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Abstract
Friction-induced limit cycling deteriorates system per-

formance in a wide variety of mechanical systems. In
this paper, we study the way in which essential fric-
tion characteristics affect the occurrence and nature of
friction-induced limit cycling in flexible rotor systems.
This study is performed on the level of both numerical
and experimental bifurcation analysis. Hereto, an ex-
perimental drill-string set-up is used. The synthesis of
these numerical and experimental results confirms that
friction-induced limit cycling is due to a subtle balance
between negative damping at lower velocities and vis-
cous friction at higher velocities. Furthermore, we also
show that the level of positive damping in the friction at
very small velocities in relation to the level of negative
damping appearing for slightly higher velocities deter-
mines whether torsional vibrations with and/or without
stick-slip can appear. Finally, it is shown how these es-
sential friction characteristics depend on physical con-
ditions such as temperature, normal forces or the type
of material in the frictional contact in the experimental
set-up.
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1 Introduction
Friction-induced limit cycling often limits the perfor-

mance and can also endanger the safety of operation
of a wide range of mechanical systems. In this paper,
we focus on friction-induced limit cycling in mechan-
ical systems with friction and flexibilities. In this con-
text, one can think of drilling rigs, printers, pick and
place machines, industrial and domestic robots, simple
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earth-quake models, accurate mirror positioning sys-
tems on satellites and many more. In these systems,
the combination of friction and flexibility can give rise
to limit cycling. This paper aims at revealing the de-
pendency of limit cycling on the friction characteristics
through both numerical and experimental studies. In
order to perform experimental validation of the results,
an experimental drill-string system is built in which
both flexibility and friction are present. This experi-
mental set-up will support the study of friction-induced
limit-cycling in general mechanical systems with fric-
tion and flexibilities and the study of friction-induced
limit-cycling in drill-string systems in particular. The
particular interest for drill-string systems is motivated
by the presence of unwanted vibration in oil-drilling
rigs.
Namely, for the exploration and production of oil and

gas, deep wells are drilled with a rotary drilling system.
A rotary drilling system creates a borehole by means of
a rock-cutting tool, called a bit. The torque driving the
bit is generated at the surface by a motor with a me-
chanical transmission box. Via the transmission, the
motor drives the rotary table: a large disc that acts as
a kinetic energy storage unit. The medium to transport
the energy from the surface to the bit is a drill-string,
mainly consisting of drill pipes. The lowest part of the
drill-string is the Bottom-Hole-Assembly consisting of
drill collars and the bit. The drill-string undergoes
various types of vibrations during drilling: torsional
(rotational) vibrations caused by interaction between
the bit and well, bending (lateral) vibrations caused
by pipe eccentricity, axial (longitudinal) vibrations due
to bouncing of the bit and hydraulic vibrations in the
circulation system, stemming from pump pulsations.
Drill-string vibrations are an important cause for pre-
mature failure of drill-string components and drilling
inefficiency. In this paper, only torsional drill-string vi-
brations are investigated. Drill rigs should generally
operate at constant down-hole velocities (realized by a
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Figure 1. Experimental drill-string set-up.

constant torque at the rotary table); therefore, the focus
of this investigation is on the steady-state behavior of
drill-string systems.
Extensive research on the subject of torsional vi-

brations has already been conducted (Cunningham,
1968; Brett, 1992; Jansen and van den Steen, 1995;
Kreuzer and Kust, 1996; Leineet al., 2002). The
cause for torsional vibrations is the stick-slip phe-
nomenon due to the friction force between the bit and
the well c.f. (Jansen and van den Steen, 1995; Leine
et al., 2002). Moreover, the cause for the torsional
vibrations is negative damping in the friction force
present due to the contact between the bit and the
borehole c.f. (Brett, 1992; Kreuzer and Kust, 1996).
Friction-induced limit cycling is a performance limit-
ing factor in many mechanical systems. Survey pa-
pers on friction-induced limit cycling are (Brockleyet
al., 1967; Ibrahim, 1994a; Ibrahim, 1994b), in which
specific friction characteristics are coupled to the exis-
tence of such limit cycling. Moreover, in (Poppet al.,
2002) causes for friction-induced limit cycling, such
as negative damping and fluctuating normal forces,
are discussed. However, a limited amount of experi-
mental work on friction-induced limit cycling in non-
controlled systems is available (Krauter, 1981; Miha-
jlovi ć et al., 2004; Mihajlovíc, 2005; Mihajlovíc et
al., 2005a; Mihajlović et al., 2005b).
In order to gain improved understanding in the causes

for torsional vibrations, an experimental drill-string
set-up is built, see figure 1. This experimental set-up
consists of two discs, connected by a string. The upper
disc is driven by a motor and at the lower disc a brake is
implemented to exert a friction force on the disc. In this
paper, we investigate along several routes how the oc-
currence and nature of the friction-induced vibrations
depend on specific friction characteristics. Firstly, an
extensive numerical bifurcation analysis is performed
for changing friction characteristics. Secondly, such bi-

furcation analysis is also performed on an experimental
level to confirm the validity of the model-based results.
Furthermore, physical conditions, such as temperature
and the normal force applied to the brake, are changed
in the experiments to illuminate the influence of such
changes on the friction and on the vibrations induced
by the friction. Moreover, we compare the results ob-
tained with the set-up shown in figure 1 with the re-
sults obtained in (Mihajlovíc et al., 2004; Mihajlovíc
et al., 2005a), since in (Mihajlovíc et al., 2004; Miha-
jlovi ć et al., 2005a) torsional vibrations are obtained
as a result of other brake material. The numerical and
experimental results jointly constitute a clear and co-
herent view on the way in which friction-induced limit
cycles arise and change under changing frictional con-
ditions.
In the next section, the experimental set-up is intro-

duced. Subsequently, the model of the set-up and the
estimates for its parameters are discussed. Next, the de-
pendency of the friction-induced limit cycling on spe-
cific friction characteristics is studied on a model level
by means of an extensive numerical bifurcation analy-
sis. The model-based results are compared to experi-
mental results and the dependency of the occurrence of
torsional vibrations on certain physical frictional con-
ditions is investigated on an experimental level. Fi-
nally, a discussion of the obtained results and conclud-
ing remarks are presented.

2 The Experimental Set-Up
The experimental drill-string set-up is shown in fig-

ure 1. The set-up consists of a power amplifier, a DC-
motor, two rotational (upper and lower) discs, a low-
stiffness string and an additional brake applied to the
lower disc. The input voltage from the computer is fed
into the DC-motor via the power amplifier. The DC-
motor is connected to the upper steel disc via the gear
box, see figure 2. The upper disc and the lower disc
are connected through a low stiffness steel string. Both
discs can rotate around their respective geometric cen-
ters and the related angular positions are measured us-
ing incremental encoders (see figure 2 for the encoder
at the upper disc).
A brake and a small oil-box with felt stripes are fixed

to the upper bearing housing of the lower part of the
set-up, see figure 3. With the brake, a range of normal
forces can be applied and the contact between the brake
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Figure 2. The upper part of the experimental drill-string set-up.
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Figure 4. Schematic representation of the drill-string set-up.

and the brake disc produces a friction force exerted on
the brake disc. This friction force can induce torsional
vibrations in the set-up. The brake contact material is
bronze. The steel brake disc is connected to the lower
brass disc via a very stiff shaft. The oil-box with the
felt stripes is constructed in order to add oil (ondina oil
68) to the brake disc in a reproducible way. This oil
lubrication will prove to be crucial for the existence of
torsional vibrations in the set-up.

3 Model of the Set-Up
In this section, we introduce a dynamic model of the

experimental drill-string set-up which is used through-
out the paper. The system is depicted schematically in
figure 4.
By θu andθl we denote the angular displacements of

the upper and lower disc, respectively. Moreover,ωu =
θ̇u andωl = θ̇l represent the angular velocities of the
upper and lower disc, respectively. Furthermore,α =
θl−θu is the relative angular displacement of the lower
disc with respect to the upper disc. In the sequel, we

will use the state vectorx defined byx =
[

α ωu α̇
]T

.
The equations of motion of the system are given by:

Juω̇u − kθα + Tfu(ωu) = kmu,

Jl(α̈ + ω̇u) + Tfl(ωu + α̇) + kθ α = 0,
(1)

whereJu andJl are the moments of inertia of the upper
and lower discs about their respective centers of mass,
kθ is the torsional spring stiffness andkm is the motor
constant. It should be noted that the friction torque at
the upper discTfu(ωu) is due to friction in the bearings
of the upper disc and due to the electro-magnetic effect

in the DC-motor, and the friction torque at the lower
disc Tfl(ωl) comprises the friction in the bearings of
the lower disc and the friction induced by the brake-
mechanism. Both friction torques are modeled using
set-valued force laws:

Tfu(ωu) ∈
{

Tcu(ωu)sgn(ωu) for ωu 6= 0,
[−Tcu(0−), Tcu(0+)] for ωu = 0,

Tfl(ωl) ∈
{

Tcl(ωl)sgn(ωl) for ωl 6= 0,
[−Tcl(0

−), Tcl(0
+)] for ωl = 0,

(2)

where the velocity dependency of the friction at the up-
per disc is expressed throughTcu(ωu), with

Tcu(ωu) = Tsu + △Tsusgn(ωu) + bu|ωu| + △buωu,

(3)
and the velocity dependency of the friction at the lower
disc is expressed throughTcl(ωu), consisting of a
Stribeck model with viscous friction:

Tcl(ωl) = Tcl + (Tsl − Tcl)e
−|ωl/ωsl|

δsl
+ bl|ωl|. (4)

Equation (3) expresses the fact that we model the fric-
tion at the upper disc as a combination of static fric-
tion and viscous friction and that it is asymmetric.
Herein, Tcu(0+) = Tsu + △Tsu and−Tcu(0−) =
−Tsu + △Tsu represent the maximum and minimum
value of the friction torque for zero angular velocities
andbu +△bu andbu −△bu are viscous friction coeffi-
cients for positive and negative velocities, respectively.
In (4), Tcl andTsl represent the Coulomb friction and
static friction levels, respectively,ωsl is the Stribeck
velocity, δsl the Stribeck shape parameter andbl the
viscous friction coefficient.
The parameters of the model are estimated using a

nonlinear least-squares technique. Hereto, persistently
exciting input voltage signals are taken as inputs for the
experimental system and the angular positions of both
discs are measured. Next, the response of the model to
such inputs is simulated and an optimal set of parame-
ter estimates is calculated based on matching the mea-
surements and simulations in a least-squares sense. For
more detailed information on the identification proce-
dure and the validation results we refer to (Mihajlović
et al., 2004; Mihajlovíc, 2005). Here, we summarize
the result of this extensive identification procedure in
Table 1. In the remainder of this paper this parameter
set will be referred to as the ’nominal’ set of parame-
ters. Especially the friction situation at the lower disc
is varied, with respect to this nominal situation, in or-
der to investigate its influence on the friction-induced
limit-cycling. Figure 5 shows the identified friction
models, which indicates a pronounced Stribeck effect
in the friction at the lower disc. It should be noted
that here a normal force of 20.5 N is applied to the
brake. In figure 5, we can recognize different friction
regimes as depicted schematically in figure 6, see also
(Armstrong-H́elouvryet al., 1994).



Parameter Estimated value

Ju [kg m2/rad] 0.4765

km [Nm/V] 4.3228

Tsu [Nm] 0.37975

∆Tsu [Nm] -0.00575

bu [Nms/rad] 2.4245

∆bu [Nms/rad] -0.0084

kθ [Nm/rad] 0.0775

Jl [kg m2/rad] 0.0414

Tsl [Nm] 0.2781

Tcl [Nm] 0.0473

ωsl [rad/s] 1.4302

δsl [-] 2.0575

bl [Nms/rad] 0.0105

Table 1. Parameter estimates.
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Figure 5. Estimated friction models.

4 Steady-State Analysis of the Dynamics
In this section, we study the steady-state behavior of

the drill-string system for constant values of the input
voltageu = uc on a model level. Such steady-state
behavior is of particular interest in drill-string systems
since these types of systems are generally driven by a
constant torque while aiming at a constant velocity at
the lower part of the set-up. Such constant-velocity
condition reflects equilibria of (1). These equilibria
involve isolated equilibria (in whichωu = ωl 6= 0)
and equilibrium sets (in whichωu = ωl = 0). In
such an equilibrium set the deformation of the drill-
string α can attain values in a set due to the set-
valued nature of the friction force laws. For analyti-
cal expressions for these equilibria and both local and
global (Lyapunov-based) stability analysis of the equi-
libria, see (Mihajlovíc, 2005; Mihajlovíc et al., 2005b).
Firstly, the bifurcation diagram with the constant in-
put voltage as a bifurcation parameter is presented for
the nominal friction model at the lower disc, as intro-
duced in figure 5(b). Secondly, the dependency of the
steady-state behavior on the friction characteristics at
the lower disc is investigated.

4.1 Bifurcation Diagram (Nominal Case)
Here we analyze the steady-state behavior (equilibria

and limit cycles) of the estimated model, with parame-
ters as in Table 1. More specifically, a bifurcation dia-
gram withuc as a bifurcation parameter is constructed.
In this bifurcation diagram, branches of equilibria and
branches of limit cycles are depicted. Using a path
following technique in combination with a shooting
method (Ascheret al., 1995; Parker and Chua, 1989),
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Figure 6. Different regimes in the friction force.
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Figure 7. Bifurcation diagram of system (1) with parameters as in

table 1.

these limit cycles are computed numerically. Herein,
the so-called switch model (Leine and Nijmeijer, 2004)
is used to properly deal with the discontinuities in the
dynamics, related to the set-valued nature of the fric-
tion models.
The results of an extensive bifurcation analysis are

shown in bifurcation diagram in figure 7, withuc as
a bifurcation parameter. In those figures, the maximal
and minimal values ofωl are plotted when a limit cycle
is found. Floquet multipliers, corresponding to these
limit cycles, are computed numerically and used to de-
termine the local stability properties of these limit cy-
cles. With respect to the obtained results, the following
remarks can be made.
For uc < uE , an equilibrium set exists, indicated by



branche1, which condenses to an equilibrium point at
point A and progresses as an equilibrium branche2 of
isolated equilibria. PointB (uc = uh1) represents a
subcritical Hopf bifurcation point. Foruc > uh1 an
unstable equilibrium branche3 exists and from point
B an unstable periodic branchp1 consisting of limit
cycles without stick-slip arises, see figure 7(b). The
unstable periodic branchp1 is connected to a locally
stable periodic branchp2 at the pointD, which repre-
sents a fold bifurcation point. Since the periodic branch
p2 consists of limit cycles which represent torsional vi-
brations with stick-slip, pointD represents a discon-
tinuous fold bifurcation. Periodic branchp2 consists
only of locally stable limit-cycles with stick-slip, due
to the non-smooth nonlinearities in the friction torque
at the lower disc. For some higher constant input volt-
ageuc (point E in figure 7(a)) the locally stable peri-
odic branchp2 disappears through another discontinu-
ous fold bifurcation. At this fold bifurcation point, the
stable periodic branchp2 merges with an unstable pe-
riodic branchp3. The unstable periodic branchp3 is
connected to the equilibrium branchese3 ande4 in the
subcritical Hopf bifurcation pointC (uc = uh2).
In (Mihajlović, 2005; Mihajlovíc et al., 2005b), on the

basis of a theoretical stability analysis it is concluded
that the presence of negative damping in the friction
at the lower disc induces the Hopf bifurcation pointB

leading to limit cycling. More specifically, a local sta-
bility condition for the isolated equilibria (e2, e3 and
e4) can be formulated by:

dTcl

dωl

∣

∣

∣

∣

ωl=ωeq

> d, (5)

whereωeq is the value ofωl in equilibrium andd is
given by

d =
−J2

ukθ−(bu+△bu)2Jl

2 Ju(bu+△bu)

+

√
(J2

ukθ+(bu+△bu)2Jl)2−4 JuJ2

l
kθ(bu+△bu)2

2 Ju(bu+△bu) .
(6)

Note that for the friction model in figure 5(b), this con-
dition is not satisfied for branche3, so for equilibrium
values of the angular velocity of the lower disc in the
set[0.0610, 2.830] rad/s. Clearly, the second Hopf bi-
furcation pointC occurs whenωeq is approximately at
the minimum ofTfl(ωl) (for ωl > 0), i.e. when the vis-
cous friction starts to dominate over negative damping
effects.
So, the range (in terms ofuc) for which limit cycling

occurs is limited by the presence of viscous damping
at higher angular velocities. Moreover, there exists
a range of input voltages for which both stable equi-
libria and stable limit cycles exist. This co-existence
can be explained by the fact that the viscous friction
is only dominant in a neighborhood (in state-space) of
the equilibria and outside this neighborhood the nega-
tive damping effect comes into play once more giving

rise to limit cycling. On this limit cycle a steady-state
balance between the ’stabilizing’ effect of viscous fric-
tion (at higher velocities) and the ’destabilizing’ effect
of negative damping (at lower velocities) is attained.
The magnitude of the range of angular velocities is de-
termined by a balance between the level of negative
damping and viscous damping. The fact that such sub-
tle balance between negative damping and viscous fric-
tion is a crucial factor in the qualitative steady-state be-
havior will be confirmed in the next section, in which
the dependency of this behavior on these friction char-
acteristics is studied.

4.2 Changes in the Friction Characteristics
The previous section shows that the friction character-

istics largely determine whether or not limit cycling oc-
curs. Now, we discuss the influence of these character-
istics of the friction at the lower disc on the steady-state
behavior of the system. In doing so, we use the fric-
tion model in figure 5(b) and the resulting bifurcation
diagram, see figure 7, as a reference situation (i.e. the
nominal case). The study of the stability of the equilib-
ria in (Mihajlović, 2005; Mihajlovíc et al., 2005a; Mi-
hajlović et al., 2005b) shows that these stability proper-
ties are closely connected to two specific friction char-
acteristics: firstly, the negative damping/Stribeck-effect
and, secondly, the presence of viscous friction at higher
velocities. Furthermore, in (Mihajlović, 2005; Miha-
jlovi ć et al., 2005a) it is shown that when the level of
positive damping in the friction at very small veloci-
ties is high enough in relation to the level of negative
damping present at slightly higher velocities, torsional
vibrations with and without stick-slip appear. There-
fore, in this section we explicitly investigate the in-
fluence of these three friction characteristics (positive
damping at very low velocities, negative damping at
slightly higher velocities and viscous friction) on the
steady-state behavior (bifurcation diagram). In order to
isolate the influence of these friction characteristics, we
first change the friction model only at very low veloc-
ities. Next, we change the friction model such that the
negative damping changes while the friction character-
istics at very low velocities and viscous damping level
remain the same. Finally, the friction model is changed
such that the viscous damping level changes, while the
level of positive damping at very low velocities and the
negative damping level remain unchanged.

4.2.1 Changes in the Low-Velocity Characteris-
tics To analyze the influence of the low-velocity char-
acteristics ofTfl(ωl) on the steady-state behavior of the
set-up (1), we consider various friction situations which
differ only for very low angular velocities (however, the
static friction levelTsl is the same), as shown in figure
8(a). In one friction situation the damping at very low
velocities is positive and higher (dark-grey line in fig-
ure 8(a)) than the positive damping in the nominal fric-
tion model (light-grey line in figure 8(a)) and in the sec-
ond friction situation the damping at very low velocities
is negative (black line in figure 8(a)). For such friction
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low velocities and related bifurcation diagrams.

torques, related bifurcation diagrams are constructed.
It appears that the obtained bifurcation diagrams differ
only for very low velocities, hence we show the related
bifurcation diagrams only for low input voltagesuc, see
figure 8(b).

When we compare the obtained bifurcation diagrams
for low input voltages, the following can be concluded.
Firstly, equilibrium branchese1, e′1 ande′′1 are identi-
cal. Secondly, if the friction damping at very low veloc-
ities is high enough with respect to the negative damp-
ing (’friction 1’ in figure 8(b)), then from bifurcation
pointB′ a locally unstable equilibrium branche′3 and a
locally stable periodic branchp′1 arise through asuper-
critical Hopf bifurcation. Since, the periodic branchp′1
consists of limit-cycles which represent torsional vibra-
tions without stick-slip, pointB′ represents asmooth
supercritical Hopf bifurcation point. However, if the
damping at the low velocities is negative enough (’fric-
tion 2’ in figure 8(b)), torsional vibrations appear im-
mediately when the system leaves the sticking region.
Consequently, in pointA′′ a stable equilibrium branch
e′′1 , an unstable equilibrium branche′′3 and a stable pe-
riodic branchp′′2 are connected as shown with the black
line in figure 8(b). A stable equilibrium branche′′1 con-
sists of locally stable equilibrium sets (which exist due
to sticking phenomenon) and the periodic branchp′′1
consists of limit cycles which represent torsional vibra-
tions with stick-slip. Therefore, pointA′′ represents a
discontinuous bifurcation point. Moreover, such bifur-
cation point looks like a kind of discontinuous super-
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Figure 9. Friction torques for various negative damping and related

bifurcation diagrams.

critical Hopf bifurcation point described in (Leine and
Nijmeijer, 2004). However, sincee′′1 consists of equi-
librium sets and of equilibrium pointA′′, and not only
of equilibrium points, this is not the case here.

4.2.2 Changes in the Negative Damping In order
to analyze the influence of various negative damping
levels in Tfl(ωl) on the steady-state behavior of the
drill-string system (1), we consider two friction situa-
tions that differ from the nominal case, see figure 9(a).
In all cases, both the static friction levelTsl and the vis-
cous damping coefficientbl coincide. The adapted fric-
tion models are such that the minimum of the friction
curve (forωl > 0) occurs at the same angular velocity
for all friction models. Consequently, Hopf bifurcation
points (B′, B′′ andC ′, C ′′) appear at approximately
the same input voltagesuh1 anduh2, respectively, for
all friction models, see figure 9(b). However, in one
friction situation the negative damping is higher (dark-
grey line in figure 9(a)) and in the second friction situa-
tion the negative damping is lower (black line in figure
9(a)) than in the nominal friction model (light-grey line
in figure 9(a)). The related bifurcation diagrams are
shown in figure 9(b).
When we compare these bifurcation diagrams the fol-

lowing conclusions can be drawn. Firstly, equilibrium
branchese1, e′1 ande′′1 are identical for all friction sit-
uations. Secondly, if the negative damping is lower
(black line in figure 9(a)), then torsional vibrations dis-
appear for lower constant input voltages (compare dis-



continuous fold bifurcation pointsE′ and E′′ in fig-
ure 9(b)). In other words, if the negative damping in
the friction torque at the lower disc is lower, then tor-
sional vibrations can appear for a smaller range of in-
put voltagesuc. This is due to the fact that the region
of coexistence of stable equilibria and stable limit cy-
cles decreases in such a case. Finally, from figure 9(b),
we can conclude that a lower negative damping level
causes lower amplitudes of the torsional vibrations in
the drill-string system. Indeed, a lower negative damp-
ing level causes the friction force to be higher (see fig-
ure 9(a)), the dissipation of the energy due to such fric-
tion is higher, which in turn leads to a lower amplitude
of the torsional vibrations.

4.2.3 Changes in the Viscous Friction In order
to discuss the influence of various viscous friction lev-
els inTfl(ωl) on the steady-state behavior of the drill-
string system (1), we consider two friction situations in
comparison with the nominal friction torque, see fig-
ure 10(a). In all friction situations, the static friction
levelTsl is the same and the friction torques differ only
for high angular velocitiesωl. For small velocities (ap-
proximately up to velocities where the friction curve
reaches a minimum (forωl > 0)) the friction mod-
els coincide. As a consequence, the Hopf bifurcation
points coincide. In one friction situation, the viscous
friction level is higher (dark-grey line in figure 10(a))
and, in the second friction situation, the viscous fric-
tion level is lower (black line in the same figure) than
in the nominal friction torque (light-grey line). The re-
lated bifurcation diagrams are shown in figure 10(b).
When we compare the obtained bifurcation diagrams,
the following conclusions can be drawn. Firstly, equi-
librium branchese1, e′1 ande′′1 are identical for all fric-
tion situations. Secondly, if the viscous friction level
is lower, then the fold bifurcation pointE′′ appears for
higher constant input voltages; i.e. in such cases tor-
sional vibrations can appear for a larger range of in-
put voltagesuc (compare discontinuous fold bifurca-
tion pointsE′ andE′′ in figure 10(b)). In other words,
for a lower viscous damping level torsional vibrations
can appear in a larger range of input voltages, due to
the fact that the region of coexistence of stable equi-
libria and stable limit cycles increases. In figure 10(b),
we observe that a lower viscous friction level causes
higher amplitudes of the torsional vibrations in the sys-
tem. Namely, when the viscous friction level is lower,
then the friction torque is also lower (see figure 10(a));
hence, the dissipated energy is lower and the amplitude
of torsional vibrations is higher.
When comparing figures 9(b) and 10(b) we can con-

clude that a change in negative damping level and a
change in the viscous friction level can have a quali-
tatively similar effect on the friction-induced limit cy-
cling. Therefore, we can conclude that a balance be-
tween the negative damping and the viscous friction
levels determines the range (in terms ofuc) in which
limit cycling occurs. This effect will be illustrated in
experiments in the next section.
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Figure 10. Friction torques for various viscous friction levels and

related bifurcation diagrams.

5 Experiments
In this section, the steady-state behavior (for constant

input voltages) of the experimental drill-string system
is studied and compared to the model-based results.
Firstly, the bifurcation diagram of estimated (nominal)
case is compared to an experimentally constructed bi-
furcation diagram. Secondly, in analogy to the previous
section, the dependency of the steady-state behavior on
the friction characteristics is studied experimentally.

5.1 Bifurcation Diagram (Nominal Case)
In order to check the validity of the obtained model of

the drill-string set-up when ondina oil 68 is used as a
lubrication fluid and a20.5 N normal force is applied
at the brake, experimental results are compared with
the model-based results. As already mentioned earlier,
the predictive quality of the estimated model in steady-
state is of great interest. Therefore, when a constant
voltage is applied at the input of the set-up, each exper-
iment lasts long enough to guarantee that all transient
effects have disappeared and then the last part of the
measurement signals is recorded.
The same type of bifurcation diagram, as shown in

figure 7, is constructed experimentally. In order to con-
struct such experimental bifurcation diagram, a range
of constant input voltages is applied to the set-up.
When no torsional vibrations are observed (the system
is in equilibrium), the mean value of the recorded an-
gular velocity of the lower disc is computed and the
obtained data are plotted using the symbol ”x”. When
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Figure 11. Comparison of the simulated and experimental bifurca-

tion diagram.

torsional vibrations are observed at the lower disc, the
mean value of local maxima and the mean value of lo-
cal minima of the vibrations are computed. Then, these
experimentally obtained data are plotted using the sym-
bol ”o”. Such experimental results, together with the
bifurcation diagram obtained by a numerical analysis
of the estimated model, are shown in figure 11.

Both in the numerical and the experimental bifurca-
tion diagram we notice qualitatively different behav-
ior of the system when the constant input voltage is
changed. Firstly, for very low input voltages the system
has an equilibrium set (i.e. the system is in the stick-
ing phase). Secondly, if the input voltage is increased,
the system enters the region where only torsional vi-
brations (i.e. stable limit cycles) appear. Thirdly, if the
input voltage is even higher, then the input voltage is in
the region where torsional vibrations (stable limit cy-
cles) and a constant angular velocity at the lower disc
(stable equilibrium points) co-exist in the set-up. Fi-
nally, if the input voltage is high enough (uc > 3.8 V),
the system enters the region where no torsional vibra-
tions can appear in the system in steady-state.

In order to show that the experimental behavior indeed
matches well with the model behavior, a confrontation
between the experimentally and numerically obtained
time-series is provided in figure 12. In this figure, the
experimental angular velocity (solid black line) and the
angular velocity obtained using the estimated model
(dashed grey line) in steady-state are shown for differ-
ent constant input voltages. Namely, the signals pre-
sented in figures 12(a), 12(b) and 12(c) represent stick-
slip limit-cycling (torsional vibrations) and figure 12(d)
represents an equilibrium point. Clearly, the combina-
tion of figure 12(c) and figure 12(d) confirms that in the
experiments a region exists for which both stable equi-
libria and stable limit cycles exist. From the compari-
son between simulation and experimental results, it can
be concluded that with the suggested model the steady-
state behavior of the set-up is modeled accurately.
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(c) uc = 3.5 V.
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Figure 12. Experimental and simulated angular velocity at the

lower disc for various constant input voltages and various initial con-

ditions.

5.2 Changes in the Friction Characteristics
We have already analyzed how various changes in

the friction characteristics can influence torsional vi-
brations in drill-string systems on a model level. Here,
we investigate the way in which various friction condi-
tions influence torsional vibrations in the experimental
set-up.
In the experimental set-up, shown in figure 1, only

torsional vibrations with stick-slip occur as a result
of a contact between the bronze brake material and
the steel brake disc with ondina oil 68 as a lubricant.
In (Mihajlović, 2005; Mihajlovíc et al., 2005a) tor-
sional vibrations with and without stick-slip are ob-
tained when a brake, with rubber brake material, is ap-
plied to the lower brass disc, with water as a lubricant.
Then, for the estimated friction model the damping
at the lower velocities is high enough with respect to
the following negative damping. Consequently, those
results, together with the results presented in Section
4.2.1 (see figure 8), confirm that the combination of
a low negative damping in the friction torque together
with a high positive damping at a very low velocities is
responsible for the appearance of torsional vibrations
without stick-slip. Moreover, in (Mihajlovíc, 2005) it
is concluded that such friction characteristics at low ve-
locities are mainly caused by the damping characteris-
tics of the brake material (rubber).

5.2.1 Changes in the Applied Normal Force In
order to analyze how changes in the normal force,
which is applied to the brake, influence the steady-state
behavior of the set-up, we apply a18 N and a12.2 N
normal force to the brake. Next, the parameters of the
model of the obtained friction torques are estimated,
using the same identification procedure as used to iden-
tify the nominal model. The obtained models are vali-
dated and numerical and experimental bifurcation di-
agrams are constructed for both normal force levels.
The estimated friction modelsTfl(ωl) are shown in fig-
ure 13(a). The related bifurcation diagrams are shown
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Figure 13. Dependency of the friction characteristics and the bifur-

cation diagram on various normal force levels applied at the brake.

in figure 13(b). Again, the experimental and model-
based results correspond well.
When a lower normal force is applied to the brake,

the static friction level is lower, the sticking region de-
creases and the lower disc starts to rotate for lower in-
put voltages. Furthermore, for lower normal force lev-
els, the separation process between the contacting sur-
faces (brake disc and the brake blocks) and, therefore,
the full fluid lubrication regime occur for lower veloci-
ties, see figure 6).
As mentioned before, the position of the second Hopf

bifurcation point is determined approximately by the
point where the friction curveTfl(ωl) reaches its min-
imum (for ωl > 0). This, in fact, corresponds to the
point where full fluid lubrication appears (see figure 6).
Consequently, for lower normal force levels, the Hopf
bifurcation pointsC ′ andC ′′ in figure 13(b) appear for
lower input voltages and the region increases, in which
a constant velocity at the lower disc (a stable equilib-
rium) can appear.
Figure 13(a) indicates that the main result of lowering

the normal force is a lower negative damping level. As
a consequence, the region of coexistence of stable equi-
libria and stable limit cycles decreases, see figure 13(b).

5.2.2 Temperature Changes The experimental
results corresponding to the nominal case are obtained
when the temperature in the laboratory, where the set-
up is placed, is between25◦C and30◦C. The same re-
sults are collected when the temperature in the labora-
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(a) Estimated friction model at the lower disc
for various temperatures.
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Figure 14. Dependency of the friction characteristics and the bifur-

cation diagram on temperature changes:T ∈ [17◦C, 22◦C] and

Tref ∈ [25◦C, 30◦C].

tory is between17◦C and22◦C, for the same normal
force applied at the brake (20.5 N). The parameters of
the obtained friction torque are estimated, the obtained
model is validated and both the numerical and experi-
mental bifurcation diagrams are constructed. The esti-
mated friction torque at the lower part of the set-up is
shown in figure 14(a). The related bifurcation diagrams
are shown in figure 14(b) and the experimental results
are once more predicted accurately by the model.
When the temperature is lower, the viscosity of the

oil becomes higher. With such oil, the separation be-
tween the contacting surfaces (brake disc and the brake
blocks in the experimental set-up) and the full fluid lu-
brication process occur for lower velocities. We have
concluded that the position of the second Hopf bifurca-
tion point is determined approximately by the angular
velocityωl for which the friction forceTfl(ωl) reaches
its minimum (forωl > 0), which corresponds to the
point where full fluid lubrication appears (see figure
6). Consequently, the Hopf bifurcation pointC ′, in fig-
ure 14(b), appears for lower input voltages than it does
in the set-up when the temperature in the laboratory is
higher.
Due to the fact that the viscous friction increases for

lower temperatures the region of coexistence of stable
equilibria and stable limit cycles decreases. Moreover,
previously we have concluded that a higher viscous
friction level causes the decrease of the amplitude of
torsional vibrations and that the range of voltages in



which torsional vibrations can appear is smaller (com-
pare figure 10 with figure 14).

6 Conclusions
In this paper, we investigate the way in which the oc-

currence and nature of friction-induced limit cycling in
flexible mechanical systems (e.g. a drill-string system)
depends on essential friction characteristics. This study
is performed on the level of both model-based and ex-
perimental bifurcation analysis. The striking similarity
of the model-based and experimental results confirms
the quality of the model. The main conclusion, which
is based on these combined results, is that a subtle inter-
play of negative damping characteristics at low veloci-
ties and viscous friction at higher velocities determines
the occurrence and nature of the friction-induced limit
cycling and the range of parameters for which these
limit cycles sustain. Furthermore, we conclude that the
the level of positive damping at very low velocities with
respect to the negative damping level at slightly higher
velocities determines whether torsional vibrations with
and/or without stick-slip can occur. Moreover, results
on both levels confirm that discontinuous bifurcations
play a crucial role in the creation and destruction of
these limit cycles.
The way in which such friction characteristics are in-

fluenced by physical conditions such as temperature
and normal forces on the frictional contact is stud-
ied experimentally. An important observation is that
the normal force in the frictional contact influences
the friction force in a rather complex way and can in-
duce a higher negative damping level (for higher nor-
mal forces), which in turn can give rise to limit cycles
of higher amplitudes for a larger range of the constant
input voltage.
It should be noted that the configuration of the ex-

perimental set-up (two masses, coupled by a flexibil-
ity, of which one is subject to friction and the other is
driven by an actuator) can be recognized in many other
mechanical systems, in which friction deteriorates the
system performance by the induction of vibrations. In
this context, one can think of printers, pick and place
machines, industrial and domestic robots, simple earth-
quake models, accurate mirror positioning systems on
satellites, drilling systems and many more. Finally, the
insight gained by this work can very well be used to
steer research on controller design for such systems
aiming at the avoidance of friction-induced limit cy-
cling.
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Mihajlović, N., A. A. van Veggel, N. van de Wouw
and H. Nijmeijer (2004). Friction-induced torsional
vibrations in an experimental drill-string system. In:
Proceedings of the 23rd IASTED International con-
ference on Modelling, Identification, and Control.
pp. 228–233.
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