when applied to

DDE’s since m + 1 equations must be integrated at
each time step to obtain a numerical estimate of the
monodromy matrix.
One other drawback of this method is in the guess of

the initial conditions on the limit cycle and the choice
of the anchor condition. The presence of a stick phase



Figure 7. Coexistence of different limit cycles.

and the non-smooth adhesion of the trajectory on the
hyperplane Σ strongly increases the sensitivity of the
convergence of the method on the initial conditions
and the anchor condition. Only certain combinations of
them ensure convergence of the method. For example,
it was often observed that if a part of the initial condi-
tions contains a part of the hyper surface Σ, the method
may be completely inefficient. This situation is always
encountered for large delays.
This issue is clearly a consequence of the discontin-

uous vector field and the existence of the stick phase.
Hence, to regularize the problem, the switch model was
implemented.
The switch model is a numerical technique used to

integrate numerically discontinuous differential equa-
tions (Leine and Nijmeijer, 2004) with a small number
of switching planes. This method is an improved ver-
sion of the Karnop model which introduces a stick band
(|vrel| < η) that approximates the stick mode. With the
switch model, the trajectories are pushed to the middle
of the stick band, avoiding numerical instabilities.
If the hyper surface Σ is analytically defined by the

locus of points satisfying h(x) = 0, then exponential
convergence towards the hyper surface in the attractive
U sliding mode is forced by setting

ḣ = −τ−1h,

which will force h→ 0 with the time constant τ .

3.3 Numerical Results
Numerical results indicate that several limit cycles co-

exist for the same set of parameters. As an example,
Figure 7 shows several limit cycles for an identical set
of parameters (τ̄no = 4.5, v̄o = 1 and λn = 10) but
different initial conditions. For one of this limit cycle,
typical location of the Floquet’s multipliers in the com-
plex plane is shown in figure 8. Particular attention is
paid to the presence of a second multiplier located at
(1, 0). Approximately all the others are located close
to the origin. It is a direct consequence of the discon-
tinuity in the system. Similar patterns seem to be re-
produced when zooming in. The second multiplier at

Figure 8. Layout of the Floquet’s multipliers in the complex plane
when τ̄no = 4.5, v̄o = 1 and λn = 10.

1 could be explained by the existence of a continuum
of limit cycles, which means that the infinite number of
periodic orbits infinitely close to each other could coex-
ist. However, that explanation has not yet been proved
rigorously. In this respect, we stress the fact that in
Figure 7 we depicted limit cycles in a two-dimensional
plot even though they belong to an infinite dimensional
state-space.
In Figure 9, we plotted the evolution of periods of 5

different limit cycles with the delay that are obtained
with the same set of parameters but from 5 different
initial conditions. The periods are identical whatever
the amplitude of the periodic orbit considered. More-
over, the period time seems to vary linearly with the
delay τ̄no with a coefficient of proportionality equal to
1.
The miss of an internal constrain when doing the



Figure 9. Evolution of the period time of 5 different limit cycles
obtained with 5 different initial conditions with respect to the delay.

change of variable x1 = u − ũ is responsible for the
coexistence of the infinite number of periodic solutions.
By imposing that the initial condition must satisfy

w1 = −
Z 0

−τ̄no

w2(t)dt, (34)

the size of the algebraic system that must be solved is
reduced by one. The numerical results obtained with
the shooting method exhibit only one limit cycle, the
solution of (8) when the delay is fixed and equal to τno.
It is represented in Fig. 7 by the trajectory with the
narrow. The correpsonding Floquet’s multipliers are
again all located close to the origin, but in this case
only one remain equal to 1.

4 Conclusions
A novel approach to model stick-slip vibrations of

drag bit in drilling structure accounts for coupled axial
and torsional modes of vibrations via the bit/rock in-
terface laws. These boundary conditions bring into the
equations of motion a state-dependent delay and a dis-
continuous term due to friction. A dimensionless for-
mulation shows that the large parameter ψ in the axial
equation of motion generates two different time scales.
Numerical simulations show existence of stick-slip vi-

brations and an anti-resonance regime that is character-
ized by small and fast torsional vibrations, following
the axial dynamics. Ultimately, we want to understand
the mechanisms responsible for the stabilization of the
torsional mode. In this context, a two-timing approach
and the small variations of the delay suggest that the
latter can be frozen in the axial equation. This approxi-
mation decouples the axial equation from the torsional
vibrations.

Different well-known methods to find a periodic or-
bit and its characteristics are applied to the differential
equation with a fixed delay and a discontinuity.

The Describing Function Method is partly inefficient
when applied to this equation. We obtain a good esti-
mate for the dominant frequency but the mean value
and the amplitude of the dominant vibrations were
badly estimated. This issue can be explained by the
importance of higher harmonics in the power spectrum
of the axial stick-slip limit cycle that are not captured
by the first mode of vibrations.

The Finite difference method is only applicable to
smooth systems. After smoothing the discontinuity,
the algebraic system derived to obtain an increment of
node positions was always singular due to the change
of variable done to obtain a periodic orbit in (x1, x2)
and moreover extremely large.

The shooting method, which can deal with non-
smooth equations, is implemented. This method gives
satisfactory results for small delays. Nevertheless, for
larger delays, it encounters issues for converging to-
wards the limit cycle. It is clearly identified that the
non-smooth part of the solution when entering the slid-
ing mode is the cause of this problem. By using the
switch model, we can regularize that issue and obtain
solutions for arbitrary sets of parameters.

With that method, numerical simulations reveal the
coexistence of several periodic orbits for identical sets
of parameters but different initial conditions. All are
characterized by identical periods that vary linearly
with the delay. Moreover, a second Floquet’s multipli-
ers is equal to 1. The existence of a continuum of limit
cycles is a plausible explanation of the second multi-
plier at 1 and the issues of singularities encountered in
the Finite Difference Method. However, this particular-
ity can easily be suppressed in the shooting method by
imposing a constrain on the initial conditions. There-
fore, the solution obtained with the shooting method
becomes unique and converge toward the equivalent so-
lution of the initial problem with a fixed delay.

These results, such as the evolution of the period time
with the delay, will be exploited in the complete model
to understand the stabilizing effect of the fast axial vi-
brations on the slow torsional oscillations.
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