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chanics, equilibrium sets, limit cycles, discontinuousteyns. theorem [15], LaSalle’s invariance principle [1, 2, 16] ahd
properties of theu-limit set of trajectories of a 2-dimensional

Abstract differential inclusion [8]. In this study, we consider fiin

In this paper, the effects of friction compensation, inahgd compensation in PD controlled 1DOF systems.

exact compensation, undercompensation and overcompensal his paper is organized as follows. Section 2 explains the

tion, in PD controlled 1DOF mechanical systems are investodel of the controlled system with friction compensation.

gated. The friction force that is acting on the mechanicat syThe effects of exact compensation, undercompensation and

tem and the friction compensation term in the feedback lsep @vercompensation of friction to the performance of the con-

described by a class of discontinuous friction models @ansirolled system are studied in sections 3, 4 and 5, respéctive

ting of static, Coulomb and viscous friction, and includihg Section 6 provides numerical demonstrations of the arallyti

Stribeck effect. In order to capture the sticking phenomeato results. Finally, conclusions are drawn in section 7.

zero velocity, the friction model is expressed as a mulkired o

map. Lyapunov's stability theorem, LaSalle’s invarianciap 2 Controlled 1DOF frictional systems

ciple and the properties of the-limit set of trajectories of a We consider 1DOF frictional mechanical systems that can be

2-dimensional differential inclusion are employed to shbat described by

firstly, exact compensation leads to global exponentiiilia

of the setpoint, secondly, undercompensation leads talstea T =y

state errors, and thirdly, overcompensation conditignat S L 1 (2.1)
R y = y (y) + Su,

duces limit cycling. J J J

wherez, y andJ are the position, the velocity and the inertia
of the mechanical system, respectively, > 0 is the linear

scous friction dampingu is the input force and”(y) is the
nonlinear friction force given by

1 Introduction

Friction occurs in many controlled positioning systems a
it can deteriorate performance of those controlled systems
terms of large steady-state errors and limit cycling, seexe
ample [4]. Friction compensation is, therefore, neededdein
to improve the system performance. Satisfactory frictiome
pensation can be obtained if a good friction model is aviglab

However, friction is a highly nonlinear phenomenon, whish iith £, > 0 the static friction level ang(y) a Stribeck func-
difficult to be completely described by a simple model [4,.12{ion, which represents the continuous décay the friction
Because of such modeling errors and parameter estimationgfve fromF, to a Coulomb friction levelF. > 0. Notice
rors, inexact friction compensation is inevitable. that the set-valued nature of (2.2)at= 0 allows to model the
The limit cycling effect that is induced by the overcomsticking phenomenon. The friction model (2.2) is reduced to
pensation of friction in PD and PID controlled 1-degree-ot=oylomb friction model ify(y) = F, = F,. Other commonly

freedom (1DOF) systems has been analyzed in [6] by meang,gkd Stribeck functions in the control literature [4, 123 af
the describing function method. Papadopoulos and Chaspgke forms

[13] validate the predicted limit cycle on an experimentlp

but, at the same time, they also show that the predictioneof th g(y) = Fo + (F, — Fc)ef(ly\/vs)5 (2.3)
describing function is not always accurate. The numerindl a

the experimental results in [11] also indicate that ovengem and

sation of friction induces limit cycling and undercompeitaa _ 1

of friction leads to steady-state errors. This manuscsphi 9(y) = Fet (Fs = F) 1+ (lyl/vs)?’ @4
tended to provide a rigorous mathematical analysis of tbbse
servations for a class of discontinuous friction modelsfamd ~ *The continuous decay implieg(0) = F, Jim F(y) = Fs and
more general cases of undercompensation and overcompe%a:(y) = —F,.

Foe{ IR RN e




wherevs > 0 is called the Stribeck velocity andl > 0 is Notice that in the exact compensation and the undercom-
the shaping parameter of the Stribeck curve. The combinmnsation cases the friction compensation efxét given by

tion of a linear viscous friction and the nonlinear frictibhas (2.9) is an upper semi-continuous, convex and bounded-multi
considered in (2.1) is able to represent a rather generss clgalued map. In these cases, the closed-loop system (2.8) is,
of static friction models [4, 12]. However, the friction nald likewise the open-loop system (2.1), a system of diffeegnti
(2.2) excludes the friction model with a discontinuous dropclusion of Filippov-type [8], for which existence of stilons

of the friction curve fromFy to F., which is shown in [3] to is guaranteed [5, Theorem 3, p.98]. However, for the over-
be inadequate for describing the possible disappeararte ofcompensation casA F' is not convex. As an illustration for
friction-induced stick-slip phenomenon. Here we opteddorz > 0 following (2.9) AF (0,2 > 0) belongs to the inter-
static friction model since we focus on the effect of frictioval [ (F, + F,), F, — F.] but this interval does not include
on the global dynamics; however, when the behaviour for vefy, AF(y, 2 > 0) = F, — F, if F, > F,. In this case, the

small velocities is particularly important one could opt o ¥10 . . . .
dynamic friction mopdel see eyg [gl P closed-loop system (2.8) is a discontinuous system, whiels d

In order to regulate the frictional mechanical system (2.%2)'[ belong to Filippov-type differential inclusions. Famsis-

towards a setpoint, we consider a PD controller with friction ncy of solutions deflnl_tlon, we can apply Filippov's COoRrve
compensation of the form method to render the discontinuous system to be a Filippov-

type differential inclusion. The non-convex mép9) is, then,
u=Ky(z, —z) + Kq(0 —y) + F(y, ), (2.5) extended by including the closed convex hull of all the lanit

of AF, which results in
where K, > 0 is the proportional gainiX; > 0 is the deriva-

tive gain, andF (y, %) is a friction compensation term given by (g(y) — 9(y))sign(y)  ify#0
FG*E€7F9+Eqi| ify:Oandx<0
= o g(y)sign(y) ify #0 AF(y,z) € [ ~ -1 . B
F(y,u) € { F.Sign(a) ify=0, (2.6) (Fs+ Fs),Fs+Fs| ify=0andz=0

—(Fs—i-ﬁs),ﬁs—Fs if y=0and z > 0.

wherea = K, (x5 — ). The presence of the set-valued Sign (2.13)

function, whereSign(0) € [—1, 1], allows the friction com-
pensation ternt” to take any value betwegr Fy, Fi] if both 3 Exact compensation case

y= 0 andz = 0, and provides alternatives in the |mplementa}-n this section, it will be proven that in the case of exaat-fri
tion. ion compensation the closed-loop system (2.8) has a unique

Without loss of generality, the setpoint is assumed to be t Guilibrium point at the origin, which is globally exponizily
origin, i.e.zs = 0, such that the control input becomes stable

uw=—Kpz — Kqy+ F(y, ~K,x). 2.7) Equilibria of the closed-loop system (2.8) satisfy

Substitution of the feedback (2.7) into the system (2.1)ltss y=0andKyz € [-F., F] — Fsign(z). (3.1)

in the closed-loop system Since in the exact compensation cdge= F;, (3.1) yields a
unique equilibrium point at the origin. In order to provetttiee
K, (Kq+ F) 1 (2.8) origin is a globally exponentially stable equilibrium of.§2,

y o= —733 - fy + jAF(y, x), consider the Lyapunov function candidate
whereAF(y,z) = F — F is the friction compensation error V' (2,¥) = %(va +Jy)* + %(Kpj +KqF,)*  (3.2)

iven b
g y that is radially unbounded. Its time-derivative alongdrapries

T(y) — i i of (2.8) is given b
AF(y,z) € { (9(y) = 9(y)) sign(y)  if y#0 2.9) ( )isg y
V(z,y) = —K,F,2* + F,AFz — K4Jy* + JAFy. (3.3)

[—F, Fs] — FsSign(z) if y=0.
To study the effects of friction compensation on the dyngyom (2.9) and (2.10), we haweFz < 0 andAFy = 0 such
mics of the closed-loop system (2.8), the following defatitis 4t N

ia]:dopted. The friction forc#’ is said to be exactly compensated V(z,y) < —K,F,z? — KqJy>. (3.4)
= N The existence of the quadratic Lyapunov function (3.2) vtgh
F, =F, and = v 0, 2.10) . - o e
_an 9) = 9).Vy # ( ) time-derivative satisfying (3.4) guarantees that theiorig a
undercompensated if globally exponentially stable equilibrium point of (2.8)].

~ ~ By using a similar method, the result on exact friction
Fs < Fs and g(y) < g(y),Vy #0, (2.11) compensation can be extended to multi-degree-of-freedom
and overcompensated if (MDOF) systems with multiple friction forces. The key feadu

B of this method is that at zero velocity the friction compeiwa

F, > F, and g(y) > g(y),Vy #0. (2.12) termF depends on the controlled position error, see (2.6).



4 Undercompensation case The time-derivative ofl/(z,y) along trajectories of (2.8) is

The objective of this section is to show that in the undercorfliven by
pensation case the closed-loop system (2.8) has a glohally a . )
tractive equilibrium set containing the origin. The method Vi(z,y) = —(Ka+ F,)y” + AF(y)y. (4.6)
achieve this objective is based on Lyapunov’s stabilitypteen
[15] and LaSalle’s invariance principle [1, 2, 16].

As mentioned in the previous section, equilibria of the AF
closed-loop system (2.8) satisfy (3.1). From the undere@wp
sation definition (2.11), (3.1) results in the equilibriuet s Substitution of (4.7) into (4.6), yields

From the condition (2.11), it can be shown that
(y)y <0,Vy#0andAF(y)y =0iff y=0. (4.7)

F, - F;

p

V(z,y) < —(Kq+ F,)y*. (4.8)

SEz{(x,y)6R2:|x|< ,yzO}. (4.2)

The existence of the Lyapunov function (4.5) with its time

Obviously, the equilibrium sef contains the origin, which is derivative satisfying (4.8) proves that the origin is gltppata-
the setpoint of the controlled system (2.8). ble [15]. FurthermoreV (z,y) = 0 only in the setS and
Since the invariance principle requires uniqueness of $§€ equilibrium set is the largest invariant set of (2.8) con-
lutions in forward time, firstly we need to verify whethefi@ined in the seb. Because the closed-loop system (2.8) has
the closed-loop system (2.8) satisfies this condition. A sufnique solutions inforward time, LaSalle’s invariancenpiple
ficient condition for uniqueness of solutions of Filippovll: 2, 16] can be applied to conclude that all trajectorie@d)
type differential inclusions is the absence of repulsive-s| cONverge to the equilibrium s&t;. Hence, the equilibrium set
ing modes [9]. Sliding mode behaviors can be investigated 1S globally attractive
using the projections of vector fields onto the normal vec- Theorem 1 indicates that undercompensation of friction
tor to a switching surface. The switching surface of (2.8) Isads to steady-state errors, which are bounded By —
S={(z,y) eR*:y=0}andn=[0 1] isthenormal F)/k, due to the size of the equilibrium s&%. Limit cy-
vector toS. Notice thatSy C 5. The switching surfac par-  cling, however, never occurs. This result on the undercompe
titions the state space int8~ = {(z,y) € R® :y <0} and sation case can be extended to MDOF systems with multiple
G* = {(z,y) € R? : y > 0}. The projections of the vector friction forces because in this case the equilibrium setis o
field in G* and G~ on the normal vector at the switching the remaining friction forces. By choosing an appropriate-L
surfaceS are given by punov function, for example as proposed in [16], and applyin
_ LaSalle’s invariant principle a similar result can be obéal.
n' [ (a,y) = Ly Ll

,Viz,y) e S (4.2)

J J 5 Overcompensation case
and This section provides a rigorous analysis showing that-over
compensation of friction in the closed-loop system (2.8y ma
K F_F provoke limit cycling around the setpoint. As discussedat t
T p— p S S . . .
n f(x,y) = ——x— ,V(z,y) €S, (4.3) end of Section 2, in the overcompensation case the f&fm

4 d in (2.8) is replaced byAF given by (2.13) to render (2.8) a

respectively. Repulsive sliding modes occur at the swiighi Filippov-type differential inclusion.

surfacesS if n” f*(z,y) > 0 andn’ f~(z,y) < 0, which The analysis is based on the properties of ¢hkmit set
results in of trajectories of a 2-dimensional differential inclusidrdere,
K,lz| < (135 — F,). (4.4) we adopt the definition of-limit sets given in [8, p.129]. In

B order to prove that the system (2.8) exhibits limit cyclitig,
SinceK,, > 0 and in the undercompensation cdge- F, < 0, is sufficient to show that the-limit set of its trajectories is a
the inequality (4.4) never holds such that repulsive sfjdirclosed orbit. The following theorem, which is proven in [8,
modes never occur. Therefore, uniqueness of solutionsin fdheorem 3, p.137], is useful for achieving this goal.
ward time of the closed-loop system (2.8) is guaranteeddn th

undercompensation case. TheoremZ Consider a 2-dimensional autonomous differen-
tial inclusion
Theorem 1 The origin of the closed-loop system (2.8) is glo- 2 € F(z) (5.1)

bally stable and the equilibrium sétz given by (4.1) is glo-
bally attractive if the friction force is undercompensated. if
condition (2.11) holds.

with F'(z) a set-valued function that is closed, convex and
bounded for allz € R? and the functionF is upper
semi-continuous. Suppose that uniqueness of solutions in
forward time holds at any point on a trajectory =
{zeR?*: 2 =(t),t €[0,00)} of (5.1). If thew-limit set of

I" is bounded and contains no equilibrium points then it con-

K J
V(z,y) = 7%2 + 51/2- (4.5) sists of one closed orbit.

Proof Consider the Lyapunov function candidate



Since the closed-loop system (2.8) witt¥ replaced byAF
is a Filippov-type differential inclusion, it satisfies thendi-

tions of Theorem 2. Next, we state a result on boundedness of = 47+

trajectories of the closed-loop system (2.8).

Proposition 3 Thew-limit set of all trajectories of the closed-
loop system (2.8) - witt\ F' replaced byAF as in (2.13) -
bounded if the friction force is overcompensated, i.e. ¢wrd
(2.12) holds.

Proof Consider the positive definite function

1 1
V(z,y) = 5 (For+ Jy)® + 5 Ky + Kq.F,)z*  (5.2)
that is radially unbounded. Its time-derivative alongdcapries
of (2.8) is given by
Viz,y) = —K,F,a®+ F,AF(y,x)x — KqJy*+
JAF (v, 2)y,

(5.3)
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Figure 1: The vector field of (2.8) in the case of overcompen-

. . — F
sation of friction, wheres = ———— s
Kq+

with AF as in (2.13). From the property of the Stribeck curve,

F. < g(y) < Fs, the condition (2.12) and the friction compen=
sation error (2.13), it can be shown that

AF(y, @)z < (F, — F.)|z| andAF (y, z)y < (F, — F.)|yl.
(5.4)
Substitution of (5.4) into (5.3) yields

—K,F,2* + F,(F, — F,)|z|—
KyJy? + J(Fs — E,)|yl.

Viw.y) < (5.5)

Following (5.5),V (z,) < 0 if

KpFx® + KaJy® > (Fs — Fo) (F |z + Jlyl).  (5.6)
SinceF,—F, > 0, inequality (5.6) holds for all pair&e, y) that
are sufficiently separated from the origin because thehigfid
side of the inequality is a quadratic functionofaindy while
the right-hand side is a linear function of the absolute eslof
x andy. Therefore, trajectories of the closed-loop system (2.
cannot grow unbounded in forward time.

In the following, we find the conditions on the closed-loop-sy
tem (2.8) such that the-limit set of its trajectories does not
contain any equilibrium points. Equilibria of the closexbp
system (2.8) in the overcompensation case sagisfy 0 and
Kpz = AF(y,z), which results in

F, — F,
Ss{(xay)€R2:|I|§ayO}' (57)
Kp

It has been shown in the previous section that repulsivenglid
modes occur if the inequality (4.4) holds. Since in the overe
pensation casé; — F; > 0, following (4.4) repulsive sliding
modes occur at the segment

FS_FS
\11:{(;67y)€R2::c|<,y:0} (5.8)
Ky

of the switching surfacé. From (5.7) and (5.8), the equilib-
rium setS. can be rewritten as

F, — F,

p

F, - F,
° F0)UvTuU
o0 UTU(

Se = (- ;0). (5.9)
Hence, the se is an unstable equilibrium set of (2.8) and
it can be concluded that the-limit set of all trajectories of
(2.8) starting a(zg,y0) € R?\ Sg does not contain the set

V. However, thew-limit set may contain one or both of the

F F
and
( K,
Next, the possible convergence of trajectories to the two ex
tremal equilibrium points is investigated through a phplsse
analysis as depicted in Figure 1. The projection of the vec-
tor field of (2.8) on the normal vector. = [ 1 0 |7 to the
y-axis ism” f(x,y) = y such thatm” f(z,y) < 0 for all
z,y) € G~ andm’ f(z,y) > 0forall (xz,y) € G*. The pro-
tion of the vector field on the normal vector=[ 0 1 |7
to thez-axis is given by

F

F —
extremal equilibrium point§— ‘K ,0) %,0).

p

K,

p

J

N (Kd + Fv)

n” fz,y) = 7

11—
Y+ jAF(y, z). (5.10)

Since in the overcompensation CaSE < (F,—F,),Yy >0

andAF > — (FS F.), Yy <0, (5.10) yields
Tf(x,y) <0ify > B gy s 0
Iy S R O PR s

-K F,—F

T P s c
f(xy)>0|fy<Kd+F X, F, andy < 0.

Trajectories of the closed-loop system (2.8) cross the
switching surfaceS, which is thez-axis, transversally if and
only if the inequality

an+(x7y) : an_(xay) >0, (511)



holds, wheren” f*(x,y) and n” f~(x,y) are given (4.2) is violated or if both (5.15) and
and (4.3), respectively. From the condition (5.11), (4.2)l a . B
(4.3), the transversal intersections occur at the segiient (Ka+F,—g'(0) +4'(0)" <4K,J (5.16)

{(x,y) ER?: |z| > (Fy — Fu) /[ Kp,y = O} of the switching g, But if only (5.16) is violated, the-limit set does not

surfaces. contain such a closed orbit but it may consist of one of the

The phase-plane analysis shows that the extremal equi- F,—F, F, — F,
F, extremal equilibrium point§— ,0) or ( I
p

librium pomts(F‘ 7F‘"‘,O) and (— = —Fs ,0) can only be Ky
K, K

* 0).

p
reached fronG* andG~, respectively. The dynamics of (2.8)Proof SinceJ, K}, > 0, applying the Hurwitz condition, the

in GT reduces to linear approximation (5.14) is stable if and only if the ina
ity (5.15) holds. Thus, if (5.15) is violated the linear syrst
T =y (5.14) becomes unstable and, following the phase plane ana-
g = K Kdat y+ Ag(y) (5.12) |ysis, trajectories of the closed-loop system (2.8) wilt aon-
' J J J verge to the extremal equilibrium points. Consequently.the

limit set of any trajectory of (2.8), starting outside theuiig
brium setS., does not contain any equilibrium points. Apply-
ing Theorem 2 and Proposition 3, thelimit set consists of
one closed orbit if uniqueness of solutions holds at anytpoin
A — 5(0) — g(0) + (7 (0) — ¢'(0))y + hot, (5.13 along those trajectories. It has been shown that trandvarsa
9(y) = 90) = 9(0) + (F'(0) ~ '(0))y ( ) tersections occur at the segméht of the switching surfacé

with Ag(y) = g(y) —g(y). Let approximate the Stribeck func-
tionsg(y) andg(y) by a Taylor expansion such thAty(y) can
be approximated by

_ ~ o, 9 (y) , and unigueness of solutions in forward time holds at anytpoin
whereg(0) = F, g(0) = Fs, g'(y) = By andg'(y) = onSy. SinceS = S. U Sy and the trajectories do not contain
89( ) any point inS., we can conclude that uniqueness of solutions

oy - Note that for the Stribeck functions (2.3) and (2.4) thig, forward time holds at any point along those trajectories a
approximation is possible only far> 1 becausg’(0) = 0 if ~the first part of the theorem is proven.
) _F, - F, _ If the Hurwitz condition (5.15) holds, trajectories @™
6 >1,900) = if & = 1 andg'(0) is not defined may eventually converge to the extremal equilibrium point
if 6 < 1. Hence, for the case wheté(0) andg’(0) are well- F,—F,
defined, the system (5.12) aroupd 0 can be approximated ( K

,0). However, if the inequality (5.16) holds the dy-

by the linear system namics of the linear system (5.14) are undercritically dedyp
i.e. it has a pair of complex eigenvalues, such that thogectra

T o=y _ tories will oscillate before converging to the equilibriyrint.
. K, Ks+ F, —3(0)+ ¢'(0) Fs — F; Note that the dynamics (5.14) hold onlydi" and once a tra-

vy = _7x N J y+ ) jectory crosses the-axis it will move away from ther-axis

_ (5.14) towards the regiore~ as depicted in Figure 1. Because the

Notice that the extremal equilibrium p0|(7t 0) coin- Vector field inG™ and inG* are symmetric the same scenario
takes place and the cycle repeats such that the two extremal

cides with the equilibrium point of the I|near system (5.14pquilibrium points cannot be reached neither in finite tiroe n
Because of the symmetry of the vector field aboutifexis a in infinite time. Hence, the-limit set of those trajectories does
similar linear approximation also holds for the extremalieq not contain any equilibrium points. By applying the same rea
Fs—F; soning as in the first part, we can conclude the second part of
» the theorem.
lows to investigate the possible convergence of trajezsoof If only the inequality (5.16) is violated, the dynamics of
the closed-loop system (2.8) to the extremal equilibriuimiso the linear system (5.14) become supercritically dampedjti.
such that the following result can be concluded. has two real eigenvalues, such that trajectorieﬁTnconverge

librium point (— ,0). The linear approximation al-

Theorem 4 Consider the closed-loop system (2.8) - witli® exponentially to the extremal equilibrium pomti 0)
replaced byAF as in (2.13) - in the case where the frictio
force is overcompensated, i.e. condition (2.12) holds, asd

sume thatj’(0) = 8%( y) 8%( y)

well-defined. Thev-limit set of any trajectory of the close
loop system (2.8), starting away from the equilibrium Set
given by (5.7), consists of one closed orbit that encirches t
equilibrium setS. if the inequality Theorem 4 indicates that overcompensation of friction may
provoke limit cycling and that the limit cycling effect car b
Ko+ F,—9(0)+4'(0) >0 (5.15) eliminated by tuning the gains of the PD controller, i.e. at®

"Wwithout oscillation. Therefore, the extremal eqwhbnqtmmt
can be reached in infinite time. This result also holds for the
|,=0 are other extremal equilibrium point due to the symmetry of the
d- vector field. Hence, the-limit set of trajectories of the closed-
loop system (2.8) may consist of one of the two extremal equi-
librium pointsO

ly=0 and g'(0) =



K, and K, satisfying the Hurwitz condition (5.15) and vio-
lating the inequality (5.16). This limit cycling result caot

be extended to a multi-degree of freedom system because it is
based on Theorem 5.1, which is valid only for 2-dimensional
systems. However, the result on boundedness of.thimit

set, Proposition 3, can be extended to MDOF systems by using
a similar approach. The sliding-mode analysis on the switch
surface, see for example [9], and the local stability analgs

the extremal equilibrium points are also applicable to $tive
gate possible convergence of trajectories of a MDOF fhitlo
system to an equilibrium point. Those extended analysificou
predict whether trajectories of a controlled system cayweo

an attractor - not necessarily a closed orbit - or to an equili

brium point as a result of overcompensation of friction. Figure 3: Phase portrait of the controlled system (2.8) with
a = 0.8 (undercompensation)s, = 0.1 and K, = 0.1.

y [rad/s]

L L L
1 2 3 4

- 1 i i
-4 -3 -2 -1

x [r;d]

6 A numerical example

This section provides numerical illustrations of the thetimal tically damped case, witi, = 1 and K, = 0.2. The closed
results obtained in the previous three sections. For thisqme, orbit comes closer to the extremal points of the equilibraeh
we consider the 1DOF mechanical system studied in [14]. The, when it crosses thg-axis but does not hit these points such
dynamics of the system can be described by (2.1), (2.2) withat the closed orbit encircles the equilibrium set On the
g(y) = Fc+(Fs—Fc)e_(y/”S)2 and the parameter valueg:= Other hand, Figure 4(b) depicts a phase portrait of (2.8) wit
0.0260 kgn?, F, = 0.0710 Nms/rad,F, = 0.4195 Nm, F, = the same value af in the supercritically damped case, with
0.5005 Nm andv, = 0.15 rad/s. The friction compensation isK, = 1 and K4 = 0.8. The phase portrait shows two at-
given by (2.6) with?; = o F andg(y) = ag(y), wherea > 0

is a scaling factor. Following the definitions in Section & w
have exact compensation casexif= 1, undercompensation
case ifa < 1 and overcompensation casevf> 1.

Solutions of the closed-loop system are obtained numeri-
cally using the so-called switch-model approximation foe t
dynamics around the switching surfagesee e.g. [10, 14]. Fi-
gure 2 shows that trajectories of the closed-loop systeB) (2.
with K, = 0.1 and K; = 0.1 converge exponentially to the
origin in the exact compensation case as predicted in $ectio
3. A phase portrait showing an attracting equilibrium sethef
controlled system (2.8), withh = 0.8 (20% undercompensa-
tion) and the PD controller gains set as in the case of exact co
pensation, is depicted in Figure 3. This simulation resyieas
with Theorem 1. Figure 4(a) depicts a phase portrait showing
an asymptotically stable closed orbit of the closed-locgieay
(2.8) with @ = 1.2 (20% overcompensation) in the undercri-

y [rad/s]

y [rad/s]

|
| .

04l | Lol N N B
.. -0.15 -0.1 -0.05 x [rad]
(b)

Figure 4: Phase portrait of the system (2.8) with= 1.2
s 4 (overcompensation): (a) the undercritically damped cage w
K, = 1land Ky = 0.2, and (b) the supercritically damped

) ] case withK,, = 1 andK,; = 0.8, E, andE, are the extremal
Figure 2: Phase portrait of the controlled system (2.8) wiyuilibrium points.

a = 1 (exact compensation)y, = 0.1 andKy = 0.1.

1 0 1
z [rad]



tracting extremal equilibrium points of the equilibriunt s&.

(5]

These simulation results confirm the prediction of Theorem 4

7 Conclusions

(6]

We have investigated the positive effect of exact frictiome
pensation and the negative effects of undercompensatidn an
overcompensation of friction in PD controlled 1DOF mechani 7]
cal systems for a class of discontinuous friction modelsistin

ing of static, Coulomb and viscous friction, and includiteg t
Stribeck effect. It is proven that exact friction compeimain

the 1DOF mechanical systems makes the closed-loop system
behaves as the linear system without friction even though tH8]
friction value at zero velocity is not explicitly known. Itk

been shown that undercompensation of friction in the 1DO
controlled mechanical systems results in a globally aitrac

oy

equilibrium set containing the setpoint, which is globadta-

ble.

This result indicates that the controlled systems may §10]

hibit steady-state errors and that limit cycling never @scu
The steady-state error is bounded by the size of the equilib-
rium set, which can be influenced by tuning the proportional
gain of the PD controller.

It also has been proven that overcompensation of frictidhl]
in the same controlled mechanical systems provokes limit cy
cling in case the linearized dynamics of the controlled sys-
tems around the extremal equilibrium points are undercriti
cally damped. However, such a limit cycling effect disappe
if the PD controller gains are tuned such that the Iinearizalz%lz]
dynamics become supercritically damped. Since the amalysi
involves the linearized dynamics around the extremal dxuil

rium points, this result is valid only for discontinuousction

(13]

models whose the first partial derivative of the Stribeckcfun
tion is well-defined locally at zero velocity. The predict®o

of the theoretical results have been demonstrated by a iumer
cal example. Furthermore, possible extensions of thetseul
MDOF frictional systems are also indicated.

(14]
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