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Abstract

The notion of convergent systems is revisited from a
control perspective. Sufficient conditions for a sys-
tem to be convergent in a set are given. It is shown
that a nonlinear system with an asymptotically stable
linearization at the origin is convergent in some neigh-
borhood of the origin. These results are applied to the
output regulation problem. Based on the convergence
property, a procedure for estimating the set of admissi-
ble initial conditions for a solution to the local output
regulation problem is presented. An application of the
procedure is illustrated by an example.

1 Introduction

In this paper, we consider the problem of asymptotic
regulation of the output of a dynamical system, which
is subject to disturbances generated by an external sys-
tem. This problem is known as the output regulation
problem. Many problems in control theory can be con-
sidered as particular cases of this problem: tracking of
a class of reference signals, rejecting a class of distur-
bances, stabilization, partial stabilization or controlled
synchronization. For nonlinear systems, a complete so-
lution to the local output regulation problem was given
in [1]. In that work, necessary and sufficient conditions
for the solvability of the problem in some neighbor-
hood of the origin were obtained and a procedure for
designing a controller, which solves the problem, was
presented. The paper was followed by a number of im-
provements concerning different aspects of the output
regulation problem for nonlinear systems: regulation in
presence of uncertainties, approximate, semiglobal out-
put regulation (see [2], [3] and the references therein).
At the same time, one problem regarding the local out-
put regulation problem remained open: given a con-
troller solving the problem in some neighborhood of
the origin, how to determine (or estimate) this neigh-
borhood of admissible initial conditions? Without an-
swering this question, the solution to the local output
regulation problem may not be satisfactory from an
engineering point of view.

An answer to the above question can be found using
the so-called convergence property of dynamical sys-
tems. Roughly, a convergent system is a system, which,

being excited by a bounded signal, has a unique asymp-
totically stable bounded response. The concept of con-
vergent systems was introduced by V.A. Pliss and then
generalized by B.P. Demidovich [4]. In [4], a simple
sufficient condition for convergence of a general non-
linear system was presented. For systems with nonlin-
earities subject to a sector-bounded growth condition,
sufficient conditions for convergence, based on abso-
lute stability theory, were obtained in [5]. Convergence
proved to be useful for the problem of controlled syn-
chronization of oscillatory systems [6] and in the analy-
sis of cooperative oscillatory behavior of mutually cou-
pled dynamical systems [7]. Since controlled synchro-
nization can be considered as a particular case of the
output regulation problem, the last one may also gain
from using the convergence property.

The paper is organized as follows. In Section 2, the
definition of convergent systems and sufficient condi-
tions for convergence are given. The output regula-
tion problem is formulated in Section 3. In Section 4,
we demonstrate an application of the results on con-
vergence to the output regulation problem and give a
procedure for estimating the set of admissible initial
conditions for a solution to the local output regulation
problem. This procedure is illustrated by an example
in Section 5. Conclusions are contained in Section 6.
The notations used in the paper are the following. AT

is the transposed matrix A. The norm of a vector is
denoted |x| = (xTx)1/2. For a positive definite ma-
trix P = P T > 0 the ellipsoid EP (R) is defined by
EP (R) = {x ∈ Rn : xTPx < R2}. For R = ∞
we define EP (∞) = Rn. An open ball is denoted
Bw(r) = {w : |w| < r}. ‖P‖ denotes the operator
norm of the matrix P induced by the vector norm. By
I we denote the identity matrix. The largest eigenvalue
of a symmetric matrix J = JT is denoted as Λ(J). C1,0

x,t

is the class of functions f(x, t), which are continuously
differentiable with respect to x and continuous with re-
spect to t. The Jacobian matrix of f(x, t) with respect
to x is denoted Dfx(x, t).

2 Convergent systems

Following Demidovich [4], we give the following defini-
tion of convergent systems (slightly more general than
in [4]):



Definition 1 The system

ẋ = f(x, t), f ∈ C1,0
x,t , x ∈ Rn, t ∈ R (1)

has the convergence property in a set E if
1. All solutions x(t, x0, t0) starting in (x0, t0) ∈ E × R
are defined for all t0 ≤ t <∞ and do not leave E.
2. In the set E there exists a unique bounded solu-
tion x̄(t), defined for t ∈ R, i.e. x̄(t) ∈ E, t ∈ R,
supt∈R |x̄(t)| <∞.
3. The solution x̄(t) is asymptotically stable in E for
t → +∞, i.e. x̄(t) is stable and for any solution
x(t, x0, t0) starting in (x0, t0) ∈ E × R the following
relation holds:

lim
t→+∞

|x(t, t0, x0)− x̄(t)| = 0.

If, additionally, it holds that for any (x0, t0) ∈ E × R

|x(t, x0, t0)− x̄(t)| ≤ C|x0 − x̄(t0)|e
−α(t−t0)

for some α > 0, C > 0, then we say that system (1)
has the exponential convergence property in the set E.
If C and α do not depend on (x0, t0) then we call it
uniform exponential convergence.

Remark 1. It can be easily checked that convergence
in E is preserved under a smooth coordinate transfor-
mation y = ψ(x), such that ψ is Lipschitz in E . That
means that if system (1) is convergent (exponentially or
uniformly exponentially convergent) in the set E then
the transformed system is convergent (exponentially or
uniformly exponentially convergent) in ψ(E).

The following theorem states sufficient conditions for
a nonlinear system to be uniformly exponentially con-
vergent in an ellipsoid (or in E = Rn).

Theorem 1 Consider the system (1). Let

J(x, t) =
1

2

(

PDfx(x, t) +Dfx
T (x, t)P

)

,

where P = P T > 0 is some positive definite matrix.
Suppose, for some R > 0, R ≤ ∞ and α > 0, the
following conditions are satisfied

sup
t∈R, x∈EP (R)

Λ(J(x, t)) ≤ −α < 0, (2)

k := sup
t∈R

|f(0, t)| < αR‖P‖−3/2. (3)

Then, system (1) is uniformly exponentially convergent
in EP (R).

The proof of this theorem is given in the Appendix.
For R = ∞ and P = I the statement of the theo-
rem was proved in [4]. For a linear system with inputs
ẋ = Ax + Bw(t) with Hurwitz A and bounded w(t)
the conditions of the theorem are satisfied for R = ∞
and any P > 0 such that PA+ ATP < 0. Thus, for a

given w(t) such system is uniformly exponentially con-
vergent in Rn and the unique limit solution x̄w(t) is
determined by the input w(t). It is natural to expect
that a nonlinear system ẋ = f(x,w(t)) with asymp-
totically stable linearization at (x,w) = (0, 0) and a
small input w(t) is locally (in some neighborhood of
the origin) exponentially convergent and its limit so-
lution x̄w(t) is determined by the input w(t). This is
stated in the next assertion.

Corollary 1 Consider the system with inputs

ẋ = f(x,w), x ∈ Rn, w ∈ Rm, f ∈ C1,0
x,w (4)

such that f(0, 0) = 0 and Dfx(0, 0) is Hurwitz. Then,
for any continuous input w(t) defined for all t ∈ R and
such that supt∈R |w(t)| is small enough, system (4) is
uniformly exponentially convergent in some neighbor-
hood of the origin.

Proof of Corollary 1: Since Dfx(0, 0) is Hurwitz, then
there exists a positive definite matrix P = P T > 0 such
that

1

2
(PDfx(0, 0) +Dfx

T (0, 0)P ) =: −Q < 0. (5)

Denote J(x,w) = 1/2(PDfx(x,w) + Dfx
T (x,w)P ).

Since Dfx(x,w) is continuous, then J(x,w) and
Λ(J(x,w)) are also continuous. Since Λ(J(0, 0)) =
Λ(−Q) < 0 and f(0, 0) = 0, then, due to continuity
of Λ(J(x,w)) and f(x,w), we can find such R > 0,
δ > 0 that the following inequalities hold:

sup
|w|<δ, x∈EP (R)

Λ(J(x,w)) = −α < 0, (6)

sup
|w|<δ

|f(0, w)| < αR‖P‖−3/2. (7)

Thus, for system (4) with w(t) satisfying
supt∈R |w(t)| < δ both conditions of Theorem 1
are satisfied for P > 0 and R > 0 found above.
By Theorem 1, system (4) with w(t) satisfying
supt∈R |w(t)| < δ is uniformly exponentially conver-
gent in EP (R).¤

3 The output regulation problem

Following [1], we consider systems modelled by equa-
tions of the form

ẋ = f(x, u, w), (8)

e = h(x,w), (9)

with state x ∈ Rn, input u ∈ Rm, regulated output
e ∈ Rl and exogenous input w ∈ Rp generated by the
exosystem

ẇ = s(w). (10)

The exogenous signal w(t) can be viewed as a distur-
bance in equation (8) or as a reference signal in (9). It



is assumed that f(0, 0, 0) = 0, h(0, 0) = 0, s(0) = 0;
functions f , h, s are Ck functions for some large k.
Denote A = Dfx(0, 0, 0), B = Dfu(0, 0, 0). We assume
that exosystem (10) is neutrally stable. Neutral sta-
bility means that the equilibrium w = 0 is Lyapunov
stable in forward and backward time [3]. An important
representative of neutrally stable exosystems is a linear
harmonic oscillator.
The state-feedback local output regulation problem is
formulated in the following way. Given a nonlinear
system of the form (8), (9) and a neutrally stable
exosystem (10), find, if possible, a mapping β(x,w),
β(0, 0) = 0, such that
A) The system

ẋ = f(x, β(x, 0), 0) (11)

has an asymptotically stable linearization at x = 0,
B) There exists a neighborhood X×W of (0, 0) such
that for each initial condition (x(0), w(0)) ∈ X × W
the solution of

ẋ = f(x, β(x,w), w), (12)

ẇ = s(w) (13)

satisfies e(t) = h(x(t), w(t))→ 0 as t→∞.
Conditions for the solvability of this problem are given
by the following theorem.

Theorem 2 [1] The state-feedback local output regula-
tion problem is solvable if and only if the pair (A,B)
is stabilizable and there exist mappings x = π(w) and
u = c(w), with π(0) = 0 and c(0) = 0, both defined in a
neighborhoodW0 of the origin, satisfying the conditions

∂π
∂w (w)s(w) = f(π(w), c(w), w),

0 = h(π(w), w)
(14)

for all w ∈ W0. A controller solving the problem is
given by

u = β(x,w) = c(w) +K(x− π(w)), (15)

where K is such that A+BK is Hurwitz.

Remark 2. Under conditions of Theorem 2, a controller
u = β(x,w) solves the local output regulation problem
if and only if

β(π(w), w) = c(w) (16)

and A+BDβx(0, 0) is a Hurwitz matrix.

A controller resulting from Theorem 2 solves the out-
put regulation problem for initial conditions in some
neighborhood X ×W of the origin. From an engineer-
ing point of view, such solution may not be satisfactory,
since this region of admissible initial conditions X×W
is not specified. Thus, once a controller solving the lo-
cal output regulation problem is found, there is a need
to estimate this region.

4 Estimates of X ×W

In this section, we give a procedure for estimating the
set X ×W for system (8) in closed-loop with a con-
troller u = β(x,w) solving the local output regulation
problem. For convenience, the right-hand side of the
closed-loop system is denoted F (x,w):

ẋ = f(x, β(x,w), w) =: F (x,w). (17)

Note, that due to condition A) the Jacobian matrix
DFx(0, 0) is Hurwitz.

Procedure 1 (Estimation of X ×W )
1) Find a positive definite matrix P such that

PDFx(0, 0) +DF
T
x (0, 0)P < 0.

Such P exists, because DFx(0, 0) is Hurwitz.
2) Find δ > 0, R > 0 such that the following inequal-
ities are satisfied for some α > 0:

sup
|w|<δ, x∈EP (R)

Λ(J(x,w)) ≤ −α < 0 (18)

sup
|w|<δ

|F (0, w)| < αR‖P‖−3/2, (19)

where J(x,w) = 1/2(PDFx(x,w) + DFx
T (x,w)P ).

Such δ and R exist by Corollary 1.
3) Find r > 0 such that if w0 ∈ Bw(r) then the so-
lution of the exosystem (10) with w(0) = w0 satisfies
w(t) ∈ W0, |w(t)| < δ and π(w(t)) ∈ EP (R) for all
t ∈ R. Such r exists due to neutral stability of the
exosystem and continuity of π(w).
Then, EP (R)×Bw(r) is an estimate of the set X×W .
Moreover, for any solution of (17), (10) starting in
(x0, w0) ∈ EP (R) × Bw(r) the regulated output e(t) =
h(x(t), w(t)) exponentially converges to zero.

Proof of the procedure: Let w(t) be a solution of (10)
such that w(0) ∈ Bw(r). It follows from (14) and (16)
that x̄w(t) = π(w(t)) is a solution of (17). Due to the
choice of r in step 3), the solution x̄w(t) is bounded
and lies in EP (R) for all t ∈ R. By Theorem 1, condi-
tions (18) and (19) guarantee, that system (17) is ex-
ponentially convergent in EP (R). Due to convergence,
any solution of (17) starting in EP (R) exponentially
tends to x̄w(t) = π(w(t)). Thus, e(t) = h(x(t), w(t))→
h(π(w(t)), w(t)) = 0 as t → ∞ and the convergence is
exponential. Hence, EP (R) × Bw(r) is an estimate of
the set X ×W .¤

The matrix inequality in step 1) admits multiple posi-
tive definite solutions P . At the moment it is an open
question how to choose P in order to obtain the best
(in some sense) estimate of X ×W .
The estimates resulting from the procedure are con-
servative, since they contain only the initial conditions



for which the regulated output e(t) tends to zero expo-
nentially. In the formulation of the output regulation
problem the rate of convergence is not specified. Thus,
the set X×W may also contain initial states for which
the convergence of e(t) to zero is not exponential.
The proposed procedure can be applied to system (8) in
closed loop with any controller solving the local output
regulation problem. In particular, it can be applied
to system (8) in closed loop with the controller (15).
Actually, for the case of controller (15), this forms an
alternative proof of the “if” part of Theorem 2. The
original proof of Theorem 2 ([1]) is based on center
manifold theory. The proof presented above is based
on the convergence property. This new approach al-
lows to find estimates of the region of admissible initial
conditions X ×W .
The procedure and its proof also show how to apply
the results on convergence to the output regulation
problem: first, ensure that for every solution of the
exosystem w(t), the closed-loop system (17) is con-
vergent in some set E and then show that in the set
E there exists a bounded trajectory x̄w(t) defined for
all t ∈ R, on which the regulated output is zero:
h(x̄w(t), w(t)) ≡ 0. Then, due to convergence, any
other solution of (17) starting in E will tend to x̄w(t)
and, hence, e(t) = h(x(t), w(t)) → h(x̄w(t), w(t)) = 0
as t→∞.
Procedure 1 provides estimates of X ×W for system
(8) with a static controller solving the state-feedback
local output regulation problem. It can be easily up-
dated for the error-feedback case, in which a controller,
solving the problem, incorporates a dynamic feedback.

5 Example

Consider the controlled Van der Pol oscillator

ẋ1 = x2 (20)

ẋ2 = −(1− x2
1)x2 − x1 + u

and the exosystem

ẇ1 = Ωw2

ẇ2 = −Ωw1.
(21)

It can be easily checked that by Theorem 2 the feed-
forward controller u = (1 − Ω2)w1 + Ωw2(1 − w2

1),
solves the local output regulation problem for the regu-
lated output e = x1−w1. The corresponding solutions
to the regulator equations are given by π1(w) = w1,
π2(w) = Ωw2 and c(w) = (1 − Ω2)w1 + Ωw2(1 − w2

1).
The linearized system (20) is asymptotically stable and
thus a stabilizing feedback term is not required. Let us
estimate the set X ×W for the closed-loop system

ẋ1 = x2

ẋ2 = −(1− x2
1)x2 − x1 + c(w)

=: F (x,w). (22)

Following Procedure 1, we first pick a positive defi-
nite solution to the matrix inequality PA+ ATP < 0:

P = (4, 1; 1, 3). Second, we find the maximal R and r
such that
a) supx∈EP (R) |w|<r Λ(J(x,w)) =: −α(R) < 0, where

J(x,w) = 1/2(PDFx(x,w) +DF
T
x (x,w)P ),

b) sup|w|<r |c(w)| < α(R)R‖P‖−3/2,

c) (w1,Ωw2)P (w1,Ωw2)
T < R2 for |w| < r.

In condition a) the supremum −α(R) does not depend
on r, because in our case J(x,w) depends only on x.
Condition c) is the only condition we need to check in
step 3) of Procedure 1. This is due to the fact that the
solutions to the regulator equations are globally defined
(W0 = R2) and that |w(t)| remains constant along so-
lutions of the exosystem.
Inequalities a), b) and c) are solved semi-analytically
(for Ω = 1) resulting in the family of estimates
EP (R(r)) × Bw(r) with R(r) shown in Fig. 1.
According to simulations of systems (22) and (21), the

R
(r
)

r

Fig.1 R(r) for the estimates EP (R(r))×Bw(r).

obtained estimates are rather conservative. It appears
that output regulation still occurs if, for given values of
R, the magnitude r of the reference signal is approxi-
mately 10 times larger than shown in Fig. 1. There may
be several reasons for such conservativeness. The first
one is (possibly) the bad choice of the matrix P . Differ-
ent P ’s may result in a better estimate. Another rea-
son is that the procedure gives only an estimate of ini-
tial conditions, for which the tracking error e(t) tends
to zero exponentially, while not necessarily exponential
tracking can occur for a much larger set of initial condi-
tions. These facts indicate that further improvements
of the procedure are still possible.

6 Conclusions

In this paper, we have revisited the notion of conver-
gent systems from the perspective of its possible appli-
cation to control problems. It has been shown that the
results on the convergence property obtained by Demi-
dovich and extended in this paper can be applied to the
output regulation problem. The approach to the out-
put regulation problem based on the convergence prop-
erty is an alternative to the original approach from [1]
based on center manifold theory and it may have some
advantages. In particular, within this new approach,
a procedure for estimating the set of admissible initial
conditions for a solution to the local output regulation



problem has been proposed. Without such estimates
the solution to the local output regulation problem may
not be satisfactory from an engineering point of view.
An application of the algorithm has been demonstrated
by an example. Further investigation is needed to im-
prove the procedure in order to make the estimates
less conservative. Since a lot of control problems can
be viewed as variants of the output regulation problem,
the notion of convergent systems has great potential in
application to control.
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Appendix: Proof of Theorem 1

We first prove the theorem for P = I and then extend
the result to the case of general P > 0. Actually, it
is possible to skip the first step and prove the state-
ment right away for general P . But in that case we
would have to reformulate and prove the two following
technical lemmas, which for P = I were proved in [4]:

Lemma 1 Consider an n−dimensional vector-
function f(x) ∈ C1. Let Λ(J(x)) and λ(J(x)) be the
highest and the lowest eigenvalues of

J(x) =
1

2

(

Dfx(x) +Dfx
T (x)

)

,

respectively. Then, for any h ∈ Rn

λm|h|
2 ≤ hT (f(x+ h)− f(x)) ≤ Λm|h|

2,

where

λm = inf
ξ∈[0,1]

λ(J(x+ ξh)), Λm = sup
ξ∈[0,1]

Λ(J(x+ ξh)).

Lemma 2 Consider the system (1). Suppose

d

dt
|x(t)|2 = 2xT f(x, t) < 0, ∀t ∈ R, |x| = R.

Then there exists at least one solution x̄(t) defined for
all t ∈ R and such that |x̄(t)| < R, ∀t ∈ R.

The next lemma proves the assertion of Theorem 1 for
the case P = I. In the proof we essentially use the
ideas of B.P. Demidovich [4].

Lemma 3 Consider system (1). Let

J̃(x, t) =
1

2

(

Dfx(x, t) +Dfx
T (x, t)

)

.

Suppose, for some R > 0 and R ≤ ∞, the maximal
eigenvalue of J̃(x, t) satisfies

sup
t∈R, |x|<R

Λ(J̃(x, t)) ≤ −α̃ < 0 (23)

and
k̃ := sup

t∈R
|f(0, t)| < α̃R. (24)

Then, system (1) is uniformly exponentially convergent
in E = {x : |x| < R}.

Proof of Lemma 3: For R =∞ the lemma was proved
in [4]. Let us prove it for R < ∞. Denote V (x) =
1/2|x|2. Consider dV/dt = xT f(x, t) for |x| = R:

dV

dt
(x, t) = xT (f(x, t)− f(0, t)) + xT f(0, t)

≤ −α̃|x|2 + |xT f(0, t)|

≤ −α̃|x|2 + k̃|x| = |x|(−α̃|x|+ k̃)
∣

∣

|x|=R

= R(−α̃R+ k̃) < 0.

In the first inequality we use Lemma 1 and condition
(23), in the second – the Cauchy inequality and the
definition of k̃ (see (24)) and in the last one – condition
(24). Thus, the condition of Lemma 2 is satisfied and
by this lemma there exists a solution x̄(t) defined for



all t ∈ R and such that |x̄(t)| < R, ∀t ∈ R. Moreover,
the set |x| < R is invariant because d/dt|x(t)|2 < 0 for
|x| = R. Let us show asymptotic stability of x̄(t). Let
x(t) be another solution of (1) starting in (x0, t0) such
that |x0| < R. Consider the difference ε(t) = x(t) −
x̄(t). Let V(ε) = 1/2|ε|2. Since dε/dt = f(x, t)−f(x̄, t),
then

dV

dt
= εT (f(x, t)− f(x̄, t))

∣

∣

Lemma 1

≤ sup
ξ∈[0,1], t∈R

Λ(J̃(x̄+ ξ(x− x̄), t))|ε|2.

The solutions x(t) and x̄(t) belong to the convex set
|x| < R. Hence, x̄(t) + ξ(x(t) − x̄(t)) belongs to this
set for any ξ ∈ [0, 1]. Thus, it follows from condition
(23) that

sup
ξ∈[0,1],t∈R

Λ(J̃(x̄(t) + ξ(x(t)− x̄(t)), t))

≤ sup
|x|<R,t∈R

Λ(J̃(x, t)) ≤ −α̃ < 0.

This implies dV/dt ≤ −2α̃V and finally

|x(t)− x̄(t)| ≤ |x(t0)− x̄(t0)|e
−α̃(t−t0). (25)

It follows from (25) that any other solution x̃(t) lying
in the ball |x| < R for all t ∈ R satisfies

|x̃(t)− x̄(t)| ≤ |x̃(t0)− x̄(t0)|e
−α̃(t−t0) ≤ 2Re−α̃(t−t0).

In the limit for t0 → −∞ we obtain |x̃(t) − x̄(t)| ≤ 0.
Hence, x̄(t) ≡ x̃(t) and the solution x̄(t) lying for all
t ∈ R in the ball |x| < R is unique.¤

Prior to proving the case of general P > 0, we intro-
duce some notations and formulate one more technical
lemma. The numbers σ(A) and σ(A) denote the largest
and the lowest singular values of A, respectively. If S
is an invertible matrix then S−T denotes (S−1)T .

Lemma 4 Consider a matrix A = AT such that its
maximal eigenvalue satisfies Λ(A) ≤ −α < 0. Let S =
P 1/2, where P is a positive definite matrix. Then, the
maximal eigenvalue of B = S−TAS−1 satisfies

Λ(B) ≤ −
α

‖P‖
. (26)

Proof of Lemma 4: It is known from linear algebra that
for any invertible matrix S the number of positive, neg-
ative and zero eigenvalues of the symmetric matrices A
and S−TAS−1 are the same [8]. Since all the eigenval-
ues of A are negative, then all the eigenvalues of B are
also negative. Notice that the eigenvalues of B coincide
with the eigenvalues of AP−1. This fact follows from
the following manipulations:

det(S−TAS−1 − λI) = 0⇔ det(AS−1 − λST ) = 0
⇔ det(AS−1S−T − λI) = det(AP−1 − λI) = 0.

Furthermore, we use the following properties of eigen-
values and singular values, which can be found or easily
derived from the found ones in [9]:
1) σ(A) ≤ |λ(A)| ≤ σ(A), where λ(A) is any eigen-
value of A,
2) if A−1 exists then σ(A) = 1/σ(A−1),
3) σ(AB) ≤ σ(A)σ(B),
4) if P = P T > 0 then σ(P ) = ‖P‖,
5) if A = AT < 0 then σ(A) = |Λ(A)|.
Thus, |Λ(B)| = |Λ(AP−1)| ≥ σ(AP−1) =

=
1

σ(PA−1)
≥

1

σ(A−1)σ(P )
=
σ(A)

σ(P )
=
|Λ(A)|

‖P‖
.

Finally,

Λ(B) = −|Λ(B)| ≤ −
|Λ(A)|

‖P‖
≤ −

α

‖P‖
.¤

To prove the case of general P > 0, we perform the
coordinate transformation y = Sx, where S = P 1/2,
and then apply Lemma 3. This trick was proposed in
[7]. Let us check the conditions of the lemma. After
the change of coordinates system (1) takes the form

ẏ = Sf(S−1y, t) = f̃(y, t). (27)

The symmetrized Jacobian of f̃(y, t), J̃(y, t) =

1/2
(

Df̃y(y, t) + (Df̃y(y, t))
T
)

, equals to J̃(y, t) =

= S−T 1
2

(

PDfx(S
−1y, t) +Dfx

T (S−1y, t)P
)

S−1

= S−TJ(S−1y, t)S−1.

Due to condition (2), the largest eigenvalue of
J(S−1y, t) satisfies

sup
t∈R, |y|<R

Λ(J(S−1y, t)) = sup
t∈R, |Sx|<R

Λ(J(x, t))

= sup
t∈R, x∈EP (R)

Λ(J(x, t)) ≤ −α < 0.

Hence, by Lemma 4 the largest eigenvalue of J̃(y, t)
satisfies

sup
t∈R, |y|<R

Λ(J̃(y, t)) ≤ −
α

‖P‖
=: −α̃ < 0.

Thus, condition (23) is satisfied. Condition (24) is also
satisfied, because k̃ = supt∈R |f̃(0, t)|

= sup
t∈R

|Sf(0, t)| ≤ ‖S‖ sup
t∈R

|f(0, t)|

= ‖P‖1/2k ≤ [condition (3)] ≤ αR/‖P‖ = α̃R.

Hence, both conditions of Lemma 3 are satisfied. By
this lemma, system (27) is uniformly exponentially con-
vergent in Ẽ = {y : |y| < R}. Since the coordinate
transformation x = S−1y is Lipschitz, then by Remark
1 the initial system (1) is also uniformly exponentially
convergent in the set E = {x : |Sx| < R} = EP (R).
This completes the proof of Theorem 1.¤
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