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Abstract— In this paper, we consider the problem of dis-
tributed formation control for a group of unicycle robots. We
propose a control algorithm that solves the formation control
problem in that it ensures that robots create a desired time–
varying formation shape while the formation as a whole follows
a prescribed trajectory. Moreover, we show that it is also
possible to obtain coordination of robots in the formation,
regardless of the trajectory tracking of the formation. We
illustrate the behavior of a group of robots controlled by
the formation control algorithm proposed in this paper in a
simulation study.

I. INTRODUCTION

Cooperative control of multiple mobile agents receives
increasing attention within the control and robotics commu-
nities. The reason for this fact is the abundance of potential
applications of the cooperative agents, mainly due to the
well-known advantages of a multi-agent system, such as
higher robustness, accuracy and speed of conducting the
required tasks in comparison to application of a single agent,
see e.g. [10] for details.

In this paper, we specifically study a formation control
problem in which the objective is for a group of robots to
maintain a given time–varying formation geometry while
following a desired trajectory. This problem has received
ample attention in the literature, see e.g. [1]–[3], [7], [11],
[13], [16]. In [1] a leader–follower approach with a receding-
horizon scheme was studied. It could be debated however
that the dependence on the leaders in the leader–follower
strategies may prove to be fault-prone. In turn, in [2] and
[3] control algorithms were proposed that allow for con-
stant formation shapes only. Arguably, this feature limits
the applicability of these controllers which to some degree
prompted our study. Furthermore, in [7] a saturated formation
control algorithm for time–varying formation shapes utilizing
a global communication network was proposed. Besides
considering tracking errors of all robots, a coordination error
between a pair of robots is also exploited in the formation
control law. This type of additional variables, likewise stud-
ied in [15], is also taken into account in the control law
proposed in this paper. In this sense, our results may be
considered as an extension of [7] by introducing a distributed
communication between robots with the exception that we do
not aim for the saturated controller as in [7]. This is to allow
us to focus on advancing the solution to formation control
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problem as such without the additional technical issues.
In contrast with the approach proposed here and in [7],
where the coordination error between a pair of interacting
agents is explicitly used in the control law, in numerous
other results regarding formation control of mobile agents,
including [2], [3], [11], [13], [16], coordination of agents is
achieved implicitly by extending tracking controllers of these
agents with additional terms describing their interactions.
Then, by implication, one has that the desired formation
shape is achieved along with trajectory tracking.

Similarly to our current results, the control algorithm pro-
posed in [13] also has a distributed character. Furthermore,
regarding distributed–local interconnection control schemes
for multiple agent groups, an interesting result is presented
by Jadbabaie et al [4] in which a control algorithm is
proposed based on the nearest neighbor rule. Moreover in
[8], the problem of flocking is considered and the so-called
geodesic control law is proposed. This scheme relates to
coordination and velocity alignment of nonholonomic mobile
agents to obtain flocking by means of minimizing a so-called
misalignment energy. Note that in comparison to the work
communicated in this paper, both [4] and [8] consider the
flocking control problem as opposed to the formation control
problem.

In this paper it is shown that coordination of agents in
the formation is equivalent to the consensus [9] of trajectory
tracking errors of the individual agents; hereto these errors
must be represented in a common coordinate system. To this
end, we express all tracking error variables in the earth–fixed
frame to show that when these errors are in consensus, the
cooperative agents form a desired formation shape. This is
also what further distinguishes this work from existing work,
such as e.g. [13], [16], where all tracking error variables
are given in local moving frames associated with individual
robots. As a consequence, in these works consensus of the
error variables does not imply physical coordination of the
agents in the formation.

In light of the above, the main contributions of this paper
are as follows: (i) introduction of a distributed formation con-
trol algorithm that explicitly ensures both trajectory tracking
and coordination of members of the formation; (ii) analysis
of the tracking error variables in the earth–fixed frame and
therewith determination of the analogy between the consen-
sus control problem and the formation control problem for
cooperative unicycle robots; (iii) analysis of the influence of a
connected and disconnected communication topology on the
formation behavior; (iv) a solution to the formation control
problem for time-varying formation geometries.

This paper is organized as follows. In Section II, we define



the formation control problem that is solved by the control
law presented in Section III. We include a simulation study
in Section IV and concluding remarks are given in Section
V.

II. PROBLEM FORMULATION

In this section, we revisit the formation control problem
briefly mentioned in the Introduction in more detail. We
consider a formation consisting of n identical unicycle–type
mobile robots. Let I = {1, . . . , n} denote the set of indices
of robots in the formation, let pi(t) = col(xi(t), yi(t)) denote
the Cartesian coordinates of robot i with respect to an earth-
fixed coordinate frame, and let θi(t) denote the heading
angle of this robot. Let qi(t) = col(pi(t), θi(t)). We will
assume that each robot satisfies the nonholonomic no-side-
slip condition ẋi sin θi − ẏi cos θi = 0. This gives that the
kinematics of the i-th robot are given by

ẋi = vi cos θi, ẏi = vi sin θi, θ̇i = ωi, (1)

in which vi is the forward speed and ωi is the angular
velocity. We also consider a virtual center, which is a
virtual robot with prescribed Cartesian coordinates pdvc(t) =
col(xdvc(t), y

d
vc(t)) with respect to the same earth-fixed co-

ordinate frame as the robots in the formation. Denote by
θdvc(t) the heading angle of the virtual center that satisfies
the no-side-slip-condition. Note that pdvc(t) and θdvc(t) define
a local moving coordinate frame with the origin at pdvc(t)
and orientation with respect to the earth-fixed frame given
by θdvc(t). Given vectors ldi (t) = col(ldix(t), ldiy(t)), i ∈ I,
in principle the control objective may be stated as the
requirement for the robots to follow trajectories that are
described by ldi (t) (i ∈ I) in the local virtual-center-fixed
coordinate frame. In other words, the robots are to follow
desired trajectories pdi (t) that are given by

pdi (t) = pdvc(t) +R(θdvc(t))l
d
i (t), R(θ) =

[
cos θ − sin θ
sin θ cos θ

]
,

(2)
By the no-side-slip constraint, this also gives desired heading
angles θdi .

Now, let the position tracking error ei and angular error
be defined as

ei(t) = pdi (t)−pi(t), θei (t) = θdi (t)−θi(t) (i ∈ I). (3)

Bearing in mind (1) and (3), the error dynamics in global
coordinates are given by

ėi = R(θdi − θei )
(
vdi cos θei − vi
vdi sin θei

)
, θ̇ei = ωdi − ωi. (4)

Here the desired velocities vdi , ωdi of a robot in the formation
are derived by differentiating (2) and using (1).

As mentioned in the Introduction, the objective of the
control algorithm proposed in this paper is twofold. First,
robots need to create a given formation geometry. Secondly,
the formation as a whole needs to follow a prescribed
trajectory. It follows from earlier discussions that the first
objective is satisfied if there exist a time-varying vector
pvc(t) and a function θvc(t) such that

pi(t) = pvc(t) +R(θvc(t))l
d
i (t) (∀i ∈ I) (5)

In addition, it follows from (2) that the second objective
is satisfied if (5) holds with pvc(t) = pdvc(t) and θvc(t) =
θdvc(t). It is therefore clear that both objectives are satisfied
if all error variables ei are equal to zero. In order to derive
conditions in terms of the error variables ei for the first
objective to be satisfied, we consider a stricter requirement
than (5) in that we require the actual orientation of the
formation to coincide with the desired orientation, i.e., (5) is
required to hold with θvc(t) = θdvc(t) and an arbitrary pvc(t).
If we define coordination errors between agents i and j by

σij = ei − ej , ∀i, j ∈ I, (6)

it may be shown that robots create a desired formation shape
if ∀i, j ∈ I, σij = 0. Based on this, we define a pair of agents
i and j to be coordinated if σij = 0 and call the whole
formation coordinated if all pairs of agents are coordinated.

In terms of the error variables ei, θei and σij , we can then
formulate the following problems that will be studied in the
remainder of the paper.

Problem Statement 1 (Formation Control): Consider n
unicycle robots (1), a desired formation shape defined by
ldi (t), i ∈ I and a desired trajectory pdvc(t) of the virtual
center. The Formation Control problem is solved if the origin
of the error dynamics (4) is rendered globally asymptotically
stable.

Problem Statement 2 (Coordination): Consider n unicycle
robots (1), a desired formation shape defined by ldi (t), i ∈ I
and a desired trajectory pdvc(t) of the virtual center. The
Coordination problem is solved if the set {(θei , σij) =
(0, 0)|i, j ∈ I} is rendered a globally asymptotically stable
set ([14]) for the error dynamics (4).

III. FORMATION CONTROL DESIGN

In this section, we will introduce our formation control al-
gorithms. The first control objective of this control algorithm
is to drive the tracking errors ei and θei to zero for all i ∈ I
while the error dynamics are stable (Problem Statement 1).
In other words, we aim to globally asymptotically stabilize
the origin of the tracking error dynamics (4) (therefore also
σij → 0 as t→∞). To this end, we propose the following
control algorithm:

vi(t) = vdi (t) +
(
1 0

)
RT (θi)µi (7)

ωi(t) = ωdi (t) + cθi θ
e
i + vdi (t)µTi R(θi)η(θei ), (8)

where µi = Ce
i ei +

∑
j 6=iCijσij and η(θei ) =

col(
cos θei−1

θei
,
sin θei
θei

) for θei 6= 0 and η(θei ) = col(0, 1) for
θei = 0. We note that (7, 8) constitutes a smooth control law.
The control law (7, 8) is distributed with Cij 6= 0 iff robot
i communicates with robot j.

Theorem 3.1: Consider n unicycle mobile robots with
kinematics described by (1) and the formation control law (7,
8), with vdi (t) bounded away from zero, uniformly continu-
ous and bounded and ωdi (t) bounded. Assume that cθi > 0,
Ce
i = diag(cxei , c

ye
i ), Cij = diag(cxij , c

y
ij), where cxei > 0,

cyei > 0, cxij ≥ 0 and cyij ≥ 0 subject to Cij = Cji for
i, j ∈ I. Then, the origin of the closed–loop error dynamics
(4, 7, 8) is a globally asymptotically stable equilibrium.



Proof: Consider a Lyapunov function candidate

V =
1

2

n∑
i=1

(θei )
2 + eTi C

e
i ei +

1

2

∑
j 6=i

σTijCijσij

 . (9)

The time derivative of V in (9) along trajectories of (4) in
closed loop with (7, 8) can be shown to be given by

V̇ = −
n∑
i=1

(
cθi (θ

e
i )

2 +
∥∥(1 0

)
RT (θi)µi

∥∥2) ≤ 0, (10)

where ‖ · ‖ denotes the Euclidean norm of a vector. There-
fore, the equilibrium (ei, θ

e
i ) = (0, 0), for all i ∈ I, is

stable. Moreover, by Barbalat’s lemma [6] we can show that
limt→∞ V̇ = 0 and hence the system trajectories converge
to the manifold defined by

θei = 0,
(
1 0

)
RT (θi)µi = 0. (11)

Note that the closed–loop error dynamics of θei are given by
θ̇ei = −cθi θei − vdi (t)µTi R(θi)η(θei ). As θei converges to zero,
the first term of the right–hand side of the error dynamics
converges to zero. It then follows from [5, Lemma 2] that
also the second term converges to zero. Making use of the
facts that lims→0 η(s) = col(0, 1) and vdi (t) is bounded away
from zero, this then implies that

(
0 1

)
RT (θi)µi → 0 as

t → ∞. Consequently, using (11) and given that R(θ) is
invertible, we conclude that µi → 0 as t→∞. Considering
the definition of µi = Ce

i ei +
∑
j 6=iCijσij , the fact that

µi → 0 may be written in terms of tracking errors ei for all
i ∈ I as follows:

Aνeν → 0 as t→∞, (12)

where Aνii = cνei +
∑
j 6=i c

ν
ij , A

ν
ij = −cνij , i 6= j, ν ∈

{x, y}, eν = col(eν1 , . . . , e
ν
n) and ei = col(exi , e

y
i ). Using

the Geršgorin disc theorem, we conclude that the matrices
in (12) are non-singular which in turn implies that both ex

and ey converge to 0 as t → ∞. Thus, the origin of (4, 7,
8) is globally asymptotically stable.

Note that although it is not necessary in Theorem 3.1
for the communication topology to be connected, if the
connectivity condition is satisfied, the formation behavior
is enhanced. This may be observed in particular when we
assume that for all i ∈ I the position tracking control gains
are set to be zero, i.e. cxei = 0 and cyei = 0, for all i ∈ I.
This case is considered in the next theorem, which proposes a
solution to the coordination problem in Problem Statement 2.

Theorem 3.2 (Coordination): Consider a formation con-
sisting of n unicycle mobile robots with kinematics (1).
Define Θe = col(θei | i ∈ I), e = col(ei | i ∈ I) and
E = {e |σij = 0, i, j ∈ I} and let the formation control
law be given in (7, 8) in which for all i ∈ I, cxei = 0 and
cyei = 0, i.e.

vi(t) = vdi (t) +
(
1 0

)
RT (θi)

∑
j 6=i

Cijσij (13)

ωi(t) = ωdi (t) + cθi θ
e
i + vdi (t)

∑
j 6=i

σTijCijR(θi)η(θei ) (14)

where cθi > 0, ∀i ∈ I, Cij = diag(cxij , c
y
ij), in which

cxij > 0 and cyij > 0 satisfy Cij = Cji, ∀i, j ∈ I. Assume

further that for i ∈ I, vdi (t) is bounded away from zero,
uniformly continuous and bounded and ωdi (t) is bounded. If
the communication topology of the formation is connected,
then the set Ω = {(θei , ei) |Θe = 0, e ∈ E} is globally
asymptotically stable; hence the desired formation shape is
attained for all robots in the formation.

Proof: (Sketch) Consider the Lyapunov function candi-
date (9) with Ce

i = 0, i ∈ I. Then, following the same lines
of reasoning as in the proof of Theorem 3.1, we can show
that θei → 0, i ∈ I, and (12) holds with Aνii =

∑
j 6=i c

ν
ij .

The matrices in (12) are Laplacian matrices [9] and if
the communication topology of the formation is connected
they have a single zero eigenvalue associated with the right
eigenvector 1 = col(1, . . . , 1). Thus, we conclude that for
all i, j, ei(t) → ej(t) as t → ∞, or equivalently σij → 0,
which implies that the set Ω is globally asymptotically
stable. Hence, all robots in the formation create the desired
formation shape.

Remark 3.3: When the topology of the communication
network of the formation is disconnected, we can observe
the formation shape being restored partially within subgroups
of robots I` ⊂ I. More specifically, for a disconnected
communication network, the set I may be split into the union
of k connected components I = I1∪. . .∪Ik, where I` is the
largest set of vertices of the `-th connected component, ` ∈
{1, . . . , k}. Consequently, under the conditions in Theorem
3.2 we obtain that the set Ωk = {(θei , ei) |Θe = 0, e ∈
Ek} is a globally asymptotically stable set, where Ek =
k⋂
`=1

{e |σij = 0, i, j ∈ I`}.

Remark 3.4: Note that in Theorem 3.2 we do not prove
that ei(t) → 0 as t → ∞, hence trajectory tracking is not
necessarily obtained. Instead, the group of robots reaches
the prescribed formation geometry and, due to the effect of
the feedforward terms vdi (t) and ωdi (t), ultimately follows a
trajectory that is translated with respect to the desired one.

Based on Theorems 3.1 and 3.2, we can see that if the
communication topology of the formation is connected and
both tracking control gains Ce

i and coordination gains Cij

are nonzero, we may act simultaneously upon the two control
objectives - coordination and trajectory tracking. This is in
spite of the fact that in Theorem 3.1, the connectivity of
the communication topology is not required. In this sense,
Ce
i and Cij may be seen as weighting parameters. Clearly,

the prevalent behavior for a particular application can be
determined by choosing appropriate values of the tracking
gains Ce

i and coordination gains Cij . In particular, one
may choose larger tracking gains Ce

i to prioritize trajectory
tracking. On the other hand, if it is desired to keep the
desired formation geometry rather than to track individual
robot trajectories, this may be achieved by using larger
coordination gains Cij and smaller tracking gains Ce

i . In
the extreme case when coordination gains are the only non-
zero parameters, we obtain coordination, see Theorem 3.2.
To illustrate results of this paper, we will show the existing
trade-off between tracking and coordination in simulations
in Section IV.



IV. SIMULATION STUDY

In this section we present a validation of the proposed
control algorithms by means of simulations of a formation
of three robots. We examine two communication topologies:
a disconnected one and a connected one. Control parameters
used in the simulations are as follows: cxe1 = 5, cxσ12 = 50,
cxσ13 = 0, cye1 = 30, cyσ12 = 120, cyσ13 = 0, cθ1 = 0.5, cxe2 = 3,
cxσ21 = 50, cxσ23 = 45, cye2 = 30, cyσ21 = 120, cyσ23 = 110,
cθ2 = 0.5, , cxe3 = 4, cxσ31 = 0, cxσ32 = 45, cye3 = 29, cyσ31 = 0,
cyσ32 = 110, cθ3 = 0.5. For the disconnected communication
topology, we set all coupling gains cxij and cyij to zero.

A. Tracking and Coordination

In this subsection, we illustrate the behavior of robots
controlled by the control algorithm given in Theorem 3.1.
In all simulations in this subsection, the desired trajectory
of the virtual center is given by xdvc(t) = 3 sin θdvc(t) + 3.5,
ydvc(t) = 3 cos θdvc(t) + 0.5 and θdvc(t) = 0.13t − π

2 . The
desired formation shape is time–invariant and forms an

equilateral triangle given by ld1 =
(
−0.3,− 0.3√

3

)T
, ld2 =(

0.3,−−0.3√
3

)T
and ld3 =

(
0, 0.6√

3

)T
. The initial condi-

tions of robots are q1(0) = (4.65,−1.28, 0.43)T , q2(0) =
(−2.24,−3.73, 0.62)T , q3(0) = (−2.43, 0.97, 0.52)T . More-
over, in both simulations we apply a perturbation at time
t = 25 to observe robots’ behavior after the perturbation.
This perturbation is equivalent to displacing Robot 1 along
(δx, δy) = (1,−0.5).

The simulation results are shown in Fig. 1–3. In particular,
in Fig. 1 we present robots’ paths in the plane. As shown in
this figure, robots initially converge to the desired formation
geometry. When the topology of the communication network
is disconnected, see Fig. 1(a), none of the unperturbed
robots in the formation (Robots 2 and 3) reacts to the
perturbation to maintain the formation shape. In contrast,
when the communication topology is connected, see Figure
1(b), both unperturbed robots also diverge from their desired
trajectories in favor of formation keeping.

We can also observe the advantageous influence of the
communication topology being connected in Fig. 2–3 that
show tracking errors. Not only are the errors smaller but also
robots aim to achieve coordination as well as tracking their
desired trajectories simultaneously when the communication
topology is connected (observe the close matching of eν1 ,
eν2 and eν3 , ν ∈ {x, y}, in Fig. 2(b) and 3(b)). This may be
compared to the phenomena observed by Rodriguez-Angeles
and Nijmeijer [12] for robotic manipulators. They noticed
that by coupling the robotic manipulators, the manipulators
tend to act in synchrony. Indeed, a similar behaviour may be
observed in our simulations. Due to the connectivity of the
communication topology, it is possible that robots maintain
their desired formation geometry despite the lack of tracking
of individual robots’ trajectories (after the perturbation). As
a matter of fact, in Fig. 2 and 3, we clearly see that tracking
errors coincide with each other before they converge to zero.
This means that owing to relatively strong coupling gains
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Fig. 1. Robot paths in the plane (dashed line) and desired paths in the
plane (solid line): (a) disconnected communication topology (b) connected
communication topology.
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Fig. 2. Tracking errors (x – coordinate): (a) disconnected communication
topology (b) connected communication topology.
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Fig. 3. Tracking errors (y – coordinate): (a) disconnected communication
topology (b) connected communication topology.

Cij as compared to the tracking gains Ce
i robots aim to first

restore the formation geometry before they return back to
their desired individual trajectories.

B. Coordination

In this section, we present simulation results for a group of
mobile robots under the coordination control algorithm (13,
14). The control parameters are given at the beginning of
Section IV. However, all Cartesian tracking gains are zero,
i.e. Ce

i = 0, for all i ∈ I, as per the requirements of the
coordination algorithm.

The desired trajectory of the virtual center of the formation
is taken to be a straight line given by xdvc(t) = 0.5 + 0.4t,
ydvc(t) = 0.5 and θdvc(t) = 0. To illustrate further advantages
of the control algorithms proposed in this paper, the desired
formation geometry is now time-varying, and is created
by ld1 = (0,−0.5− 0.2 sin(0.25t))

T , ld2 = (0, 0)
T and

ld3 = (0, 0.5 + 0.2 sin(0.25t))
T . The initial robots’ states

are q1(0) = (−4.5,−1, π)T , q2(0) = (2.62,−4.45,−π4 )T ,
q3(0) = (2.47, 0.98, π3 )T .

The simulation results are given in Fig. 4–6. It can be
seen that if the communication topology of the formation
is connected, robots create a given desired formation shape
but, as expected, they do not follow the desired trajectory of
the formation, see Fig. 4(b). In fact they follow the desired
trajectory in a translated sense. In contrast, when robots are
decoupled, see Fig. 4(a) the robots’ heading angles converge
to their desired values but they neither track their individual
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Fig. 4. Robot paths in the plane (dashed line) and desired paths in the
plane (solid line): (a) disconnected communication topology (b) connected
communication topology.
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Fig. 5. Tracking errors (x – coordinate): (a) disconnected communication
topology (b) connected communication topology.
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Fig. 6. Tracking errors (y – coordinate): (a) disconnected communication
topology (b) connected communication topology.

trajectories, nor are coordinated with each other.
Similar conclusions can be drawn with the aid of Fig. 5–6

that present the tracking errors. We can see that when the
communication topology is connected, the tracking errors are
in consensus with each other and so the coordination errors
go to zero, see Fig. 5(b) and 6(b). However, robots do not
track their individual trajectories, hence the position errors do
not converge to zero. Conversely, when the communication
topology is disconnected the tracking errors are different
from each other, see Fig. 5(a) and 6(a). This shows that in
order to achieve consensus of the tracking error variables
robots need to be able to sufficiently exchange information
with each other.

V. CONCLUSIONS

In this paper, we have studied a distributed formation con-
trol problem for unicycle robots with time-varying desired
formation shapes. We have expressed position tracking errors
in a common coordinate frame and from that we were able
to show that the physical coordination of robots is associated
with the consensus of the tracking errors given in a common
coordinate system. By combining terms in the control law
relating to both tracking of the desired trajectories of individ-
ual robots and coordination with the robots’ neighbors, we
have proposed a control law that ensures both tracking and
coordination simultaneously. Moreover, we have observed
that formation behaviour of multiple robots in the group can
be enhanced if robots can communicate with each other. If

this is the case, the robots in the formation not only aim to
track their individual trajectories but they also explicitly act
towards maintaining a desired formation shape.

In addition to the formation control problem in which
robots create a desired formation shape and track, as a
whole, a desired trajectory, we have also studied the case
of coordination without converging of the formation to the
desired trajectory. We have shown that for coordination to
occur, it is crucial that robots have sufficient communication
between each other.

Our future work will include dealing with some practical
aspects of the formation control. More specifically, we want
to change the formation controller to accommodate for the
actuator limitations of robots as well as introduce inter–agent
collision avoidance scheme. In addition, experimental vali-
dation of the proposed control algorithm will be performed.
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