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systems convergent. The latter fact facilitates frequency-domain performanc
analysis of such nonlinear though convergent closed-loop systems.
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Abstract— Convergent systems constitute a practically important @dss In-this n_Ote we show th_at for Converggnt Sy_Ste_ms all Steady'
of nonlinear systems that extends the class of asymptotidpl stable State solutions corresponding to harmonic excitations at various
linear time invariant systems. In this note we extend frequacy response amplitudes and frequencies can be characterizedr®yfunction.
functions defined for linear systems to nonlinear convergersystems. Such - This function, which we call a nonlinear frequency response function
nonlinear frequency response functions for convergent sysms give rise ey extends the conventional frequency response functiomedefi
to nonlinear Bode plots, which serve as a graphical tool for prformance e . .
analysis of nonlinear convergent systems in the frequencyamnain. The TOF linear systems. Contrary to the describing functions method (see,
results are illustrated with an example. e.g., [16]), which provides onlapproximationsof periodic steady-

Index Terms— Frequency response functions, convergent systems, non_stateT responses of _nonlinear systems to harmonic excitations,_the
linear systems, performance analysis, differential inclgions. nonlinear FRF providegxact steady-state responses to harmonic
excitations at various amplitudes and frequencies. Similar to the linear
case, the nonlinear FRF gives rise to nonlinear Bode plots, which
provide information on how a convergent system amplifies harmonic

A common way to analyze the behavior of a (closed-loop) dynputs of various frequencies and amplitudes. This information is
namical system is to investigate its responses to harmonic excitatigdgential for performance analysis of convergent closed-lodprags
at different frequencies. For linear time invariant (LTI) systems, th§nce it allows one to quantify the influence of the high-frequency
information on responses to harmonic excitations, which is containgfbasurement noise on the steady-state response of the system, or
in frequency response functions, allows one to identify the systei8w close the output of a closed-loop system will track certain low-
and analyze its properties such as performance and robustness. Tﬁ@quency reference signals. Such frequency-domain perfarena
eXiStS a vast Iiterature on fl‘equency domain identiﬁcation, analysiﬁformation is extreme|y important in control app"cations_
and controller design methods for linear systems, see, e.g., [BI], [2 The results in this note are based on the idea of considering
Most (high-performance) industrial controllers, especially for motioRarmonic excitations as outputs of a linear harmonic oscillator or,
systems, are designed and tuned based on these methods, sincen{a¥ generally, of an exosystem. This idea has proved to be beneficial
allow one to analyze the performance of the closed-loop system. TRethe steady-state analysis of nonlinear systems. In the scope of
lack of such methods for nonlinear systems is one of the reasqRg |gcal output regulation problem it has been used in [14], [3].
why nonlinear systems and controllers are not popular in industgyeyelopments in non-local steady-state analysis of nonlinear systems
Even if a (nonlinear) controller achieves a certain control goal (e.gnd its applications can be found in [15], [2], [23]. In [11] the idea
tracking), which can be proved, for example, using Lyapunov stabilipf ysing an exosystem has been employed for quantitative analysis
methods, it is very difficult to conclude how the closed-loop systegy steady-state as well as transient dynamics of systems excited by
would respond to external signals at various frequencies, such g§smonic inputs. An alternative approach to studying responses to
for example, high-frequency measurement noise or low-frequengarmonic excitations is based on Volterra series representation of
disturbances. Such performance characteristics are critical in Ma¥ystem, see, e.g., [25], [24], [27]. Yet, the practical application
industrial applications. So, there is a need to extend the linegf this approach is hampered by, firstly, the fact that the Volterra
frequency domain performance analysis tools, which are based @inels in the \olterra series are, in general, difficult to compute;
the analysis of frequency response functions, to nonlinear system§d, secondly, the accuracy of the truncated \olterra series—and
Such an extension for the class of nonlinear convergent systemsyication is necessary for practical applications—is, in general, an
the subject of this note. open problem.

Convergent systems are systems that, although possibly nonlineatshe note is organized as follows. In Section Il we present
have relatively simple dynamics. In particular, for any bounded inpykfinitions and basic facts on convergent systems. In Section Il
such a system has a unique bounded globally asymptotically staie review frequency response functions for linear systems. The
solution, which is called a steady-state solution [4], [23], [22]. Ifnain result on frequency response functions for nonlinear coemérg
control systems the convergence property is usually achieved Q)tems is presented in Section IV, whereas nonlinear Bode plots are

means feedback. Nonlinear systems with similar properties hgygsented in Section V. In Section VI we present an example. Finally,
been considered in [1], [6], [18]. In [9], [10] nonlinear controdler gection VIl contains conclusions.

for a controlled Optical Pickup Unit (OPU) of DVD storage drives
have been proposed to overcome linear controller design limitations.
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upper-semicontinuous as a functionaaft. This guarantees that for
any continuous input(¢) and any initial conditionry € R", tp € R
system (1) has a solution, (¢, to, xo) satisfyingz.. (to, to, zo) = xo
and which is defined on some intenf&, to + 7), for somer > 0,
see [5].

Notice that system

&= f(x,w(t)),

with a single-valued continuous right-hand siflec, w) can be con-

@)

Theorem 1:Consider system (1) with a single-valuégx, w) that
is continuous inw and continuously differentiable in. Suppose,
there exist symmetric matriceB > 0 and @ > 0 such that

OF oOFT

P il < _ n m.
Pax(z’w)+8x (z,w)P < —-Q, VzeR", weR 4)

Then, system (1) is exponentially convergent with the UBSS property
for the class of bounded continuous inputs.
Remark 2:1t is shown in [23] that a cascade of systems satisfying

sidered as a particular case of (1). For system (2) with a discontinu{g conditions of Theorem 1 is a uniformly convergent system with

right-hand side, solutions are usually understood as solutions o

fre uBss property for the class of bounded continuous inputs.

differential inclusion (1) associated with this system. Particular ways, ther (interconnection) properties of convergent systems can be

of defining such a differential inclusion can be found in [5].
In this note we will deal with so-callegégular systems, which are
defined below.
Definition 1: System (1) is calledegular if for any continuous
input w(t) and any initial conditionzo € R", to € R the
corresponding solutiom., (¢, to, 7o) oOf system (1) is right-unique.
For a system with a single-valued continualiér, w), regularity is
guaranteed by the requirement th&tx, w) is locally Lipschitz with
respect tox. For differential inclusions regularity has to be prove
separately using, for example, results from [5].
Definition 2 ([4], [23]): System (1) with a given continuous input
w(t) is said to be(uniformly, exponentially) convergeiit
i. all solutionsz.,(t,to, z0) are defined for alt € [to, +00) and
all initial conditionstg € R, zo € R",

ii. there is a solutiorz,, (t) defined and bounded dR,

iii. the solutionz,(t) is (uniformly, exponentially) globally asymp-
totically stable.

System (1) is said to be (uniformly, exponentially) convergent for

a class of continuous input$ if it is (uniformly, exponentially)
convergent for every inpub € Z.

We will refer to z.,(t) as thesteady-state solutiorit is known,
see, e.g., [23], that for uniformly convergent systems the stetatg-
solution is unique in the sense tha, (¢) is the only solution of
system (1) that is bounded @ Note that in this case all solutions
of system (1) are bounded ¢#, +0o0), but only one of them, namely
Zw(t), is bounded or(—oo, +00).

For our purposes we will need the following definition.

found in [23], [22].

Conditions for uniform convergence for systems in Lur'e form with
a possibly discontinuous scalar nonlinearity are presented in [28], and
for piecewise-affine systems in [21], [20].

Below we formulate a fundamental property of uniformly conver-
gent systems, which forms a foundation for the main results of the
note. This property corresponds to the uniformly convergent system

él) excited by inputav(¢) being solutions of the system

weR™,

()

with a locally Lipschitz right-hand side. By (¢, wo) we denote the
solution of system (5) with the initial conditiom (0, wo) wo.

We assume that system (5) satisfies the following boundedness
assumption.

BA Every solution of system (5) is defined and boundedRoand
for everyr > 0 there existy > 0 such that

W = s(w),

(6)

Theorem 2:Consider system (1) satisfying the basic assumptions
and system (5) satisfying Assumptid®A. Suppose system (1) is
regular and uniformly convergent with the UBSS property for the
class of bounded continuous inputs. Then there exists a continuous
mapping o« : R™ — R" such that for any solutionu(t)
w(t,wo) of system (5), the corresponding steady-state solution of
system (1), equal$., (t) = a(w(t,wo)). The mappingx(w) is the
unigue continuous mapping having the property & (¢, wo)) is

lwo| <r = |w(t,wo) <p ViEeR.

Definition 3 ([23]): System (1) that is convergent for some clasg solution of (1) withw(t) = w(t, wo).
of inputs Z is said to have the Uniformly Bounded Steady-State Proof: See the Appendix.
(UBSS) property if for anyp > 0 there existsR > 0 such that
for any inputw € Z the following implication holds:

lwt)| <pVteR = [T,(t)<RVteR (3) Prior to considering the case of nonlinear systems, let us have a
Remark 1:For a system that is uniformly convergent for the clasl®ok at LTI systems of the form
of bounded continuous inputs, input-to-state stability (ISS) implies
the UBSS property. Namely, it has been shown in [23] that an ISS @)
system has a solution,, (t) satisfying|z. (¢)| < y(sup,er [w(s)]),  with 2 € R”, u € R and a Hurwitz matrixA. System (7) can be
for all ¢ € R, wherey(s) is the ISS gain of the system (see, e.gequivalently represented in Laplace domain by its transfer function
[16]). Sincez.(t) is the only bounded ofR solution (due to the (s .= (s7— A)~" B. With this function one can immediately com-
uniform convergence), we conclude that (t) = Z.,(t). Hence, the e the steady-state solution corresponding to the complex harmonic
inequality |Z., ()| < y(sup,cg [w(s)|) implies (3) withR = v(p).  excitationae™*, which equalsi (iw)ae™*. This, in turn, implies that
The converse statement that for a uniformly convergent system UBgg steady-state solution corresponding to the real harmonic excitation
implies ISS can be proved under some additional assumptions. SH%li‘n(wt) equalsza, (t) = Im(G(iw)ae™"). This method can not
a proof is beyond the scope of this note. be applied to nonlinear systems since the transformation into Laplace
Systems that are uniformly convergent with the UBSS properfpmain is, in general, not applicable to nonlinear systems.
extend the class of as_ympto_tically staple linear time-invariant (LTI) an alternative way of finding steady-state solutions of system (7),
systems. One can easily verify that a linear system of the FN  gee e.g., [12], is based on the fact that a harmonic excitation can be

Az + Buw(t) with a Hurwitz matrixA is uniformly convergent with cqnsigered as an output of the linear harmonic oscillator
the UBSS property for the class of bounded continuous inputs.

I1l. L INEAR FREQUENCY RESPONSE FUNCTIONS

& = Ax + Bu,

A simple sufficient condition for the exponential and, therefore, b= S(w)v, vi= [ U1 } S(w) = [ 0 w
uniform convergence property, presented in the next theorem, was ’ vy |’ —w 0 8
proposed in [4] (see also [19], [23]). u=Tv, T':=][10].



This system generates harmonic outputs of the fag@) = the UBSS property for the class of continuous bounded inputs. One
asin(wt + ¢), where the phase and amplitude: are determined by can easily check that system (13) with the state= [v1, va, w]”
the initial conditions of (8). Therefore, to study responses to harmorsatisfies the boundedness assumpieén of Theorem 2. Therefore,
excitations, we can consider steady-state solutions of the systemby Theorem 2 there exists a unique continuous funatioiR® — R"
= Az + BT, ©) such that for any solutiom (t) = [’U1(t)z1)2(t),w]T of system (13) .
the corresponding steady-state solution of system (14), which is
with v(¢) being solutions of the harmonic oscillator (8). Since th&/GAS due to the uniform convergence property, equalgt) =
eigenvalues of the matriced and S(w) do not coincide, for any o(vi(t),v2(t),w). In particular, for the solution of system (13)
w > 0 there exists a unique matri(w) € R™*? satisfying the [a sin(wt), a cos(wt),w]”, which corresponds to the input(t) =
matrix equation (see, e.g., [7]) asin(wt), the steady-state solution equals.,(¢) given in (12). O
As follows from Theorem 3, the function (v, v2, w) containsall
H(w)S(w) = All(w) + BT (10) information on the steady-state solutions (Ef system) (11) correspond-
By substitution one can easily verify that for any solutiof¢) ing to harmonic excitations. For this reason, we give the following
of (8), the corresponding steady-state solution of (7) equalefinition.
Z,(t) = I(w)v(t). Moreover, it can be verified thall(w) = Definition 4: The function a(v1,v2,w) defined in Theorem 3
[Re(G(iw)) Im(G(iw))]. Therefore, the function(v,w) := I(w)v is called the state frequency response functiofhe function
can be considered as a frequency-response function of system (@ (v1,v2,w)) is called theoutput frequency response function
since it contains information on all steady-state responses to harmoni®emark 3:As follows from Theorem 2, the state frequency re-
excitations at different frequencies and amplitudes. Notice that duesfgonse functionx(vi, v2,w) iS unique in the sense that it is the
the linearity of system (9) the functiom(v, w) is linear inv and all only continuous function having the property that for any solution
essential information is contained If(w). For this reason, in linear [v1(t), v2(t),w]” of system (13)a(v1(t), v2(t),w) is a solution of
systems theory onlyI(w) or, equivalently,G(iw) is considered as system (14).
a frequency response function. For nonlinear systems the linearityn the nonlinear case, the dependency of the frequency response
in v will apparently be lost and we will have to consider frequencfunctions onv; and vs is, in general, nonlinear. This implies, for

response functions as functions of bathand v. example, that for nonlinear convergent systems we may observe
a non-proportional change in the “amplitude” of the steady-state
IV. NONLINEAR FREQUENCY RESPONSE FUNCTIONS responses with respect to a change of the excitation amplitude. At

In this section we consider uniformly convergent systems the same time, the steady-state solution,(t) given in (12) is a
unique periodic solution with the same period time as the period of
i € F(z,u), y=h), (11)  the harmonic excitation. This resembles properties of asymptotically

input w € R and outputy € R. Recall that stable linear s_ystems. _Nc_)tice that for gengral nonlinear system;,_c_)ne
) can have multiple coexisting attractors, which excludes the possibility
of the existence of the mapping and makes the analysis of the

Sigady-state behavior corresponding to harmonic excitations much

with statexz € R",
according to Definition 2, for any bounded inpuft) system (11
has a unique steady-state solution(t), which is uniformly globally

asymptotically stable (UGAS). We are interested in a characterizati

of all steady-state responses corresponding to harmonic excitatigHe involved. _ _
u(t) := asin(wt) with various frequenciesy > 0 and amplitudes In general, it is not easy to find such frequency response functions

a > 0. The main result of the note is formulated in the fonowinqanalytically. In some cases it can be found based on the following
theorem. emma, which provides a nonlinear counterpart of the Sylvester
Theorem 3:Suppose system (11) satisfies the basic assumptioR§uation (10). N _ _

it is regular and uniformly convergent with the UBSS property for the Lémma 1:Under the conditions of Theorem 3, if there exists a
class of continuous bounded inputs. Then there exists a continu§ggtinuous functioru(vy, vz, w) differentiable inv = [v1,v2]" and
function o : R® — R™ such that for any harmonic excitation of theSatisfying

form u(t) = asin(wt), system (11) has a unique periodic solution a_a(vw)s(w)v € Flo(v.0).01), ¥ o.wcE: xR, (15)
Zaw(t) := a(asin(wt), a cos(wt), w) (12) O
then this a(v1,v2,w) is the state frequency response function.

anlgl thi? s_l?rl]ution istGfAi: h foll ; he f h Conversely, if the state frequency response functigm , vz, w) is
roof. The proof of this theorem follows from the fact thatyige ontigple inv, then it is a unique solution of (15).

harmonic signals of the form(t) = a sin(wt) for various amplitudes Proof. Let a(v1,vs,w) be a differentiable inv function satisfying

a and frequencies are generated by the system (15). As follows from (15), for any solutiofv (t), va(t),w]” of the
{ v = Sw)v, u=wv1, exosystem (13 (v1(t), v2(t),w) is a solution of (14). By Remark 3,
. (13) . . 4
w = 0, this a(v1,v2,w) is the state frequency response function.
Now supposex(v1, v2,w) IS a state frequency response function
differentiable inv. By substituting the steady-state solution(t) =
0 w ] a(v1(t),v2(t),w) corresponding to some solutidny (t), v2(t), w]”
—w 0]’ of system (13) into (14), we obtain that (15) holds forallo on the
solution [v; (t), v2(t),w]”. Due to the arbitrary choice of the initial
conditions of system (13) we conclude that (15) holds fowat R?
and allw € R. O
As will be illustrated with an example in Section VI, for some
systems one can relatively easily fiadv:, v2,w) by solving (15).
excited by a solution of the system (13). According to the conditionk it is not possible to obtain an analytical solution of (15), one
of the theorem, system (14) is regular and uniformly convergent wittan try to find an approximate solution of (15). For general uni-

wherev = [v1,v2]T € R?, w € R and
S(w) == [

with the initial conditionsv(0) = [0,a]T, w(0) = w. Consequently,
we can treat system (11) excited by the inpift) = asin(wt) as
the system

z € F(z,v1) (14)



formly convergent systems (11), the frequency response fumsctiaetermined in experiments. If we are interested in the maximum of
can always be found numerically by simulating system (11) witthe amplification gain for a given frequency and over a range of
the inputu(t) = asin(wt). All solutions of this system converge toamplitudesa € (a,a), then we can extend the definition @f (w) as

the UGAS steady-state solution equald@a sin(wt), a cos(wt), w).  follows: Y, a)(w) := SUP,e (4,a) Va(W)-

Thus by simulating the system we can find approximate values offor linear SISO systems of the forin= Az + Bu with a Hurwitz
a(vy,v2,w) for vi = asin(¢w), v2 = acos(¢r), with the set matrix A and outputy = C'z, the gainvy,(w) is independent of the
{¢x}5=Y constituting a mesh over the intenval 27). By perform- amplitudea and it equalsy(w) = |C(iwl — A)~' B|. Therefore, we

ing these simulations for excitation amplitudesand frequencies see that for linear systems the graph of the amplification gaiw)

w from a sufficiently dense mesh in the range of interest, we wills in (16) versus the excitation frequengycoincides with the Bode
find approximate values ak(v1,v2,w) on the corresponding meshmagnitude plot.

covering a subset aR®. Further, interpolation can be employed to An alternative gain corresponding to amplification properties of
find an approximation ofi(v1, v2,w) in this subset oR?. Yet, since nonlinear systems excited by periodic signals has been proposed
the convergence rate of uniformly convergent systems can be véry[13]. That gain links rms values of the input and the output
slow, it is more appropriate to use this method for exponentiallyf a system. Although such a gain has transparent links with the
convergent systems. To reduce computational costs for this nuineri€a gain, in many motion control application it is more important
procedure, instead of finding an approximation of the periodic steady- characterize the gain linking the maximal absolute values of the
state solutionx(a sin(wt), a cos(wt),w) using simulations, one can input and output rather than their rms values, see, e.g., [8], [108]. F
find its approximation using the describing function method, sesuch applications the gaing (w) or Y, z)(w) defined above can be
e.g., [16]. Notice that the describing function method provides anore beneficial. These gains can be computed numerically by firstly
approximation of the periodic solution(asin(wt), a cos(wt),w) computing the corresponding frequency response function and then
based only on its first harmonic (or the firkt harmonics). Also using it for finding the gain, or they can be estimated as proposed in
such an approximation requires an additional justification. Simil§t1].

to the simulation-based numerical procedure described above, in

practice, when one has a convergent system, its output frequency V1. EXAMPLE

response functioh(a(v., vz, w)) can be obtained experimentally by For general convergent systems it is rather difficult to find the

exciting the system with harmonic signals at various amplitudes aprd uency response functian( ) analytically. Yet, for some
frequencies and measuring the corresponding steady-state outpu d y resp 1,02, W y y. '

systems this can be done rather easily, as illustrated by the following

see [8]. .
(8] example. Consider the system
V. NONLINEAR BODE PLOT iy = —x1 415, Y=, 17)
In practice it is very important to know how a system amplifies By = —xz2+u, (18)

inputs at various frequencies. In performance analysis of Contreo>|<cited by the inputu(f) = asin(wt). This system is a series

systems this information alloyvs one to quantify the influence of higf&- nnection of two systems satisfying the conditions of Theorem 1
frequency measurement noise on the steady-state response Of\/\} P =Q = 1. Since series connection of two systems satisfying

system, or how close a closed-loop system will tra_ck Iow-fre.quenﬁ{e conditions of Theorem 1 is a uniformly convergent system with
reference signals. In the case of LTI systems, this essentially |%

tant inf tion i I ted in the Bod i e UBSS property for the class of continuous bounded inputs (see
portant information IS usually represented in the Bode magnitugs, ., o ), system (17), (18) is uniformly convergent with the UBSS
plots. The Bode magnitude plot is a graphical representation of t

in with which th ¢ lifies h ic signals at . pFoperty for the class of continuous bounded inputs. Consequently,
fgrzgu;vr:cie\g Ich the system amplilies harmonic sighais & Var'OlfJ%/ Theorem 3 the mapping(v1, v2,w) exists and is unique. We

will first find vz (v1, v2,w) (the second component of) from (18).

Slmllar to LTI systems, for uniformly cqnvergent systt_ams We Cagince the z2-subsystem is an asymptotically stable LTI system,
define a counterpart of the Bode magnitude plot, which then ca

n L. . . .
be used for the purpose of frequency-domain performance emalng(m’ v2,w) Is linear with respect toy andvs (see Section i), i.e.
Suppose the system is excited by the harmonic sigeal(wt) with az(v1,v2,w) = b1 (w)v1 + ba(w)va.
amplitudea. Denote the maximal absolute value of the outpute- . P
fined in (11) in steady-state b§(w, a). We are interested in the ratio Recall thatas (v (t), va(t), w), With v(t) = [v1(¢) va2(¢)] " being a
~a(w) := B(w,a)/a at various amplitudes and frequencies. Thi§o|utlor_1 of the linear harmonlc_osplllato_r (8), is a solution of_ system
ratio can be considered as amplification gainof the convergent (18) With u(t) = vi(t). Subsituting thisaz(v1(t), va(t), w) into
system. Notice that in the nonlinear caggw) depends not only on equation (18) and equating the corresponding coefficients and

the frequency, as in the linear case, but also on the amplitude of fite W€ obtain

excitation. bi(w) = 1 by (w) = —— .
Formally, the amplification gaif,(w) is defined as (1+w?)’ (14+w?)
1 Then, substituting the obtaineds, for z» in (17), we compute
Ya(w) := = ( sup |h(a(v17uQ7w))) . (16) 1(vi,v2,w). In our case, it is a polynomial of; andvo of the
@ \vitvi=a? same degree as the polynomjak (v1, v2,w))?, i.e. of degree 2 (see

Since the steady-state solution of a uniformly convergent systdal, Lemma 1.2 for details). Therefore, we will seak (v, vz, w) in
is unique and UGAS, one can always fird(w) numerically by the form

simulating the system excited by(t) = asin(wt), finding the
maximal absolute value of the output steady-state response and
dividing it by a. Yet, since the convergence rate of a uniformlyWe substitute the steady-state solutien(vi (t), v2(t),w) for x1(t)
convergent system can be very slow, it is more appropriate to use tim® (17) with z2(t) = a2(vi(¢t),v2(t),w) and then equate the
method for exponentially convergent systems. Similag){to) can be corresponding coefficients at the ternis vive andv3. This results

a1 (v, v2,w) =1 (w)v% + 2¢a(w)vive + c;;(w)vg. (29)



harmonic input frequency is a counterpart of the Bode magnitude
plot from linear systems theory.

The results presented in this note may open an interesting direction
in nonlinear control systems theory. Further research in this direction
includes finding efficient numerical algorithms for computing such
nonlinear FRFs. Another open question is what information on
system’s properties can we extract from such FRFs? As it has been
illustrated in Section V, based on this FRF one can relatively easily
define a counterpart of the Bode magnitude plot. The next problem
10" 10° 10’ 107 is how to define in a sensible way a counterpart of the Bode phase
Excitation frequency (Hz) plot, which is extremely important in the case of linear systems? All
these research directions may provide a potential link between the
performance- and frequency domain-oriented linear systems thinking
dominating in industry and the stability-oriented nonlinear systems
thinking, which is wide-spread in academia.

71 (W)

Fig. 1. The functiomy; (w) (nonlinear Bode plot).

in c(w) = 2w + 1)/A(W), e2(w) = (W* — 2w)/A(w), and
c3(w) = 2w* + 5w?) /A(w), whereA(w) == (1 + 4w?)(1 + w?)?.
It can be easily verified that the obtainedv:, v2,w) is, in fact, a
solution of (15). Existence: We prove the existence ef(w) by constructing this
After the functiona(v1, v2,w) is computed, one can numerically,mapping. Since the right-hand side of (5) is locally Lipschitz, for any
though very efficiently, compute the amplification gain(w) for a wo there exists a unique solutian(t, wo) of system (5) that satisfies
range of amplitudes and frequencies,, and Y (o 4)(w), for some w(0,wo) = wo. Moreover, due to the boundedness assumgBian
maximal excitation amplituda and all frequencies over the band ofthis solution is defined and bounded & Since (1) is uniformly
interest. Since the output frequency response funaiipfv;, v2,w) CONvergent for the class of continuous bounded inputs, fortliy =
is a homogeneous polynomial function of degree 2 with respect 4, wo) system (1) has a unique steady-state solutioit). To
the variablesv; and v, (see formula (19)), one can easily checlndicate the dependency of this steady-state solutiomgnve denote
that for arbitrarya > 0 it holds thaty,(w) = ayi(w). Here we it by (¢, wo). Definea(wo) := (0, wo). In this way we uniquely
recognize the dependency of the amplification gain on the amplitudefinea(wo) for all wo € R™.
of the excitation. This is an essentially nonlinear phenomenon. ThisLet us show thatv(w(t,wo)) = Z(t,wo). To this end we first
also implies thatY (o ) (w), which is given bysup,c ) Ya(w), Prove the following formula:
equalsY (o z)(w) = @y1(w). Figure 1 shows the graph of numerically _ -
compute(d'yigwi overug. zl'his graph is a counterpart of the Bode 2t wo) = 2(t — 7, w(rwo)), V&7 ER. (20)
magnitude plot from linear systems theory. Fix 7 € R. Denotez”(t) := Z(t,w(r,wo))—the steady-state
solution of system (1) corresponding to the input, w(, wo)) (for
this reasonz” (t) is bounded orR). Since (5) is autonomous;” (t)
satisfies

APPENDIX: PROOF OFTHEOREM 2

VII. CONCLUSIONS

In this note we have shown that for a regular uniformly con- i) € F(TT (), w(t, w(r,wo)))
vergent system with the UBSS property, all steady-state solutions B .
corresponding to harmonic excitations at various frequencies and = F@ (), wt+7 w)).
amplitudes can be characterized by one continuous function, whicfom this we conclude that™ (¢t — 7) is a solution of the system
we call a nonlinear frequency response function (FRF). It has been
shown that this function extends the notion of FRF from linear & € F(z,w(t, wo)). (21)
systems theory. In contrast to the describing function method, Whi%reover, sincez” (t) is bounded orR, z" (¢ — 7) is also bounded
provides only approximationsof the steady-state solutions corré-yn g pye to uniform convergence of system (21), there is only one
sponding to harmonic excitations, this nonlinear FRF repressaist  o|ytion of (21) that is bounded di and this solution is the steady-

information on these steady-state solutions. For some systems, asias, solutioni (¢, wo). Therefore, we obtain (20). Then, for = t

been illustrated with an example, the nonlinear FRF can be fouﬂﬂ'mula (20) imp’lies

analytically. If this is not possible, it can always be found numerically

or, in case an experimental system is available, it can be determined Z(t, wo) = Z(0, w(t,wo)) = a(w(t, wo)), VtE€R. (22)

experimentally by exciting the system with harmonic signals at Continuity: It remains to show that the mapping = a(w)

various amplitudes and frequencies. Now, since the existence of the ' . . . o
. constructed above is continuous, i.e. that for amy € R™ and

FRF for nonlinear convergent systems has been proved, one can > 0 there existss > 0 such that|w ws| < 6 implies

1 — 2

- . n
focus on the developments of more efficient numerical methods f?)ar(ng) — a(ws)| < e. For simplicity, we will prove continuity in
computing such nonlinear FRFs. ! 2 : plicity, p

) . . . the ball < r. Sincer can be chosen arbitrarily, this will impl
The newly defined nonlinear FRF gives rise to a frequenc jwl < r " 4 i

q dent lificati . hich ides inf i h \é'ontinuity in R™. In what follows, we assume thab, satisfying
ependent ampiitication gain, which provides iniormation on ho 1| < rande > 0 are fixed and the poini, varies in the ball

e . . . . w
a system amplifies harmonic inputs of various frequencies auo]I2| <r
amplitudes. This information is essential for performance analy: isAS a breliminary observation, notice thats| < r and |wz| < r
of convergent closed-loop systems since it allows one to quantify t ply, due to the boundedness assumptB, that [w(t, w;)| < p

influence of, e.g., high-frequency measurement noise on theyste ri — 1,2 and for allt € R. This, in turn, due to the UBSS property
state response of the system, or how close the output of a closed-lgggyster’n (1) (see (3)) and due, to (22)’ implies

system will track low-frequency reference signals. Such information
is important in control applications. A plot of this gain versus the la(w(t,ws:))] <R, VteR, i=1,2. (23)



In order to prove continuity of(w), we introduce the function and &(w) are continuousg,, (¢t) and ., (t) are two bounded oiR

er(wi,w2) = x(0,-T,a(w(—T,w2)), w1), where the number solutions of (1). Due to the unform convergence of system (1), there is
T > 0 will be specified later and(t, to, zo, w«) is the solution only one bounded oR solution. Hence,, (t) = Z.,(¢). In particular,
of the time-varying system for t = 0 we obtaina(w.) = &(w.). We come to a contradiction.
. Hence suchx(w) is unique. O
X € F(x, w(t,wy)) (24) Lemma 2:There isT > 0 such that inequality (26) holds.
with the initial condition x(¢o, to, zo, w«) = zo. The function Proof: In order to prove inequality (26), notice that (w1, w1) =

o7 (w1, ws2) has the following meaning, see Fig. 2. First, considex:(0) andyr (w1, w2) = x2(0), wherex1(¢) andyz(t) are solutions
of system (24) with the inpub (¢, w1 ) satisfying the initial conditions
x1(=T) = a(w(=T,w1)) and x2(=T) = a(w(—=T,w2)). By the

_olw(0,w2)) = pr(wz, w2) construction ofa(w), x1(t) = a(w(t,w1)) is a UGAS solution of

system (24) with the inputv(t,w1). This implies that forR > 0

a(w(t,w)) input w(t, ws) ande > 0 there existsI% (R) > 0 such that for any solutio(t) of
\ system (24) with the inpub (¢, w1 ) the inequality|x1 (to) — x(to)| <
pr(w,w2) 2R implies
N a(w(=T,ws2))
~ |

Ixi(t) — x(t)| <e/2, Vt>to+T(R), to €R. (28)

——— —
input w(t, wr)

a(w(0,w1)) = @7 (w1, wr)

SetT := T.(R). By the definition ofx, () and x2(t), we have
x1(=T) = a(w(=T,w1)) and x2(=T) = a(w(=T,ws)). By

the inequality (23) and the triangle inequality, we conclude that
) ) ) Ix1(=T) — x2(=T)| < 2R. Thus, forto = =T andt = 0 formula

Fig. 2. The construction of the functiopr (w1, w2). (28) implies
the steady-state solutiam(w(t, w2)), which is a solution of system x1(0) = x2(0)] <e/2, (29)
(24) with the inputw(t, w2) and initial conditiona(w(0,wz)) =
a(wz2). We shift alonga(w(t, w2)) to timet = —T and appear in
a(w(—T,w2)). Then we switch the input ta(¢, w1 ), shift forward
to the time instant = 0 along the solutiony(¢) corresponding to
this w(t, w1) and starting iny(—7") = a(w(—T,w2)) and appear in
x(0) = 7 (w1, w2). Due to regularity of system (1) (and, therefore, { X € F(x,w)

which is equivalent to (26). ]
Lemma 3:Given a numbefl’ > 0 there exists a numbef > 0
such that inequality (27) is satisfied.
Proof: Consider the differential inclusion

of system (24)), the functiopr (w1, w-) is single-valued. Notice, (30)

that o (wo, wo) = a(wo), for all wy € R™, because there is no

switc.h of inputs and we just shift back and forth along the samgy| tions of thew-subsystem are unique becaus@v) is locally
solution ax(w(t, wo)). Thus, Lipschitz. Given a solution of thev-subsystem, solutions of the
x-subsystem are right-unique due to the regularity assumption on
system (1). Hence, solutions of (30) are right-unique. In addition to
this, due to the basic assumptions on system (1), see Section I,
+or (w1, wa2) — o1 (w2, wa). for every (z,w) € R"™™, (FT(z,w),s” (w))” is a nonempty
convex compact set and it is upper semicontinuous, in. Applying
Corollary 1 from [5], p. 89, we conclude that solutions of (30)
lo(wr) — a(we)] < |or(wr,wr) — @r(wi, ws)] continuously depend on initial conditions in forward time. Notice that
(x(t, =T, 0, wo) T, w(t,wo)™)7T is a solution of (30) with the initial
conditionsx(—T7) = zo, w(—T) = w(=T,wo). By the reasoning
As follows from Lemma 2 (see below), there exigts> 0 such that presented abovey(0, —T', zo, wo) continuously depends on the ini-
tial conditionszo and w(—T', wo). Sincew(—T,wo) IS continuous
with respect tow, (the right-hand side of (5) is continuous), we
It follows from Lemma 3 (see below), that given a numtiér> 0, conclude thaty (0, —7, o, wo) iS a continuous function ok, wo.
there existsy > 0 such that This implies thaty (0, — T, o, wo) is uniformly continuous over the
compact set/ := {(xzo,wo) : |zo| < R,|wo| < r}. Hence, there
[er(w, w2) = r(ws,w2)| - < €/2 @) existss > 0 sucé(that if)\mo|‘ §| R, \w|1| |§ 7, }i’wﬂ < r and
Vows:wr —wa| <6 |wi — ws| < &, then

Unifying inequalities (26) and (27), we obtaja(w:) — a(w2)| < €

for all w, satisfying w1 — w2| < 6. Due to the arbitrary choice

of ¢ > 0 and|w:| < r, this proves continuity ofx(w) in the ball Recall, that by the definition ap (w1, ws:)

|w| < r. Due to the arbitrary choice af > 0, this implies continuity

of a(w) in R™. or(wi, ws) — pr(w2, ws) =
Uniqueness:Supposex : R™ — R™ anda : R™ — R™ are two x(0, =T, 20, w1) — x(0, =T, zo, w2), (32)

different continuous mappings such that for any solutig(t, wo) of

system (5),%.(t) := a(w(t,wo)) and T, (t) := a(w(t,wo)) are wherexo := a(w(—T,w2)). Notice, thatjw:| < r, |wz| < r and

solutions of system (1) withw(t) = w(t, wo). Let w. € R™ be |a(w(—T,w2))| < R. Hence, as follows from (31) and (32)y1 —

such thata(w.) # a(w.). Considerw(t, w.). Due to Assumption ws| < § implies |7 (w1, w2) — pr (w2, w2)| < £/2. Thus, we have

BA, w(t, w,) is bounded orR. This implies that, since both(w) shown (27). O

w = s(w).

a(wr) —a(wz) = @r(wi,wi) — pr(ws, ws)

or (w1, wr) — or(wi,ws) (25)

By the triangle inequality, this implies

+ |@T(w1,w2)_<ﬂT(w27w2)|'

lor(wi, w1) — pr(wi, w2)| <e/2 V |wz| <r.  (26)

Ix(0, =T, zo,w1)) — x(0, =T, o, w2)| < &/2. (31)
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