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Frequency response functions for nonlinear convergent
systems

Alexey Pavlov, Nathan van de Wouw and
Henk NijmeijerFellow, IEEE

Abstract— Convergent systems constitute a practically important class
of nonlinear systems that extends the class of asymptotically stable
linear time invariant systems. In this note we extend frequency response
functions defined for linear systems to nonlinear convergent systems. Such
nonlinear frequency response functions for convergent systems give rise
to nonlinear Bode plots, which serve as a graphical tool for performance
analysis of nonlinear convergent systems in the frequency domain. The
results are illustrated with an example.

Index Terms— Frequency response functions, convergent systems, non-
linear systems, performance analysis, differential inclusions.

I. I NTRODUCTION

A common way to analyze the behavior of a (closed-loop) dy-
namical system is to investigate its responses to harmonic excitations
at different frequencies. For linear time invariant (LTI) systems, the
information on responses to harmonic excitations, which is contained
in frequency response functions, allows one to identify the system
and analyze its properties such as performance and robustness. There
exists a vast literature on frequency domain identification, analysis,
and controller design methods for linear systems, see, e.g., [17], [26].
Most (high-performance) industrial controllers, especially for motion
systems, are designed and tuned based on these methods, since they
allow one to analyze the performance of the closed-loop system. The
lack of such methods for nonlinear systems is one of the reasons
why nonlinear systems and controllers are not popular in industry.
Even if a (nonlinear) controller achieves a certain control goal (e.g.,
tracking), which can be proved, for example, using Lyapunov stability
methods, it is very difficult to conclude how the closed-loop system
would respond to external signals at various frequencies, such as,
for example, high-frequency measurement noise or low-frequency
disturbances. Such performance characteristics are critical in many
industrial applications. So, there is a need to extend the linear
frequency domain performance analysis tools, which are based on
the analysis of frequency response functions, to nonlinear systems.
Such an extension for the class of nonlinear convergent systems is
the subject of this note.

Convergent systems are systems that, although possibly nonlinear,
have relatively simple dynamics. In particular, for any bounded input
such a system has a unique bounded globally asymptotically stable
solution, which is called a steady-state solution [4], [23], [22]. In
control systems the convergence property is usually achieved by
means feedback. Nonlinear systems with similar properties have
been considered in [1], [6], [18]. In [9], [10] nonlinear controllers
for a controlled Optical Pickup Unit (OPU) of DVD storage drives
have been proposed to overcome linear controller design limitations.
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These controllers, in fact, make the corresponding closed-loop system
convergent. The latter fact facilitates frequency-domain performance
analysis of such nonlinear though convergent closed-loop systems.
In [8] even experimental frequency-domain performance analysis
based on measuring steady-state responses of the closed-loop OPU
to harmonic excitations has been reported.

In this note we show that for convergent systems all steady-
state solutions corresponding to harmonic excitations at various
amplitudes and frequencies can be characterized byone function.
This function, which we call a nonlinear frequency response function
(FRF), extends the conventional frequency response functions defined
for linear systems. Contrary to the describing functions method (see,
e.g., [16]), which provides onlyapproximationsof periodic steady-
state responses of nonlinear systems to harmonic excitations, the
nonlinear FRF providesexact steady-state responses to harmonic
excitations at various amplitudes and frequencies. Similar to the linear
case, the nonlinear FRF gives rise to nonlinear Bode plots, which
provide information on how a convergent system amplifies harmonic
inputs of various frequencies and amplitudes. This information is
essential for performance analysis of convergent closed-loop systems
since it allows one to quantify the influence of the high-frequency
measurement noise on the steady-state response of the system, or
how close the output of a closed-loop system will track certain low-
frequency reference signals. Such frequency-domain performance
information is extremely important in control applications.

The results in this note are based on the idea of considering
harmonic excitations as outputs of a linear harmonic oscillator or,
more generally, of an exosystem. This idea has proved to be beneficial
in the steady-state analysis of nonlinear systems. In the scope of
the local output regulation problem it has been used in [14], [3].
Developments in non-local steady-state analysis of nonlinear systems
and its applications can be found in [15], [2], [23]. In [11] the idea
of using an exosystem has been employed for quantitative analysis
of steady-state as well as transient dynamics of systems excited by
harmonic inputs. An alternative approach to studying responses to
harmonic excitations is based on Volterra series representation of
a system, see, e.g., [25], [24], [27]. Yet, the practical application
of this approach is hampered by, firstly, the fact that the Volterra
kernels in the Volterra series are, in general, difficult to compute;
and, secondly, the accuracy of the truncated Volterra series—and
truncation is necessary for practical applications—is, in general, an
open problem.

The note is organized as follows. In Section II we present
definitions and basic facts on convergent systems. In Section III
we review frequency response functions for linear systems. The
main result on frequency response functions for nonlinear convergent
systems is presented in Section IV, whereas nonlinear Bode plots are
presented in Section V. In Section VI we present an example. Finally,
Section VII contains conclusions.

II. CONVERGENT SYSTEMS

Consider systems of the form

ẋ ∈ F (x, w(t)), (1)

wherex ∈ R
n is the state andw ∈ R

m is the input. The inputsw(t)
are assumed to be continuous functionsw : R → R

m. F (x, w) is a
set-valued mappingF : R

n+m → {subsets ofRn}. We assume that
system (1) satisfies the followingbasic assumptions:

For any (x, w) ∈ R
n+m the setF (x, w) is nonempty, compact,

convex andF (x, w) is upper semicontinuous inx, w.
Notice that these assumptions imply that for any continuous input

w(t), the functionF (x, w(t)) is nonempty, compact, convex and
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upper-semicontinuous as a function ofx, t. This guarantees that for
any continuous inputw(t) and any initial conditionx0 ∈ R

n, t0 ∈ R

system (1) has a solutionxw(t, t0, x0) satisfyingxw(t0, t0, x0) = x0

and which is defined on some interval[t0, t0 + τ), for someτ > 0,
see [5].

Notice that system
ẋ = f(x, w(t)), (2)

with a single-valued continuous right-hand sidef(x, w) can be con-
sidered as a particular case of (1). For system (2) with a discontinuous
right-hand side, solutions are usually understood as solutions of a
differential inclusion (1) associated with this system. Particular ways
of defining such a differential inclusion can be found in [5].

In this note we will deal with so-calledregular systems, which are
defined below.

Definition 1: System (1) is calledregular if for any continuous
input w(t) and any initial conditionx0 ∈ R

n, t0 ∈ R the
corresponding solutionxw(t, t0, x0) of system (1) is right-unique.
For a system with a single-valued continuousF (x, w), regularity is
guaranteed by the requirement thatF (x, w) is locally Lipschitz with
respect tox. For differential inclusions regularity has to be proved
separately using, for example, results from [5].

Definition 2 ([4], [23]): System (1) with a given continuous input
w(t) is said to be(uniformly, exponentially) convergentif

i. all solutionsxw(t, t0, x0) are defined for allt ∈ [t0, +∞) and
all initial conditionst0 ∈ R, x0 ∈ R

n,
ii. there is a solution̄xw(t) defined and bounded onR,

iii. the solutionx̄w(t) is (uniformly, exponentially) globally asymp-
totically stable.

System (1) is said to be (uniformly, exponentially) convergent for
a class of continuous inputsI if it is (uniformly, exponentially)
convergent for every inputw ∈ I.

We will refer to x̄w(t) as thesteady-state solution. It is known,
see, e.g., [23], that for uniformly convergent systems the steady-state
solution is unique in the sense thatx̄w(t) is the only solution of
system (1) that is bounded onR. Note that in this case all solutions
of system (1) are bounded on[t0, +∞), but only one of them, namely
x̄w(t), is bounded on(−∞, +∞).

For our purposes we will need the following definition.
Definition 3 ([23]): System (1) that is convergent for some class

of inputs I is said to have the Uniformly Bounded Steady-State
(UBSS) property if for anyρ > 0 there existsR > 0 such that
for any inputw ∈ I the following implication holds:

|w(t)| ≤ ρ ∀ t ∈ R ⇒ |x̄w(t)| ≤ R ∀ t ∈ R. (3)
Remark 1:For a system that is uniformly convergent for the class

of bounded continuous inputs, input-to-state stability (ISS) implies
the UBSS property. Namely, it has been shown in [23] that an ISS
system has a solutionxw(t) satisfying|xw(t)| ≤ γ(sups∈R

|w(s)|),
for all t ∈ R, whereγ(s) is the ISS gain of the system (see, e.g.,
[16]). Since x̄w(t) is the only bounded onR solution (due to the
uniform convergence), we conclude thatxw(t) ≡ x̄w(t). Hence, the
inequality |x̄w(t)| ≤ γ(sups∈R

|w(s)|) implies (3) withR = γ(ρ).
The converse statement that for a uniformly convergent system UBSS
implies ISS can be proved under some additional assumptions. Such
a proof is beyond the scope of this note.

Systems that are uniformly convergent with the UBSS property
extend the class of asymptotically stable linear time-invariant (LTI)
systems. One can easily verify that a linear system of the formẋ =
Ax + Bw(t) with a Hurwitz matrixA is uniformly convergent with
the UBSS property for the class of bounded continuous inputs.

A simple sufficient condition for the exponential and, therefore,
uniform convergence property, presented in the next theorem, was
proposed in [4] (see also [19], [23]).

Theorem 1:Consider system (1) with a single-valuedF (x, w) that
is continuous inw and continuously differentiable inx. Suppose,
there exist symmetric matricesP > 0 andQ > 0 such that

P
∂F

∂x
(x, w) +

∂F

∂x

T

(x, w)P ≤ −Q, ∀x ∈ R
n, w ∈ R

m. (4)

Then, system (1) is exponentially convergent with the UBSS property
for the class of bounded continuous inputs.

Remark 2: It is shown in [23] that a cascade of systems satisfying
the conditions of Theorem 1 is a uniformly convergent system with
the UBSS property for the class of bounded continuous inputs.
Further (interconnection) properties of convergent systems can be
found in [23], [22].

Conditions for uniform convergence for systems in Lur’e form with
a possibly discontinuous scalar nonlinearity are presented in [28], and
for piecewise-affine systems in [21], [20].

Below we formulate a fundamental property of uniformly conver-
gent systems, which forms a foundation for the main results of the
note. This property corresponds to the uniformly convergent system
(1) excited by inputsw(t) being solutions of the system

ẇ = s(w), w ∈ R
m, (5)

with a locally Lipschitz right-hand side. Byw(t, w0) we denote the
solution of system (5) with the initial conditionw(0, w0) = w0.
We assume that system (5) satisfies the following boundedness
assumption.

BA Every solution of system (5) is defined and bounded onR and
for everyr > 0 there existsρ > 0 such that

|w0| < r ⇒ |w(t, w0)| < ρ ∀ t ∈ R. (6)

Theorem 2:Consider system (1) satisfying the basic assumptions
and system (5) satisfying AssumptionBA. Suppose system (1) is
regular and uniformly convergent with the UBSS property for the
class of bounded continuous inputs. Then there exists a continuous
mapping α : R

m → R
n such that for any solutionw(t) =

w(t, w0) of system (5), the corresponding steady-state solution of
system (1), equals̄xw(t) ≡ α(w(t, w0)). The mappingα(w) is the
unique continuous mapping having the property thatα(w(t, w0)) is
a solution of (1) withw(t) = w(t, w0).

Proof: See the Appendix.

III. L INEAR FREQUENCY RESPONSE FUNCTIONS

Prior to considering the case of nonlinear systems, let us have a
look at LTI systems of the form

ẋ = Ax + Bu, (7)

with x ∈ R
n, u ∈ R and a Hurwitz matrixA. System (7) can be

equivalently represented in Laplace domain by its transfer function
G(s) := (sI−A)−1B. With this function one can immediately com-
pute the steady-state solution corresponding to the complex harmonic
excitationaeiωt, which equalsG(iω)aeiωt. This, in turn, implies that
the steady-state solution corresponding to the real harmonic excitation
a sin(ωt) equalsx̄aω(t) = Im(G(iω)aeiωt). This method can not
be applied to nonlinear systems since the transformation into Laplace
domain is, in general, not applicable to nonlinear systems.

An alternative way of finding steady-state solutions of system (7),
see, e.g., [12], is based on the fact that a harmonic excitation can be
considered as an output of the linear harmonic oscillator

v̇ = S(ω)v, v :=

�
v1

v2

�
, S(ω) :=

�
0 ω
−ω 0

�
u = Γv, Γ := [1 0].

(8)
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This system generates harmonic outputs of the formu(t) =
a sin(ωt+φ), where the phaseφ and amplitudea are determined by
the initial conditions of (8). Therefore, to study responses to harmonic
excitations, we can consider steady-state solutions of the system

ẋ = Ax + BΓv, (9)

with v(t) being solutions of the harmonic oscillator (8). Since the
eigenvalues of the matricesA and S(ω) do not coincide, for any
ω ≥ 0 there exists a unique matrixΠ(ω) ∈ R

n×2 satisfying the
matrix equation (see, e.g., [7])

Π(ω)S(ω) = AΠ(ω) + BΓ. (10)

By substitution one can easily verify that for any solutionv(t)
of (8), the corresponding steady-state solution of (7) equals
x̄v(t) = Π(ω)v(t). Moreover, it can be verified thatΠ(ω) =
[Re(G(iω)) Im(G(iω))]. Therefore, the functionα(v, ω) := Π(ω)v
can be considered as a frequency-response function of system (7)
since it contains information on all steady-state responses to harmonic
excitations at different frequencies and amplitudes. Notice that due to
the linearity of system (9) the functionα(v, ω) is linear inv and all
essential information is contained inΠ(ω). For this reason, in linear
systems theory onlyΠ(ω) or, equivalently,G(iω) is considered as
a frequency response function. For nonlinear systems the linearity
in v will apparently be lost and we will have to consider frequency
response functions as functions of bothω andv.

IV. N ONLINEAR FREQUENCY RESPONSE FUNCTIONS

In this section we consider uniformly convergent systems

ẋ ∈ F (x, u), y = h(x), (11)

with statex ∈ R
n, input u ∈ R and outputy ∈ R. Recall that

according to Definition 2, for any bounded inputu(t) system (11)
has a unique steady-state solutionx̄u(t), which is uniformly globally
asymptotically stable (UGAS). We are interested in a characterization
of all steady-state responses corresponding to harmonic excitations
u(t) := a sin(ωt) with various frequenciesω ≥ 0 and amplitudes
a ≥ 0. The main result of the note is formulated in the following
theorem.

Theorem 3:Suppose system (11) satisfies the basic assumptions,
it is regular and uniformly convergent with the UBSS property for the
class of continuous bounded inputs. Then there exists a continuous
function α : R

3 → R
n such that for any harmonic excitation of the

form u(t) = a sin(ωt), system (11) has a unique periodic solution

x̄aω(t) := α(a sin(ωt), a cos(ωt), ω) (12)

and this solution is UGAS.
Proof: The proof of this theorem follows from the fact that

harmonic signals of the formu(t) = a sin(ωt) for various amplitudes
a and frequenciesω are generated by the system�

v̇ = S(ω)v, u = v1,
ω̇ = 0,

(13)

wherev = [v1, v2]
T ∈ R

2, ω ∈ R and

S(ω) :=

�
0 ω
−ω 0

�
,

with the initial conditionsv(0) = [0, a]T , ω(0) = ω. Consequently,
we can treat system (11) excited by the inputu(t) = a sin(ωt) as
the system

ẋ ∈ F (x, v1) (14)

excited by a solution of the system (13). According to the conditions
of the theorem, system (14) is regular and uniformly convergent with

the UBSS property for the class of continuous bounded inputs. One
can easily check that system (13) with the statew := [v1, v2, ω]T

satisfies the boundedness assumptionBA of Theorem 2. Therefore,
by Theorem 2 there exists a unique continuous functionα : R

3 → R
n

such that for any solutionw(t) = [v1(t), v2(t), ω]T of system (13)
the corresponding steady-state solution of system (14), which is
UGAS due to the uniform convergence property, equalsx̄w(t) =
α(v1(t), v2(t), ω). In particular, for the solution of system (13)
[a sin(ωt), a cos(ωt), ω]T , which corresponds to the inputu(t) =
a sin(ωt), the steady-state solution equalsx̄aω(t) given in (12). �

As follows from Theorem 3, the functionα(v1, v2, ω) containsall
information on the steady-state solutions of system (11) correspond-
ing to harmonic excitations. For this reason, we give the following
definition.

Definition 4: The function α(v1, v2, ω) defined in Theorem 3
is called the state frequency response function. The function
h(α(v1, v2, ω)) is called theoutput frequency response function.

Remark 3:As follows from Theorem 2, the state frequency re-
sponse functionα(v1, v2, ω) is unique in the sense that it is the
only continuous function having the property that for any solution
[v1(t), v2(t), ω]T of system (13),α(v1(t), v2(t), ω) is a solution of
system (14).

In the nonlinear case, the dependency of the frequency response
functions onv1 and v2 is, in general, nonlinear. This implies, for
example, that for nonlinear convergent systems we may observe
a non-proportional change in the “amplitude” of the steady-state
responses with respect to a change of the excitation amplitude. At
the same time, the steady-state solutionx̄aω(t) given in (12) is a
unique periodic solution with the same period time as the period of
the harmonic excitation. This resembles properties of asymptotically
stable linear systems. Notice that for general nonlinear systems, one
can have multiple coexisting attractors, which excludes the possibility
of the existence of the mappingα and makes the analysis of the
steady-state behavior corresponding to harmonic excitations much
more involved.

In general, it is not easy to find such frequency response functions
analytically. In some cases it can be found based on the following
lemma, which provides a nonlinear counterpart of the Sylvester
equation (10).

Lemma 1:Under the conditions of Theorem 3, if there exists a
continuous functionα(v1, v2, ω) differentiable inv = [v1, v2]

T and
satisfying

∂α

∂v
(v, ω)S(ω)v ∈ F (α(v, ω), v1), ∀ v, ω ∈ R

2 × R, (15)

then this α(v1, v2, ω) is the state frequency response function.
Conversely, if the state frequency response functionα(v1, v2, ω) is
differentiable inv, then it is a unique solution of (15).
Proof. Let α(v1, v2, ω) be a differentiable inv function satisfying
(15). As follows from (15), for any solution[v1(t), v2(t), ω]T of the
exosystem (13),α(v1(t), v2(t), ω) is a solution of (14). By Remark 3,
this α(v1, v2, ω) is the state frequency response function.

Now supposeα(v1, v2, ω) is a state frequency response function
differentiable inv. By substituting the steady-state solutionx̄w(t) =
α(v1(t), v2(t), ω) corresponding to some solution[v1(t), v2(t), ω]T

of system (13) into (14), we obtain that (15) holds for allv, ω on the
solution [v1(t), v2(t), ω]T . Due to the arbitrary choice of the initial
conditions of system (13) we conclude that (15) holds for allv ∈ R

2

and allω ∈ R. �

As will be illustrated with an example in Section VI, for some
systems one can relatively easily findα(v1, v2, ω) by solving (15).
If it is not possible to obtain an analytical solution of (15), one
can try to find an approximate solution of (15). For general uni-
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formly convergent systems (11), the frequency response functions
can always be found numerically by simulating system (11) with
the inputu(t) = a sin(ωt). All solutions of this system converge to
the UGAS steady-state solution equal toα(a sin(ωt), a cos(ωt), ω).
Thus by simulating the system we can find approximate values of
α(v1, v2, ω) for v1 = a sin(φk), v2 = a cos(φk), with the set
{φk}

k=N
k=1 constituting a mesh over the interval[0, 2π). By perform-

ing these simulations for excitation amplitudesa and frequencies
ω from a sufficiently dense mesh in the range of interest, we will
find approximate values ofα(v1, v2, ω) on the corresponding mesh
covering a subset ofR3. Further, interpolation can be employed to
find an approximation ofα(v1, v2, ω) in this subset ofR3. Yet, since
the convergence rate of uniformly convergent systems can be very
slow, it is more appropriate to use this method for exponentially
convergent systems. To reduce computational costs for this numerical
procedure, instead of finding an approximation of the periodic steady-
state solutionα(a sin(ωt), a cos(ωt), ω) using simulations, one can
find its approximation using the describing function method, see,
e.g., [16]. Notice that the describing function method provides an
approximation of the periodic solutionα(a sin(ωt), a cos(ωt), ω)
based only on its first harmonic (or the firstk harmonics). Also
such an approximation requires an additional justification. Similar
to the simulation-based numerical procedure described above, in
practice, when one has a convergent system, its output frequency
response functionh(α(v1, v2, ω)) can be obtained experimentally by
exciting the system with harmonic signals at various amplitudes and
frequencies and measuring the corresponding steady-state outputs,
see [8].

V. NONLINEAR BODE PLOT

In practice it is very important to know how a system amplifies
inputs at various frequencies. In performance analysis of control
systems this information allows one to quantify the influence of high-
frequency measurement noise on the steady-state response of the
system, or how close a closed-loop system will track low-frequency
reference signals. In the case of LTI systems, this essentially im-
portant information is usually represented in the Bode magnitude
plots. The Bode magnitude plot is a graphical representation of the
gain with which the system amplifies harmonic signals at various
frequencies.

Similar to LTI systems, for uniformly convergent systems we can
define a counterpart of the Bode magnitude plot, which then can
be used for the purpose of frequency-domain performance analysis.
Suppose the system is excited by the harmonic signala sin(ωt) with
amplitudea. Denote the maximal absolute value of the outputy de-
fined in (11) in steady-state byB(ω, a). We are interested in the ratio
γa(ω) := B(ω, a)/a at various amplitudes and frequencies. This
ratio can be considered as anamplification gainof the convergent
system. Notice that in the nonlinear caseγa(ω) depends not only on
the frequency, as in the linear case, but also on the amplitude of the
excitation.

Formally, the amplification gainγa(ω) is defined as

γa(ω) :=
1

a

 
sup

v2

1
+v2

2
=a2

|h(α(v1, v2, ω))|

!
. (16)

Since the steady-state solution of a uniformly convergent system
is unique and UGAS, one can always findγa(ω) numerically by
simulating the system excited byu(t) = a sin(ωt), finding the
maximal absolute value of the output steady-state response and
dividing it by a. Yet, since the convergence rate of a uniformly
convergent system can be very slow, it is more appropriate to use this
method for exponentially convergent systems. Similarlyγa(ω) can be

determined in experiments. If we are interested in the maximum of
the amplification gain for a given frequencyω and over a range of
amplitudesa ∈ (a, a), then we can extend the definition ofγa(ω) as
follows: Υ(a,a)(ω) := supa∈(a,a) γa(ω).

For linear SISO systems of the forṁx = Ax+Bu with a Hurwitz
matrix A and outputy = Cx, the gainγa(ω) is independent of the
amplitudea and it equalsγ(ω) = |C(iωI −A)−1B|. Therefore, we
see that for linear systems the graph of the amplification gainγa(ω)
as in (16) versus the excitation frequencyω coincides with the Bode
magnitude plot.

An alternative gain corresponding to amplification properties of
nonlinear systems excited by periodic signals has been proposed
in [13]. That gain links rms values of the input and the output
of a system. Although such a gain has transparent links with the
L2 gain, in many motion control application it is more important
to characterize the gain linking the maximal absolute values of the
input and output rather than their rms values, see, e.g., [8], [10]. For
such applications the gainsγa(ω) or Υ(a,a)(ω) defined above can be
more beneficial. These gains can be computed numerically by firstly
computing the corresponding frequency response function and then
using it for finding the gain, or they can be estimated as proposed in
[11].

VI. EXAMPLE

For general convergent systems it is rather difficult to find the
frequency response functionα(v1, v2, ω) analytically. Yet, for some
systems this can be done rather easily, as illustrated by the following
example. Consider the system

ẋ1 = −x1 + x2
2, y = x1, (17)

ẋ2 = −x2 + u, (18)

excited by the inputu(t) = a sin(ωt). This system is a series
connection of two systems satisfying the conditions of Theorem 1
with P = Q = 1. Since series connection of two systems satisfying
the conditions of Theorem 1 is a uniformly convergent system with
the UBSS property for the class of continuous bounded inputs (see
Remark 2 ), system (17), (18) is uniformly convergent with the UBSS
property for the class of continuous bounded inputs. Consequently,
by Theorem 3 the mappingα(v1, v2, ω) exists and is unique. We
will first find α2(v1, v2, ω) (the second component ofα) from (18).
Since thex2-subsystem is an asymptotically stable LTI system,
α2(v1, v2, ω) is linear with respect tov1 andv2 (see Section III), i.e.

α2(v1, v2, ω) = b1(ω)v1 + b2(ω)v2.

Recall thatα2(v1(t), v2(t), ω), with v(t) = [v1(t) v2(t)]
T being a

solution of the linear harmonic oscillator (8), is a solution of system
(18) with u(t) = v1(t). Substituting thisα2(v1(t), v2(t), ω) into
equation (18) and equating the corresponding coefficients atv1 and
v2, we obtain

b1(ω) =
1

(1 + ω2)
, b2(ω) =

−ω

(1 + ω2)
.

Then, substituting the obtainedα2 for x2 in (17), we compute
α1(v1, v2, ω). In our case, it is a polynomial ofv1 and v2 of the
same degree as the polynomial(α2(v1, v2, ω))2, i.e. of degree 2 (see
[3], Lemma 1.2 for details). Therefore, we will seekα1(v1, v2, ω) in
the form

α1(v1, v2, ω) = c1(ω)v2
1 + 2c2(ω)v1v2 + c3(ω)v2

2 . (19)

We substitute the steady-state solutionα1(v1(t), v2(t), ω) for x1(t)
into (17) with x2(t) = α2(v1(t), v2(t), ω) and then equate the
corresponding coefficients at the termsv2

1 , v1v2 andv2
2 . This results
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Fig. 1. The functionγ1(ω) (nonlinear Bode plot).

in c1(ω) = (2ω4 + 1)/∆(ω), c2(ω) = (ω3 − 2ω)/∆(ω), and
c3(ω) = (2ω4 + 5ω2)/∆(ω), where∆(ω) := (1 + 4ω2)(1 + ω2)2.
It can be easily verified that the obtainedα(v1, v2, ω) is, in fact, a
solution of (15).

After the functionα(v1, v2, ω) is computed, one can numerically,
though very efficiently, compute the amplification gainγa(ω) for a
range of amplitudesa and frequenciesω, andΥ(0,a)(ω), for some
maximal excitation amplitudea and all frequencies over the band of
interest. Since the output frequency response functionα1(v1, v2, ω)
is a homogeneous polynomial function of degree 2 with respect to
the variablesv1 and v2 (see formula (19)), one can easily check
that for arbitrarya > 0 it holds thatγa(ω) = aγ1(ω). Here we
recognize the dependency of the amplification gain on the amplitude
of the excitation. This is an essentially nonlinear phenomenon. This
also implies thatΥ(0,a)(ω), which is given bysupa∈(0,a) γa(ω),
equalsΥ(0,a)(ω) = aγ1(ω). Figure 1 shows the graph of numerically
computedγ1(ω) over ω. This graph is a counterpart of the Bode
magnitude plot from linear systems theory.

VII. C ONCLUSIONS

In this note we have shown that for a regular uniformly con-
vergent system with the UBSS property, all steady-state solutions
corresponding to harmonic excitations at various frequencies and
amplitudes can be characterized by one continuous function, which
we call a nonlinear frequency response function (FRF). It has been
shown that this function extends the notion of FRF from linear
systems theory. In contrast to the describing function method, which
provides only approximationsof the steady-state solutions corre-
sponding to harmonic excitations, this nonlinear FRF representsexact
information on these steady-state solutions. For some systems, as has
been illustrated with an example, the nonlinear FRF can be found
analytically. If this is not possible, it can always be found numerically
or, in case an experimental system is available, it can be determined
experimentally by exciting the system with harmonic signals at
various amplitudes and frequencies. Now, since the existence of the
FRF for nonlinear convergent systems has been proved, one can
focus on the developments of more efficient numerical methods for
computing such nonlinear FRFs.

The newly defined nonlinear FRF gives rise to a frequency-
dependent amplification gain, which provides information on how
a system amplifies harmonic inputs of various frequencies and
amplitudes. This information is essential for performance analysis
of convergent closed-loop systems since it allows one to quantify the
influence of, e.g., high-frequency measurement noise on the steady-
state response of the system, or how close the output of a closed-loop
system will track low-frequency reference signals. Such information
is important in control applications. A plot of this gain versus the

harmonic input frequency is a counterpart of the Bode magnitude
plot from linear systems theory.

The results presented in this note may open an interesting direction
in nonlinear control systems theory. Further research in this direction
includes finding efficient numerical algorithms for computing such
nonlinear FRFs. Another open question is what information on
system’s properties can we extract from such FRFs? As it has been
illustrated in Section V, based on this FRF one can relatively easily
define a counterpart of the Bode magnitude plot. The next problem
is how to define in a sensible way a counterpart of the Bode phase
plot, which is extremely important in the case of linear systems? All
these research directions may provide a potential link between the
performance- and frequency domain-oriented linear systems thinking
dominating in industry and the stability-oriented nonlinear systems
thinking, which is wide-spread in academia.

APPENDIX: PROOF OFTHEOREM 2

Existence: We prove the existence ofα(w) by constructing this
mapping. Since the right-hand side of (5) is locally Lipschitz, for any
w0 there exists a unique solutionw(t, w0) of system (5) that satisfies
w(0, w0) = w0. Moreover, due to the boundedness assumptionBA,
this solution is defined and bounded onR. Since (1) is uniformly
convergent for the class of continuous bounded inputs, for thisw(t) =
w(t, w0) system (1) has a unique steady-state solutionx̄w(t). To
indicate the dependency of this steady-state solution onw0, we denote
it by x̄(t, w0). Defineα(w0) := x̄(0, w0). In this way we uniquely
defineα(w0) for all w0 ∈ R

m.
Let us show thatα(w(t, w0)) ≡ x̄(t, w0). To this end we first

prove the following formula:

x̄(t, w0) = x̄(t − τ, w(τ, w0)), ∀t, τ ∈ R. (20)

Fix τ ∈ R. Denote x̄τ (t) := x̄(t, w(τ, w0))—the steady-state
solution of system (1) corresponding to the inputw(t, w(τ, w0)) (for
this reason̄xτ (t) is bounded onR). Since (5) is autonomous,̄xτ (t)
satisfies

˙̄xτ (t) ∈ F (x̄τ (t), w(t, w(τ, w0)))

= F (x̄τ (t), w(t + τ, w0)).

From this we conclude that̄xτ (t − τ) is a solution of the system

ẋ ∈ F (x, w(t, w0)). (21)

Moreover, sincēxτ (t) is bounded onR, x̄τ (t − τ) is also bounded
on R. Due to uniform convergence of system (21), there is only one
solution of (21) that is bounded onR and this solution is the steady-
state solution̄x(t, w0). Therefore, we obtain (20). Then, forτ = t
formula (20) implies

x̄(t, w0) = x̄(0, w(t, w0)) = α(w(t, w0)), ∀t ∈ R. (22)

Continuity: It remains to show that the mappingx = α(w)
constructed above is continuous, i.e. that for anyw1 ∈ R

m and
any ε > 0 there existsδ > 0 such that|w1 − w2| < δ implies
|α(w1) − α(w2)| < ε. For simplicity, we will prove continuity in
the ball |w| < r. Sincer can be chosen arbitrarily, this will imply
continuity in R

m. In what follows, we assume thatw1 satisfying
|w1| < r and ε > 0 are fixed and the pointw2 varies in the ball
|w2| < r.

As a preliminary observation, notice that|w1| ≤ r and |w2| ≤ r
imply, due to the boundedness assumptionBA, that |w(t, wi)| ≤ ρ
for i = 1, 2 and for allt ∈ R. This, in turn, due to the UBSS property
of system (1) (see (3)) and due to (22), implies

|α(w(t, wi))| ≤ R, ∀t ∈ R, i = 1, 2. (23)
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In order to prove continuity ofα(w), we introduce the function
ϕT (w1, w2) := χ(0,−T, α(w(−T, w2)), w1), where the number
T > 0 will be specified later andχ(t, t0, x0, w∗) is the solution
of the time-varying system

χ̇ ∈ F (χ, w(t, w∗)) (24)

with the initial condition χ(t0, t0, x0, w∗) = x0. The function
ϕT (w1, w2) has the following meaning, see Fig. 2. First, consider

α(w(t, w2))

α(w(t, w1))

α(w(0, w2)) = ϕT (w2, w2)

α(w(0, w1)) = ϕT (w1, w1)

ϕT (w1, w2)

α(w(−T, w2))

input w(t, w1)

input w(t, w2)

Fig. 2. The construction of the functionϕT (w1, w2).

the steady-state solutionα(w(t, w2)), which is a solution of system
(24) with the inputw(t, w2) and initial conditionα(w(0, w2)) =
α(w2). We shift alongα(w(t, w2)) to time t = −T and appear in
α(w(−T, w2)). Then we switch the input tow(t, w1), shift forward
to the time instantt = 0 along the solutionχ(t) corresponding to
this w(t, w1) and starting inχ(−T ) = α(w(−T, w2)) and appear in
χ(0) = ϕT (w1, w2). Due to regularity of system (1) (and, therefore,
of system (24)), the functionϕT (w1, w2) is single-valued. Notice,
that ϕT (w0, w0) = α(w0), for all w0 ∈ R

m, because there is no
switch of inputs and we just shift back and forth along the same
solutionα(w(t, w0)). Thus,

α(w1) − α(w2) = ϕT (w1, w1) − ϕT (w2, w2)

= ϕT (w1, w1) − ϕT (w1, w2) (25)

+ϕT (w1, w2) − ϕT (w2, w2).

By the triangle inequality, this implies

|α(w1) − α(w2)| ≤ |ϕT (w1, w1) − ϕT (w1, w2)|

+ |ϕT (w1, w2) − ϕT (w2, w2)|.

As follows from Lemma 2 (see below), there existsT > 0 such that

|ϕT (w1, w1) − ϕT (w1, w2)| < ε/2 ∀ |w2| < r. (26)

It follows from Lemma 3 (see below), that given a numberT > 0,
there existsδ > 0 such that

|ϕT (w1, w2) − ϕT (w2, w2)| < ε/2 (27)

∀ w2 : |w1 − w2| < δ.

Unifying inequalities (26) and (27), we obtain|α(w1)−α(w2)| < ε
for all w2 satisfying |w1 − w2| < δ. Due to the arbitrary choice
of ε > 0 and |w1| < r, this proves continuity ofα(w) in the ball
|w| < r. Due to the arbitrary choice ofr > 0, this implies continuity
of α(w) in R

m.
Uniqueness:Supposeα : R

m → R
n and α̃ : R

m → R
n are two

different continuous mappings such that for any solutionw(t, w0) of
system (5),x̄w(t) := α(w(t, w0)) and x̃w(t) := α̃(w(t, w0)) are
solutions of system (1) withw(t) = w(t, w0). Let w∗ ∈ R

m be
such thatα(w∗) 6= α̃(w∗). Considerw(t, w∗). Due to Assumption
BA, w(t, w∗) is bounded onR. This implies that, since bothα(w)

and α̃(w) are continuous,̄xw(t) and x̃w(t) are two bounded onR
solutions of (1). Due to the unform convergence of system (1), there is
only one bounded onR solution. Hencēxw(t) ≡ x̃w(t). In particular,
for t = 0 we obtainα(w∗) = α̃(w∗). We come to a contradiction.
Hence suchα(w) is unique. �

Lemma 2:There isT > 0 such that inequality (26) holds.
Proof: In order to prove inequality (26), notice thatϕT (w1, w1) =

χ1(0) andϕT (w1, w2) = χ2(0), whereχ1(t) andχ2(t) are solutions
of system (24) with the inputw(t, w1) satisfying the initial conditions
χ1(−T ) = α(w(−T, w1)) and χ2(−T ) = α(w(−T, w2)). By the
construction ofα(w), χ1(t) = α(w(t, w1)) is a UGAS solution of
system (24) with the inputw(t, w1). This implies that forR > 0
andε > 0 there existsT̃ε(R) > 0 such that for any solutionχ(t) of
system (24) with the inputw(t, w1) the inequality|χ1(t0)−χ(t0)| ≤
2R implies

|χ1(t) − χ(t)| < ε/2, ∀ t ≥ t0 + T̃ε(R), t0 ∈ R. (28)

Set T := T̃ε(R). By the definition ofχ1(t) and χ2(t), we have
χ1(−T ) = α(w(−T, w1)) and χ2(−T ) = α(w(−T, w2)). By
the inequality (23) and the triangle inequality, we conclude that
|χ1(−T ) − χ2(−T )| ≤ 2R. Thus, fort0 = −T and t = 0 formula
(28) implies

|χ1(0) − χ2(0)| < ε/2, (29)

which is equivalent to (26). �

Lemma 3:Given a numberT > 0 there exists a numberδ > 0
such that inequality (27) is satisfied.

Proof: Consider the differential inclusion(
χ̇ ∈ F (χ, w)

ẇ = s(w).
(30)

Solutions of thew-subsystem are unique becauses(w) is locally
Lipschitz. Given a solution of thew-subsystem, solutions of the
χ-subsystem are right-unique due to the regularity assumption on
system (1). Hence, solutions of (30) are right-unique. In addition to
this, due to the basic assumptions on system (1), see Section II,
for every (x, w) ∈ R

n+m, (F T (x, w), sT (w))T is a nonempty
convex compact set and it is upper semicontinuous inx, w. Applying
Corollary 1 from [5], p. 89, we conclude that solutions of (30)
continuously depend on initial conditions in forward time. Notice that
(χ(t,−T, x0, w0)

T , w(t, w0)
T )T is a solution of (30) with the initial

conditionsχ(−T ) = x0, w(−T ) = w(−T, w0). By the reasoning
presented above,χ(0,−T, x0, w0) continuously depends on the ini-
tial conditionsx0 and w(−T, w0). Sincew(−T, w0) is continuous
with respect tow0 (the right-hand side of (5) is continuous), we
conclude thatχ(0,−T, x0, w0) is a continuous function ofx0, w0.
This implies thatχ(0,−T, x0, w0) is uniformly continuous over the
compact setJ := {(x0, w0) : |x0| ≤ R, |w0| ≤ r}. Hence, there
exists δ > 0 such that if |x0| ≤ R, |w1| ≤ r, |w2| ≤ r and
|w1 − w2| < δ, then

|χ(0,−T, x0, w1)) − χ(0,−T, x0, w2)| ≤ ε/2. (31)

Recall, that by the definition ofϕT (w1, w2)

ϕT (w1, w2) − ϕT (w2, w2) =

χ(0,−T, x0, w1) − χ(0,−T, x0, w2), (32)

wherex0 := α(w(−T, w2)). Notice, that|w1| ≤ r, |w2| ≤ r and
|α(w(−T, w2))| ≤ R. Hence, as follows from (31) and (32),|w1 −
w2| < δ implies |ϕT (w1, w2)−ϕT (w2, w2)| < ε/2. Thus, we have
shown (27). �
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