
April 2012

EPL, 98 (2012) 20001 www.epljournal.org

doi: 10.1209/0295-5075/98/20001

Dynamical collapse of trajectories
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Abstract – Friction induces unexpected dynamical behaviour. In the paradigmatic pendulum and
double-well systems with friction, modelled with differential inclusions, distinct trajectories can
collapse onto a single point. Transversal homoclinic orbits display collapse and generate chaotic
saddles with forward dynamics that is qualitatively different from the backward dynamics. The
space of initial conditions converging to the chaotic saddle is fractal, but the set of points diverging
from it is not: friction destroys the complexity of the forward dynamics by generating a unique
horseshoe-like topology.
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Friction remains one of the poorly understood “f” prob-
lems in physics, fracture and fatigue being the others.
Throughout history, friction has been dealt with in differ-
ent ways. The tire industry aims at maximising the fric-
tion between the car and the road. Galileo, in his famous
inclined-plane experiment to measure the acceleration of
gravity experimentally, made every effort to minimise fric-
tion. Though friction is ever present in many natural and
man-made systems, it induces complex dynamical behav-
iour which is not yet fully understood. Friction forces
are notoriously hard to model, since they are influenced
by surface imperfections, wear and debris, crack forma-
tion, creep, local stress distribution, and material prop-
erties [1–6]. However, qualitative dynamical behaviour of
physical oscillators with friction, such as stick-slip behav-
iour, can be represented by empirical models where the
friction force only depends on the slip velocity, and a dry
friction (or Amontons-Coulomb) element is used to include
a stick phase. Using such models, we show that friction
induces novel dynamical behaviour in physical oscillators,
and in particular, creates a horseshoe-like object with
unexpected dynamics.
Dry friction is described by a force F , which, for

non-zero velocities, is constant in magnitude, and its
direction is opposite to the velocity. For zero velocities,
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F can take a range of values. This singular behaviour has
very important consequences for the dynamics of physical
oscillators. Because F has constant value in magnitude
for any non-zero velocity, trajectories of systems with
friction can come to rest in finite time, without the
exponential approach one is used to in smooth systems.
This finite-time convergence causes the violation of the
uniqueness of trajectories: different initial conditions can
end up in the same point in finite time. Equilibria are
typically not isolated: an equilibrium point is turned into
a one-dimensional manifold of degenerate equilibria by the
addition of friction [7].
To visualise this in a classical physical oscillator,

consider a pendulum with constant dry friction torque of
magnitude Tf acting in the joint, and moment of inertia I.
Near the bottom position and for non-zero velocities, the
friction torque is dominant and acts in opposite direction
of the motion, i.e. Iθ̈≈−Tf Sign(θ̇). Hence, if the initial
velocity is small, then the acceleration is approximately
constant and the pendulum comes to rest in finite time.
An interval of equilibria exists near the top and bottom
position of the pendulum, and all points in these sets
attract an infinite set of trajectories in finite time.
In more complex systems displaying chaos, such as the

paradigmatic case of the pendulum with forcing, we expect
these singular properties of friction to have deep conse-
quences for the global dynamics and the chaotic saddle in
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transient systems [8,9]. In particular, the collapse of trajec-
tories suggests that the future and past dynamics are qual-
itatively different: only in forward time, trajectories can
be continued uniquely from their initial conditions. We
will show that this induces a complete asymmetry in the
geometry of the stable and the unstable sets of the chaotic
saddle. The stable set, corresponding to the set of initial
conditions whose orbits converge to the chaotic saddle, is
fractal, whereas the unstable set is a regular, non-fractal
set. This feature has no counterpart in smooth systems,
where the stable and unstable sets are either both fractal
(with the same fractal dimensions) or both non-fractal [9].
We will explain how this comes about by adapting the
Smale horseshoe [8] to the case of frictional oscillators. The
broad impact of our findings is shown in simulations of a
paradigmatic system in physics, the perturbed pendulum.
In this letter, we show that in physical systems with fric-

tion, homoclinic orbits collapse in finite time onto the equi-
librium set, creating a homoclinic tangle with a surprising
geometry. To show this phenomenon, we consider planar
autonomous oscillators with a homoclinic orbit from an
equilibrium set and add a small periodic perturbation.
As expected from standard dynamical system theory, the
separatrix breaks up, creating infinitely many crossings
between the set of points converging to the equilibrium
set and the set of points emanating from its neighbour-
hood. We show that the created homoclinic tangle has
entirely novel properties compared to homoclinic sets in
conventional systems, due to the collapse of trajectories.
A return map shows that this new homoclinic tangle
generates a chaotic saddle whose forward dynamics is qual-
itatively different from the dynamics in backward time.
The singular behaviour displayed by frictional oscilla-

tors cannot be modelled with ordinary differential equa-
tions. Instead, differential inclusions are used, where
time derivatives of the state are elements of a set-valued
right-hand side [10,11]. Solutions of differential inclu-
sions (as defined by Filippov [12,13]) depend continu-
ously on initial conditions. However, differential inclusions
are essentially distinct from differential equations in two
ways. First, the collapse of trajectories at the discontinuity
surface implies that not all solutions are defined uniquely
in backward time. Second, differential inclusions exhibit
equilibrium sets, i.e., intervals of non-isolated equilibria,
e.g. a pendulum with friction has an interval of equilib-
rium points near its top or bottom position. Previous
results show that physical systems with friction can be
modelled using differential inclusions (see, e.g., [14,15]).
Although stability and bifurcations of isolated equilibria
or limit cycles in these systems have been studied exten-
sively [16,17], and homoclinic orbits from isolated equi-
libria are studied, e.g., in [18] for a planar autonomous
system, the global phenomenon presented in this letter is
still unexplored.
Our results are generic for planar systems with friction

that have unstable equilibrium sets, such that homoclinic
or heteroclinic orbits can occur. We illustrate them with

Fig. 1: (Color online) (a) Pictorial of the pendulum. (b) Phase
space of system (1) for (γ, δ) = 0, with equilibrium sets (black
lines) and their basins of attraction, depicted in colors.

Fig. 2: (a) Local phase portrait of (1) with sets Σs and Σc for
γ = 0. (b) Pictorial of the upright pendulum. (c) Stick set Σs(t)
and (d), (e) pictorials for t= 0 and t= π with perturbation
γ �= 0.

a periodically perturbed pendulum experiencing friction,
see fig. 1(a), modelled by the differential inclusion

θ̈ ∈ g sin(θ)− δθ̇−Tf Sign(θ̇)+ γ cos(t), (1)

with (Tf , g) = (2, 10), parameters δ, γ and Sign(θ̇) = θ̇/|θ̇|

for θ̇ �= 0, and Sign(0) = [−1, 1]. Figure 1(b) shows the
equilibrium sets ET and EB of (1) and their basins of
attraction without perturbations, (γ = 0). Points near
the endpoints of an equilibrium set display complex
dynamics, while trajectories near other, interior, points of
this set behave in a simple fashion, cf. [19]: locally, friction
dominates the vector field, such that these trajectories
collapse onto the equilibrium set in a finite time. Hence,
all equilibrium sets in frictional systems, which are line
intervals, are attractive and have a two-dimensional basin
of attraction, cf. fig. 1.
Trajectories θ(t) of the differential inclusion (1) follow

smooth vector fields when θ̇ < 0 or θ̇ > 0; let such trajec-
tories be given by θ̈= f−(t, θ, θ̇) or θ̈= f+(t, θ, θ̇), respec-
tively, see fig. 2(a). Trajectories stick to the surface where
θ̇= 0, denoted Σ, when the vector fields f− and f+ point
towards Σ, otherwise, trajectories instantly cross Σ. We
denote with Σs(t) and Σc(t) the points where trajectories
can stick to Σ, or cross through Σ, respectively.
The origin of system (1) corresponds to the top position

of the pendulum, see fig. 2(b)–(e). Trajectories can leave
the neighbourhood of Σs only along the endpoints of Σs,
other nearby trajectories collapse onto the stick set Σs.
In the autonomous case (γ = 0), all points on Σs are
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equilibria, such that Σs coincides with the equilibrium set,
denoted E . However, if we apply a torque γ cos(t) to the
pendulum, cf. fig. 2(d), (e), then the stick set Σs(t), shown
in panel (c), changes periodically in time. Trajectories near
the end of this set stick temporarily, and are released when
the perturbation γ cos(t) overcomes the frictional torque,
see, e.g., the trajectory from ∗ in fig. 2(c). The equilibrium
set E , depicted in gray, consists of the points which are
always in Σs(t).
To study the physical behaviour near a particular

endpoint of the equilibrium set, we introduce the stable
(or unstable) set, that consists of all initial conditions
whose trajectories converge to the endpoint for t→∞
(or t→−∞, respectively). Focussing on the left endpoint
E− of the equilibrium set, see fig. 1(b), we observe that
f− is zero at this point when γ = 0, cf. [19]. Hence,
trajectories of (1) can leave the neighbourhood of the
endpoint exponentially and emanate along the unstable
set towards negative velocities, which is denoted Mu.
However, a small periodic perturbation introduces addi-

tional complex behaviour: near the endpoint of the equi-
librium set, the pendulum can move only for a short time
interval. Subsequently, the perturbation will have changed
such that the pendulum sticks again, as shown in fig. 2(c)
for the trajectory denoted with ⋄. Repeating this motion
over several periods, eventually, the pendulum leaves the
neighbourhood of E . Locally, the unstable set Mu of the
endpoint consists of such trajectories.
Both in the autonomous case and in the perturbed case,

the stable set of an endpoint, which we denote by Ms,
contains trajectories converging to the endpoint in finite
time. Since locally, this motion is fast, it is not affected
qualitatively by small perturbations. The stable set of an
endpoint defines the basin of attraction of the complete
equilibrium set, see fig. 11. Comparing the trajectories
on the stable and unstable set, we conclude that the
discontinuous term in the differential inclusion, which
models the physical behaviour of friction, induces different
behaviour of the forward and backward dynamics near the
equilibrium set.
We argue that a homoclinic or a heteroclinic orbit is

generically created from an unstable equilibrium set in
physical systems with friction. Such an equilibrium set has
an unstable set Mu, such that, typically, sufficiently large
perturbations induce a transversal intersection ofMu with
the stable set Ms. This intersection creates a homoclinic
or heteroclinic tangle, whose unexpected geometry we will
explain by studying the break-up of a separatrix by a
small periodic perturbation. For the pendulum, typically,
a heteroclinic orbit connects the right and left endpoint
of the “top” equilibrium set. For ease of exposition, we
first study a simpler homoclinic case, which occurs in
a perturbed double-well oscillator experiencing friction,

1Similar basin boundaries can be observed in fig. 7.7 of [20] for a
different system.

Fig. 3: (Color online) Pictorial illustration of the stable setMs

(dashed) and unstable set Mu (solid) of the endpoint E−.

modelled with

ẍ∈ x−x3− δẋ− γ cos(t)−F Sign(ẋ), (2)

with F = 0.1 and parameters δ, γ, and introduce
f+, f−,Σ,Σ

s,Σc analogously to the pendulum case. For
this system, with γ = 0, a homoclinic orbit occurs when
δ= δ∗ ≈−0.208. In this autonomous case, the stable and
unstable set coincide to form a homoclinic orbit that is a
separatrix. A small perturbation is expected to break up
this separatrix, creating a homoclinic tangle of the stable
and unstable set, as shown in fig. 3.
The finite-time convergence of trajectories on the stable

set dramatically affects the shape of the homoclinic tangle.
Analogously to the analysis of homoclinic tangles in peri-
odic differential equations (see, e.g., [21]), consider a stro-
boscopic map of (2), whose period, denoted T , coincides
with the period of the perturbation. Any crossing between
the stable and unstable set, e.g. point p in fig. 3, corre-
sponds to a homoclinic trajectory that collapses onto the
endpoint in finite time. The stroboscopic representation
of this trajectory yields a collection of points, that are
both contained in Ms and Mu. Due to the finite time
convergence, the curve along Ms between the intersection
p and the endpoint E− is crossed only a finite number of
times by the unstable set. Trajectories from initial condi-
tions on the unstable set and outside the stable set Ms

(e.g. point p1 in fig. 3) remain outside M
s and collapse

onto the equilibrium set. Initial conditions on the unsta-
ble set and inside the stable set (e.g. point p2 in fig. 3) have
trajectories that collapse onto Σs(t) when they arrive at
Σ close enough to the equilibrium set. Further away, such
trajectories cross Σ instantly. The forward dynamics of
the differential inclusion collapses parts of the “tongues”
of the homoclinic tangle (domain L in fig. 3) onto sticking
trajectories, or onto the equilibrium set. Since trajecto-
ries on the unstable set Mu emanate from the endpoint
without a finite-time property, infinitely many crossings
occur between the stable and unstable sets. Hence, the
homoclinic tangle looks qualitatively as shown in fig. 3.
We show the appearance of a new type of chaotic saddle

by studying trajectories from a closed domain Q near the
endpoint of the equilibrium set, whereQ is bounded on one
side by Mu, cf. fig. 3. Trajectories with initial conditions
in Q tend to the unstable setMu, such that the homoclinic
tangle implies that some trajectories from Q return to the
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Fig. 4: (a) Pictorial of map H on domain Q. (b) Chaotic saddle
with stable setMs and unstable setMu.

same set after a time kT , where an integer k is chosen. Let
H denote the map from initial conditions q0 in Q to the
state of the trajectory from q0 after time kT . To describe
the nature of the chaotic saddle, we restrict our attention
to trajectories that return to Q during each iteration of
H. This is the reformulation of Smale’s horseshoe map,
see [8], taking the discontinuity and dynamical collapse of
our case into account.
The image HQ is described as follows. During the time

interval kT , some trajectories from Q experience dynam-
ical collapse: they stick to Σs and collide with other
trajectories at this surface. At first, we focus on these
trajectories. Dynamical collapse occurs when the trajec-
tory arrives in the stick set Σs(t). Trajectories from points
x∈Σs(t) outside the equilibrium set will slide at time
τ−(x), where τ−(x) is the continuous function that gives
the time when f−(t, x, 0) changes sign. In an extended
phase space consisting of (x, ẋ, t), these trajectories are
released from stick at the curve (x, 0, τ−(x)) (denoted c̄
in fig. 2(c) for the pendulum). Solutions depend contin-
uously on initial conditions, such that the stroboscopic
section H maps trajectories from this curve onto a curve
c. Hence, the curve c⊂HQ contains all trajectories that
experienced collapse in the last perturbation period. Close
to the equilibrium set, the curve c coincides with the
unstable set Mu of the endpoint, representing trajecto-
ries that stick and slide repetitively, like trajectory ⋄ in
fig. 2(c). Further away, c and Mu separate, since not
all trajectories in Mu will have collapsed during the last
period. Hence, trajectories from Q that arrive at Σ near
E− experience dynamical collapse and are represented at
the Poincaré section by the curve c, shown schematically
in fig. 4(a).
Since trajectories from Q tend to the unstable set,

which folds back onto itself in the homoclinic tangle, the
trajectories that return to Q after time kT emanate from
two connected domains in Q, one arriving slightly after the
other at the surface Σ. Sufficiently far away from E−, some
trajectories from one of these sets cross Σ through Σc(t)
and remain unique, whereas the other domain collapses
completely on Σs(t). Taking a Poincaré section, the first
domain is mapped on a 2-dimensional set C, whereas
the latter is mapped to the curve c, cf. fig. 4(a). Hence,
HQ∩Q consists of a line c and a stripe C. The intersection
of the forward iterates of this map, i.e.Mu :=

⋂
∞

i=0H
iQ,

shows a set of lines with an accumulation point, and not
a fractal structure, see fig. 4(b).

Fig. 5: Residence time before trajectories from a grid of initial
conditions arrive at an equilibrium set. Larger residence times
are depicted in light gray, equilibrium sets in white. Panel (a)
for (2), with (γ, δ) = (0.002, δ∗), (b) for the pendulum (1) with
(γ, δ) = (0.5,−0.4).

The set of initial conditions that return to Q after
time kT is given by the preimage H−1Q, where H−1q :=
{q0|q=H(q0)}. Since the structure of H

−1Q is governed
by the stable set, analoguous to the Smale horseshoe,
H−1Q∩Q contains two vertical stripes, see fig. 4(a). One
iteration further, both stripes are divided in two, such
thatMs :=

⋂0
i=−∞H

iQ is a Cantor set, see fig. 4(b). The
backward dynamics of H behaves in a complex manner on
a fractal geometry, whereas friction collapses the forward
dynamics of H onto a non-fractal structure.
The intersection X :=Ms ∩Mu is the Cartesian prod-

uct of a countable set of points and a Cantor set, and
contains an infinite number of points. Since, in addition,
any trajectory in X has a stable and an unstable direc-
tion alongMs andMu, we refer to the set X as a chaotic
saddle. Note, that in the usual Smale horseshoe, the above
intersection is the Cartesian product of two Cantor sets.
Trajectories close toMs approach the chaotic saddle X

and spend a long transient time near this set. During this
time interval, the chaotic saddle determines their behav-
iour. Subsequently, they leave the chaotic saddle along the
setMu which has a simple, non-fractal structure: dynam-
ical collapse destroys the fractal nature of the forward
dynamics. Despite this simplified forward dynamics of the
physical system, the backward dynamics still behaves in
a complex manner. For example, the time spent in the
neighbourhood of a chaotic saddle is highly sensitive to
initial conditions, cf. fig. 5(a).
Heteroclinic orbits, that exist, e.g., in the pendulum

(1), will also generate a chaotic saddle that experiences
collapse. Before a trajectory near this saddle returns to
a domain close to its initial conditions, it will pass the
neighbourhood of two equilibrium sets, and can experience
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collapse in both of these regions. Although the return
map H is tailored to the homoclinic case with only
one such domain, near the heteroclinic tangle, collapse
also occurs and will induce the asymmetry between the
forward and backward dynamics. The backward dynamics
near the chaotic saddle remains complex, as illustrated in
fig. 5(b), where the time is shown before trajectories of
the pendulum converge to one of the equilibrium sets.
In conclusion, we showed that friction in physical

systems can induce a homoclinic or heteroclinic tangle
with a surprising character. This tangle creates a novel
type of chaotic saddle, which induces transient chaos
for nearby trajectories. In physical oscillators, dynami-
cal collapse of trajectories generates a qualitative differ-
ence between forward and backward dynamics of the
saddle: the stable set is fractal, whereas the unstable set
is not.
In [22], chaotic saddles in fluidic flows are shown to

generate effective mixing, since the unstable manifold is
fractal. Our results show, however, that dry friction may
cause the final state of trajectories to have a simple geome-
try, such that chaotic saddles do not yield effective mixing.
Apart from physical oscillators with friction studied in
this letter, collapse of trajectories is expected in electrical
systems, control systems and biological models exhibit-
ing discontinuities, cf. [23–25]. Hence, these systems will
also show the asymmetry between forward and backward
dynamics.
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