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Abstract
In this paper, the effects of friction compensation, including
exact compensation, undercompensation and overcompensa-
tion, in PD controlled 1DOF mechanical systems are investi-
gated. The friction force that is acting on the mechanical sys-
tem and the friction compensation term in the feedback loop are
described by a class of discontinuous friction models consis-
ting of static, Coulomb and viscous friction, and includingthe
Stribeck effect. In order to capture the sticking phenomenon at
zero velocity, the friction model is expressed as a multi-valued
map. Lyapunov’s stability theorem, LaSalle’s invariance prin-
ciple and the properties of theω-limit set of trajectories of a
2-dimensional differential inclusion are employed to showthat
firstly, exact compensation leads to global exponential stability
of the setpoint, secondly, undercompensation leads to steady
state errors, and thirdly, overcompensation conditionally in-
duces limit cycling.

1 Introduction
Friction occurs in many controlled positioning systems and
it can deteriorate performance of those controlled systemsin
terms of large steady-state errors and limit cycling, see for ex-
ample [4]. Friction compensation is, therefore, needed in order
to improve the system performance. Satisfactory friction com-
pensation can be obtained if a good friction model is available.
However, friction is a highly nonlinear phenomenon, which is
difficult to be completely described by a simple model [4, 12].
Because of such modeling errors and parameter estimation er-
rors, inexact friction compensation is inevitable.

The limit cycling effect that is induced by the overcom-
pensation of friction in PD and PID controlled 1-degree-of-
freedom (1DOF) systems has been analyzed in [6] by means of
the describing function method. Papadopoulos and Chasparis
[13] validate the predicted limit cycle on an experimental setup
but, at the same time, they also show that the prediction of the
describing function is not always accurate. The numerical and
the experimental results in [11] also indicate that overcompen-
sation of friction induces limit cycling and undercompensation
of friction leads to steady-state errors. This manuscript is in-
tended to provide a rigorous mathematical analysis of thoseob-
servations for a class of discontinuous friction models andfor
more general cases of undercompensation and overcompensa-

tion of friction. Our analysis is based on Lyapunov’s stability
theorem [15], LaSalle’s invariance principle [1, 2, 16] andthe
properties of theω-limit set of trajectories of a 2-dimensional
differential inclusion [8]. In this study, we consider friction
compensation in PD controlled 1DOF systems.

This paper is organized as follows. Section 2 explains the
model of the controlled system with friction compensation.
The effects of exact compensation, undercompensation and
overcompensation of friction to the performance of the con-
trolled system are studied in sections 3, 4 and 5, respectively.
Section 6 provides numerical demonstrations of the analytical
results. Finally, conclusions are drawn in section 7.

2 Controlled 1DOF frictional systems
We consider 1DOF frictional mechanical systems that can be
described by

ẋ = y

ẏ = −
Fv

J
y −

1

J
F (y) +

1

J
u,

(2.1)

wherex, y andJ are the position, the velocity and the inertia
of the mechanical system, respectively,Fv > 0 is the linear
viscous friction damping,u is the input force andF (y) is the
nonlinear friction force given by

F (y) ∈

{
g(y)sign(y) if y 6= 0
[−Fs, Fs] if y = 0,

(2.2)

with Fs > 0 the static friction level andg(y) a Stribeck func-
tion, which represents the continuous decay1 of the friction
curve fromFs to a Coulomb friction levelFc > 0. Notice
that the set-valued nature of (2.2) aty = 0 allows to model the
sticking phenomenon. The friction model (2.2) is reduced toa
Coulomb friction model ifg(y) = Fs = Fc. Other commonly
used Stribeck functions in the control literature [4, 12] are of
the forms

g(y) = Fc + (Fs − Fc)e
−(|y|/vs)δ

(2.3)

and

g(y) = Fc + (Fs − Fc)
1

1 + (|y|/vs)δ
, (2.4)

1The continuous decay impliesg(0) = Fs, lim
y↓0

F (y) = Fs and

lim
y↑0

F (y) = −Fs.



wherevs > 0 is called the Stribeck velocity andδ > 0 is
the shaping parameter of the Stribeck curve. The combina-
tion of a linear viscous friction and the nonlinear frictionF as
considered in (2.1) is able to represent a rather general class
of static friction models [4, 12]. However, the friction model
(2.2) excludes the friction model with a discontinuous drop
of the friction curve fromFs to Fc, which is shown in [3] to
be inadequate for describing the possible disappearance ofthe
friction-induced stick-slip phenomenon. Here we opted fora
static friction model since we focus on the effect of friction
on the global dynamics; however, when the behaviour for very
small velocities is particularly important one could opt for a
dynamic friction model, see e.g. [7].

In order to regulate the frictional mechanical system (2.1)
towards a setpointxs, we consider a PD controller with friction
compensation of the form

u = Kp(xs − x) + Kd(0 − y) + F̃ (y, ū), (2.5)

whereKp > 0 is the proportional gain,Kd > 0 is the deriva-
tive gain, andF̃ (y, ū) is a friction compensation term given by

F̃ (y, ū) ∈

{
g̃(y)sign(y) if y 6= 0

F̃sSign(ū) if y = 0,
(2.6)

whereū = Kp(xs − x). The presence of the set-valued Sign
function, whereSign(0) ∈ [−1, 1], allows the friction com-
pensation term̃F to take any value between[−F̃s, F̃s] if both
y = 0 andū = 0, and provides alternatives in the implementa-
tion.

Without loss of generality, the setpoint is assumed to be the
origin, i.e.xs = 0, such that the control inputu becomes

u = −Kpx − Kdy + F̃ (y,−Kpx). (2.7)

Substitution of the feedback (2.7) into the system (2.1) results
in the closed-loop system

ẋ = y

ẏ = −
Kp

J
x −

(Kd + Fv)

J
y +

1

J
∆F (y, x),

(2.8)

where∆F (y, x) = F̃ − F is the friction compensation error
given by

∆F (y, x) ∈

{
(g̃(y) − g(y)) sign(y) if y 6= 0

[−Fs, Fs] − F̃sSign(x) if y = 0.
(2.9)

To study the effects of friction compensation on the dyna-
mics of the closed-loop system (2.8), the following definition is
adopted. The friction forceF is said to be exactly compensated
if

F̃s = Fs and g̃(y) = g(y),∀ y 6= 0, (2.10)

undercompensated if

F̃s < Fs and g̃(y) < g(y),∀ y 6= 0, (2.11)

and overcompensated if

F̃s > Fs and g̃(y) > g(y),∀ y 6= 0. (2.12)

Notice that in the exact compensation and the undercom-
pensation cases the friction compensation error∆F given by
(2.9) is an upper semi-continuous, convex and bounded multi-
valued map. In these cases, the closed-loop system (2.8) is,
likewise the open-loop system (2.1), a system of differential
inclusion of Filippov-type [8], for which existence of solutions
is guaranteed [5, Theorem 3, p.98]. However, for the over-
compensation case∆F is not convex. As an illustration for
x > 0 following (2.9) ∆F (0, x > 0) belongs to the inter-
val [−(Fs + F̃s), Fs − F̃s] but this interval does not include
lim
y↓0

∆F (y, x > 0) = F̃s − Fs if F̃s > Fs. In this case, the

closed-loop system (2.8) is a discontinuous system, which does
not belong to Filippov-type differential inclusions. For consis-
tency of solutions definition, we can apply Filippov’s convex
method to render the discontinuous system to be a Filippov-
type differential inclusion. The non-convex map(2.9) is, then,
extended by including the closed convex hull of all the limits
of ∆F , which results in

∆F (y, x) ∈





(g̃(y) − g(y)) sign(y) if y 6= 0[
Fs − F̃s, Fs + F̃s

]
if y = 0 and x < 0[

−(Fs + F̃s), Fs + F̃s

]
if y = 0 and x = 0[

−(Fs + F̃s), F̃s − Fs

]
if y = 0 and x > 0.

(2.13)

3 Exact compensation case
In this section, it will be proven that in the case of exact fric-
tion compensation the closed-loop system (2.8) has a unique
equilibrium point at the origin, which is globally exponentially
stable.

Equilibria of the closed-loop system (2.8) satisfy

y = 0 andKpx ∈ [−Fs, Fs] − F̃ssign(x). (3.1)

Since in the exact compensation caseF̃s = Fs, (3.1) yields a
unique equilibrium point at the origin. In order to prove that the
origin is a globally exponentially stable equilibrium of (2.8),
consider the Lyapunov function candidate

V (x, y) =
1

2
(Fvx + Jy)2 +

1

2
(KpJ + KdFv)x2 (3.2)

that is radially unbounded. Its time-derivative along trajectories
of (2.8) is given by

V̇ (x, y) = −KpFvx
2 + Fv∆Fx − KdJy2 + J∆Fy. (3.3)

From (2.9) and (2.10), we have∆Fx ≤ 0 and∆Fy = 0 such
that

V̇ (x, y) ≤ −KpFvx2 − KdJy2. (3.4)

The existence of the quadratic Lyapunov function (3.2) withits
time-derivative satisfying (3.4) guarantees that the origin is a
globally exponentially stable equilibrium point of (2.8) [15].

By using a similar method, the result on exact friction
compensation can be extended to multi-degree-of-freedom
(MDOF) systems with multiple friction forces. The key feature
of this method is that at zero velocity the friction compensation
termF̃ depends on the controlled position error, see (2.6).



4 Undercompensation case
The objective of this section is to show that in the undercom-
pensation case the closed-loop system (2.8) has a globally at-
tractive equilibrium set containing the origin. The methodto
achieve this objective is based on Lyapunov’s stability theorem
[15] and LaSalle’s invariance principle [1, 2, 16].

As mentioned in the previous section, equilibria of the
closed-loop system (2.8) satisfy (3.1). From the undercompen-
sation definition (2.11), (3.1) results in the equilibrium set

SE =

{
(x, y) ∈ R

2 : |x| ≤
Fs − F̃s

Kp
, y = 0

}
. (4.1)

Obviously, the equilibrium setSE contains the origin, which is
the setpoint of the controlled system (2.8).

Since the invariance principle requires uniqueness of so-
lutions in forward time, firstly we need to verify whether
the closed-loop system (2.8) satisfies this condition. A suf-
ficient condition for uniqueness of solutions of Filippov-
type differential inclusions is the absence of repulsive slid-
ing modes [9]. Sliding mode behaviors can be investigated
using the projections of vector fields onto the normal vec-
tor to a switching surface. The switching surface of (2.8) is
S =

{
(x, y) ∈ R

2 : y = 0
}

andn = [ 0 1 ]T is the normal
vector toS. Notice thatSE ⊂ S. The switching surfaceS par-
titions the state space intoG− =

{
(x, y) ∈ R

2 : y < 0
}

and
G+ =

{
(x, y) ∈ R

2 : y > 0
}

. The projections of the vector
field in G+ andG− on the normal vectorn at the switching
surfaceS are given by

nT f+(x, y) = −
Kp

J
x +

F̃s − Fs

J
, ∀ (x, y) ∈ S (4.2)

and

nT f−(x, y) = −
Kp

J
x −

F̃s − Fs

J
, ∀ (x, y) ∈ S, (4.3)

respectively. Repulsive sliding modes occur at the switching
surfaceS if nT f+(x, y) > 0 and nT f−(x, y) < 0, which
results in

Kp|x| < (F̃s − Fs). (4.4)

SinceKp > 0 and in the undercompensation caseF̃s−Fs < 0,
the inequality (4.4) never holds such that repulsive sliding
modes never occur. Therefore, uniqueness of solutions in for-
ward time of the closed-loop system (2.8) is guaranteed in the
undercompensation case.

Theorem 1 The origin of the closed-loop system (2.8) is glo-
bally stable and the equilibrium setSE given by (4.1) is glo-
bally attractive if the friction force is undercompensated, i.e. if
condition (2.11) holds.

Proof Consider the Lyapunov function candidate

V (x, y) =
Kp

2
x2 +

J

2
y2. (4.5)

The time-derivative ofV (x, y) along trajectories of (2.8) is
given by

V̇ (x, y) = −(Kd + Fv)y2 + ∆F (y)y. (4.6)

From the condition (2.11), it can be shown that

∆F (y)y < 0, ∀ y 6= 0 and∆F (y)y = 0 iff y = 0. (4.7)

Substitution of (4.7) into (4.6), yields

V̇ (x, y) ≤ −(Kd + Fv)y2. (4.8)

The existence of the Lyapunov function (4.5) with its time
derivative satisfying (4.8) proves that the origin is globally sta-
ble [15]. Furthermore,V̇ (x, y) = 0 only in the setS and
the equilibrium setSE is the largest invariant set of (2.8) con-
tained in the setS. Because the closed-loop system (2.8) has
unique solutions in forward time, LaSalle’s invariance principle
[1, 2, 16] can be applied to conclude that all trajectories of(2.8)
converge to the equilibrium setSE . Hence, the equilibrium set
SE is globally attractive.2

Theorem 1 indicates that undercompensation of friction
leads to steady-state errors, which are bounded by(Fs −

F̃s)/Kp due to the size of the equilibrium setSE . Limit cy-
cling, however, never occurs. This result on the undercompen-
sation case can be extended to MDOF systems with multiple
friction forces because in this case the equilibrium set is due to
the remaining friction forces. By choosing an appropriate Lya-
punov function, for example as proposed in [16], and applying
LaSalle’s invariant principle a similar result can be obtained.

5 Overcompensation case
This section provides a rigorous analysis showing that over-
compensation of friction in the closed-loop system (2.8) may
provoke limit cycling around the setpoint. As discussed at the
end of Section 2, in the overcompensation case the term∆F
in (2.8) is replaced by∆F given by (2.13) to render (2.8) a
Filippov-type differential inclusion.

The analysis is based on the properties of theω-limit set
of trajectories of a 2-dimensional differential inclusion. Here,
we adopt the definition ofω-limit sets given in [8, p.129]. In
order to prove that the system (2.8) exhibits limit cycling,it
is sufficient to show that theω-limit set of its trajectories is a
closed orbit. The following theorem, which is proven in [8,
Theorem 3, p.137], is useful for achieving this goal.

Theorem 2 Consider a 2-dimensional autonomous differen-
tial inclusion

ż ∈ F (z) (5.1)

with F (z) a set-valued function that is closed, convex and
bounded for all z ∈ R

2 and the functionF is upper
semi-continuous. Suppose that uniqueness of solutions in
forward time holds at any point on a trajectoryΓ ={
z ∈ R

2 : z = ϕ(t), t ∈ [0,∞)
}

of (5.1). If theω-limit set of
Γ is bounded and contains no equilibrium points then it con-
sists of one closed orbit.



Since the closed-loop system (2.8) with∆F replaced by∆F
is a Filippov-type differential inclusion, it satisfies thecondi-
tions of Theorem 2. Next, we state a result on boundedness of
trajectories of the closed-loop system (2.8).

Proposition 3 Theω-limit set of all trajectories of the closed-
loop system (2.8) - with∆F replaced by∆F as in (2.13) - is
bounded if the friction force is overcompensated, i.e. condition
(2.12) holds.

Proof Consider the positive definite function

V (x, y) =
1

2
(Fvx + Jy)2 +

1

2
(KpJ + KdFv)x

2 (5.2)

that is radially unbounded. Its time-derivative along trajectories
of (2.8) is given by

V̇ (x, y) = −KpFvx
2 + Fv∆F (y, x)x − KdJy2+

J∆F (y, x)y,
(5.3)

with ∆F as in (2.13). From the property of the Stribeck curve,
Fc ≤ g(y) ≤ Fs, the condition (2.12) and the friction compen-
sation error (2.13), it can be shown that

∆F (y, x)x ≤ (F̃s − Fc)|x| and∆F (y, x)y ≤ (F̃s − Fc)|y|.
(5.4)

Substitution of (5.4) into (5.3) yields

V̇ (x, y) ≤ −KpFvx2 + Fv(F̃s − Fc)|x|−

KdJy2 + J(F̃s − Fc)|y|.
(5.5)

Following (5.5),V̇ (x, y) < 0 if

KpFvx2 + KdJy2 > (F̃s − Fc) (Fv|x| + J |y|) . (5.6)

SinceF̃s−Fc > 0, inequality (5.6) holds for all pairs(x, y) that
are sufficiently separated from the origin because the left-hand
side of the inequality is a quadratic function ofx andy while
the right-hand side is a linear function of the absolute values of
x andy. Therefore, trajectories of the closed-loop system (2.8)
cannot grow unbounded in forward time.2

In the following, we find the conditions on the closed-loop sys-
tem (2.8) such that theω-limit set of its trajectories does not
contain any equilibrium points. Equilibria of the closed-loop
system (2.8) in the overcompensation case satisfyy = 0 and
Kpx = ∆F (y, x), which results in

Sε =

{
(x, y) ∈ R

2 : |x| ≤
F̃s − Fs

Kp
, y = 0

}
. (5.7)

It has been shown in the previous section that repulsive sliding
modes occur if the inequality (4.4) holds. Since in the overcom-
pensation casẽFs − Fs > 0, following (4.4) repulsive sliding
modes occur at the segment

Ψ =

{
(x, y) ∈ R

2 : |x| <
F̃s − Fs

Kp
, y = 0

}
(5.8)

y

x

y = −ax + b

y = −ax − b

G−

G+

Ψ (
F̃s − Fs

Kp
, 0)

(−
F̃s − Fs

Kp
, 0)

(0, b)

Figure 1: The vector field of (2.8) in the case of overcompen-

sation of friction, wherea =
Kp

Kd + Fv
andb =

F̃s − Fs

Kd + Fv
.

of the switching surfaceS. From (5.7) and (5.8), the equilib-
rium setSε can be rewritten as

Sε = (−
F̃s − Fs

Kp
, 0) ∪ Ψ ∪ (

F̃s − Fs

Kp
, 0). (5.9)

Hence, the setΨ is an unstable equilibrium set of (2.8) and
it can be concluded that theω-limit set of all trajectories of
(2.8) starting at(x0, y0) ∈ R

2 \ SE does not contain the set
Ψ. However, theω-limit set may contain one or both of the

extremal equilibrium points(−
F̃s − Fs

Kp
, 0) and(

F̃s − Fs

Kp
, 0).

Next, the possible convergence of trajectories to the two ex-
tremal equilibrium points is investigated through a phase-plane
analysis as depicted in Figure 1. The projection of the vec-
tor field of (2.8) on the normal vectorm = [ 1 0 ]T to the
y-axis is mT f(x, y) = y such thatmT f(x, y) < 0 for all
(x, y) ∈ G− andmT f(x, y) > 0 for all (x, y) ∈ G+. The pro-
jection of the vector field on the normal vectorn = [ 0 1 ]T

to thex-axis is given by

nT f(x, y) = −
Kp

J
x −

(Kd + Fv)

J
y +

1

J
∆F (y, x). (5.10)

Since in the overcompensation case∆F < (F̃s −Fc), ∀ y > 0

and∆F > −(F̃s − Fc), ∀ y < 0, (5.10) yields

nT f(x, y) < 0 if y >
−Kp

Kd + Fv
x +

F̃s − Fc

Kd + Fv
andy > 0,

nT f(x, y) > 0 if y <
−Kp

Kd + Fv
x −

F̃s − Fc

Kd + Fv
andy < 0.

Trajectories of the closed-loop system (2.8) cross the
switching surfaceS, which is thex-axis, transversally if and
only if the inequality

nT f+(x, y) · nT f−(x, y) > 0, (5.11)



holds, wherenT f+(x, y) and nT f−(x, y) are given (4.2)
and (4.3), respectively. From the condition (5.11), (4.2) and
(4.3), the transversal intersections occur at the segmentST ={

(x, y) ∈ R
2 : |x| > (F̃s − Fs)/Kp, y = 0

}
of the switching

surfaceS.
The phase-plane analysis shows that the extremal equi-

librium points (
F̃s − Fs

Kp
, 0) and (−

F̃s − Fs

Kp
, 0) can only be

reached fromG+ andG−, respectively. The dynamics of (2.8)
in G+ reduces to

ẋ = y

ẏ = −
Kp

J
x −

Kd + Fv

J
y +

∆g(y)

J
,

(5.12)

with ∆g(y) = g̃(y)−g(y). Let approximate the Stribeck func-
tionsg̃(y) andg(y) by a Taylor expansion such that∆g(y) can
be approximated by

∆g(y) = g̃(0) − g(0) + (g̃′(0) − g′(0))y + h.o.t., (5.13)

whereg̃(0) = F̃s, g(0) = Fs, g̃′(y) =
∂g̃(y)

∂y
andg′(y) =

∂g(y)

∂y
. Note that for the Stribeck functions (2.3) and (2.4) this

approximation is possible only forδ ≥ 1 becauseg′(0) = 0 if

δ > 1, g′(0) = −
Fs − Fc

vs
if δ = 1 andg′(0) is not defined

if δ < 1. Hence, for the case wherẽg′(0) andg′(0) are well-
defined, the system (5.12) aroundy ' 0 can be approximated
by the linear system

ẋ = y

ẏ = −
Kp

J
x −

Kd + Fv − g̃′(0) + g′(0)

J
y +

F̃s − Fs

J
.

(5.14)

Notice that the extremal equilibrium point(
F̃s − Fs

Kp
, 0) coin-

cides with the equilibrium point of the linear system (5.14).
Because of the symmetry of the vector field about they-axis a
similar linear approximation also holds for the extremal equi-

librium point (−
F̃s − Fs

Kp
, 0). The linear approximation al-

lows to investigate the possible convergence of trajectories of
the closed-loop system (2.8) to the extremal equilibrium points
such that the following result can be concluded.

Theorem 4 Consider the closed-loop system (2.8) - with∆F
replaced by∆F as in (2.13) - in the case where the friction
force is overcompensated, i.e. condition (2.12) holds, andas-

sume that̃g′(0) =
∂g̃(y)

∂y
|y=0 and g′(0) =

∂g(y)

∂y
|y=0 are

well-defined. Theω-limit set of any trajectory of the closed-
loop system (2.8), starting away from the equilibrium setSε

given by (5.7), consists of one closed orbit that encircles the
equilibrium setSε if the inequality

Kd + Fv − g̃′(0) + g′(0) > 0 (5.15)

is violated or if both (5.15) and

(Kd + Fv − g̃′(0) + g′(0))2 < 4KpJ (5.16)

hold. But if only (5.16) is violated, theω-limit set does not
contain such a closed orbit but it may consist of one of the

extremal equilibrium points(−
F̃s − Fs

Kp
, 0) or (

F̃s − Fs

Kp
, 0).

Proof SinceJ,Kp > 0, applying the Hurwitz condition, the
linear approximation (5.14) is stable if and only if the inequal-
ity (5.15) holds. Thus, if (5.15) is violated the linear system
(5.14) becomes unstable and, following the phase plane ana-
lysis, trajectories of the closed-loop system (2.8) will not con-
verge to the extremal equilibrium points. Consequently theω-
limit set of any trajectory of (2.8), starting outside the equili-
brium setSε, does not contain any equilibrium points. Apply-
ing Theorem 2 and Proposition 3, theω-limit set consists of
one closed orbit if uniqueness of solutions holds at any point
along those trajectories. It has been shown that transversal in-
tersections occur at the segmentST of the switching surfaceS
and uniqueness of solutions in forward time holds at any point
on ST . SinceS = Sε ∪ ST and the trajectories do not contain
any point inSε, we can conclude that uniqueness of solutions
in forward time holds at any point along those trajectories and
the first part of the theorem is proven.

If the Hurwitz condition (5.15) holds, trajectories inG+

may eventually converge to the extremal equilibrium point

(
F̃s − Fs

Kp
, 0). However, if the inequality (5.16) holds the dy-

namics of the linear system (5.14) are undercritically damped,
i.e. it has a pair of complex eigenvalues, such that those trajec-
tories will oscillate before converging to the equilibriumpoint.
Note that the dynamics (5.14) hold only inG+ and once a tra-
jectory crosses thex-axis it will move away from thex-axis
towards the regionG− as depicted in Figure 1. Because the
vector field inG− and inG+ are symmetric the same scenario
takes place and the cycle repeats such that the two extremal
equilibrium points cannot be reached neither in finite time nor
in infinite time. Hence, theω-limit set of those trajectories does
not contain any equilibrium points. By applying the same rea-
soning as in the first part, we can conclude the second part of
the theorem.

If only the inequality (5.16) is violated, the dynamics of
the linear system (5.14) become supercritically damped, i.e. it
has two real eigenvalues, such that trajectories inG+ converge

exponentially to the extremal equilibrium point(
F̃s − Fs

Kp
, 0)

without oscillation. Therefore, the extremal equilibriumpoint
can be reached in infinite time. This result also holds for the
other extremal equilibrium point due to the symmetry of the
vector field. Hence, theω-limit set of trajectories of the closed-
loop system (2.8) may consist of one of the two extremal equi-
librium points.2

Theorem 4 indicates that overcompensation of friction may
provoke limit cycling and that the limit cycling effect can be
eliminated by tuning the gains of the PD controller, i.e. choose



Kp andKd satisfying the Hurwitz condition (5.15) and vio-
lating the inequality (5.16). This limit cycling result cannot
be extended to a multi-degree of freedom system because it is
based on Theorem 5.1, which is valid only for 2-dimensional
systems. However, the result on boundedness of theω-limit
set, Proposition 3, can be extended to MDOF systems by using
a similar approach. The sliding-mode analysis on the switching
surface, see for example [9], and the local stability analysis of
the extremal equilibrium points are also applicable to investi-
gate possible convergence of trajectories of a MDOF frictional
system to an equilibrium point. Those extended analysis could
predict whether trajectories of a controlled system converge to
an attractor - not necessarily a closed orbit - or to an equili-
brium point as a result of overcompensation of friction.

6 A numerical example
This section provides numerical illustrations of the theoretical
results obtained in the previous three sections. For this purpose,
we consider the 1DOF mechanical system studied in [14]. The
dynamics of the system can be described by (2.1), (2.2) with
g(y) = Fc+(Fs−Fc)e

−(y/vs)2 and the parameter values:J =
0.0260 kgm2, Fv = 0.0710 Nms/rad,Fc = 0.4195 Nm, Fs =
0.5005 Nm andvs = 0.15 rad/s. The friction compensation is
given by (2.6) withF̃s = αFs andg̃(y) = αg(y), whereα > 0
is a scaling factor. Following the definitions in Section 2, we
have exact compensation case ifα = 1, undercompensation
case ifα < 1 and overcompensation case ifα > 1.

Solutions of the closed-loop system are obtained numeri-
cally using the so-called switch-model approximation for the
dynamics around the switching surfaceS, see e.g. [10, 14]. Fi-
gure 2 shows that trajectories of the closed-loop system (2.8)
with Kp = 0.1 andKd = 0.1 converge exponentially to the
origin in the exact compensation case as predicted in Section
3. A phase portrait showing an attracting equilibrium set ofthe
controlled system (2.8), withα = 0.8 (20% undercompensa-
tion) and the PD controller gains set as in the case of exact com-
pensation, is depicted in Figure 3. This simulation result agrees
with Theorem 1. Figure 4(a) depicts a phase portrait showing
an asymptotically stable closed orbit of the closed-loop system
(2.8) with α = 1.2 (20% overcompensation) in the undercri-
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Figure 2: Phase portrait of the controlled system (2.8) with
α = 1 (exact compensation),Kp = 0.1 andKd = 0.1.
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Figure 3: Phase portrait of the controlled system (2.8) with
α = 0.8 (undercompensation),Kp = 0.1 andKd = 0.1.

tically damped case, withKp = 1 andKd = 0.2. The closed
orbit comes closer to the extremal points of the equilibriumset
Sε, when it crosses they-axis but does not hit these points such
that the closed orbit encircles the equilibrium setSε. On the
other hand, Figure 4(b) depicts a phase portrait of (2.8) with
the same value ofα in the supercritically damped case, with
Kp = 1 and Kd = 0.8. The phase portrait shows two at-
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Figure 4: Phase portrait of the system (2.8) withα = 1.2
(overcompensation): (a) the undercritically damped case with
Kp = 1 andKd = 0.2, and (b) the supercritically damped
case withKp = 1 andKd = 0.8, E1 andE2 are the extremal
equilibrium points.



tracting extremal equilibrium points of the equilibrium set Sε.
These simulation results confirm the prediction of Theorem 4.

7 Conclusions
We have investigated the positive effect of exact friction com-
pensation and the negative effects of undercompensation and
overcompensation of friction in PD controlled 1DOF mechani-
cal systems for a class of discontinuous friction models consist-
ing of static, Coulomb and viscous friction, and including the
Stribeck effect. It is proven that exact friction compensation in
the 1DOF mechanical systems makes the closed-loop system
behaves as the linear system without friction even though the
friction value at zero velocity is not explicitly known. It has
been shown that undercompensation of friction in the 1DOF
controlled mechanical systems results in a globally attractive
equilibrium set containing the setpoint, which is globallysta-
ble. This result indicates that the controlled systems may ex-
hibit steady-state errors and that limit cycling never occurs.
The steady-state error is bounded by the size of the equilib-
rium set, which can be influenced by tuning the proportional
gain of the PD controller.

It also has been proven that overcompensation of friction
in the same controlled mechanical systems provokes limit cy-
cling in case the linearized dynamics of the controlled sys-
tems around the extremal equilibrium points are undercriti-
cally damped. However, such a limit cycling effect disappears
if the PD controller gains are tuned such that the linearized
dynamics become supercritically damped. Since the analysis
involves the linearized dynamics around the extremal equilib-
rium points, this result is valid only for discontinuous friction
models whose the first partial derivative of the Stribeck func-
tion is well-defined locally at zero velocity. The predictions
of the theoretical results have been demonstrated by a numeri-
cal example. Furthermore, possible extensions of the results to
MDOF frictional systems are also indicated.
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