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Abstract—There are many communication imperfections in net-
worked control systems (NCS) such as varying transmission delays,
varying sampling/transmission intervals, packet loss, communica-
tion constraints and quantization effects. Most of the available lit-
erature on NCS focuses on only some of these aspects, while ig-
noring the others. In this paper we present a general framework
that incorporates communication constraints, varying transmis-
sion intervals and varying delays. Based on a newly developed NCS
model including all these network phenomena, we will provide an
explicit construction of a continuum of Lyapunov functions. Based
on this continuum of Lyapunov functions we will derive bounds
on the maximally allowable transmission interval (MATI) and the
maximally allowable delay (MAD) that guarantee stability of the
NCS in the presence of communication constraints. The developed
theory includes recently improved results for delay-free NCS as a
special case. After considering stability, we also study semi-global
practical stability (under weaker conditions) and performance of
the NCS in terms of gains from disturbance inputs to con-
trolled outputs. The developed results lead to tradeoff curves be-
tween MATI, MAD and performance gains that depend on the used
protocol. These tradeoff curves provide quantitative information
that supports the network designer when selecting appropriate net-
works and protocols guaranteeing stability and a desirable level of
performance, while being robust to specified variations in delays
and transmission intervals. The complete design procedure will be
illustrated using a benchmark example.

Index Terms— gains, communication constraints, delays,
Lyapunov functions, networked control systems (NCS), protocols,
stability, time scheduling.
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I. INTRODUCTION

N ETWORKED control systems (NCS) have received con-
siderable attention in recent years. The interest for NCS is

motivated by many benefits they offer such as the ease of main-
tenance and installation, the large flexibility and the low cost.
However, still many issues need to be resolved before all the ad-
vantages of wired and wireless networked control systems can
be harvested. Next to improvements in the communication in-
frastructure itself, there is a need for control algorithms that can
deal with communication imperfections and constraints. This
latter aspect is recognized widely in the control community, as
evidenced by the many publications appearing recently, see e.g.,
the overview papers [23], [47], [54], [56].

Roughly speaking, the network-induced imperfections and
constraints can be categorized in five types:

(i) Quantization errors in the signals transmitted over the net-
work due to the finite word length of the packets;

(ii) Packet dropouts caused by the unreliability of the
network;

(iii) Variable sampling/transmission intervals;
(iv) Variable communication delays;
(v) Communication constraints caused by the sharing of the

network by multiple nodes and the fact that only one node
is allowed to transmit its packet per transmission.

It is well known that the presence of these network phenomena
can degrade the performance of the control loop significantly
and can even lead to instability, see e.g., [10] for an illustrative
example. Therefore, it is of importance to understand how these
phenomena influence the closed-loop stability and performance
properties, preferably in a quantitative manner. Unfortunately,
much of the available literature on NCS considers only some of
above mentioned types of network phenomena, while ignoring
the other types. There are, for instance, systematic approaches
that analyse stability of NCSs subject to only one of these net-
work-induced imperfections. Indeed, the effects of quantization
are studied in [3], [12], [20], [22], [28], [36], [45], of packet
dropouts in [41], [42], of time-varying transmission intervals
and delays in [14], [32], and [10], [16], [24], [27], [35], [55], re-
spectively, and of communication constraints in [2], [11], [26],
[40].

Since in any practical communication network all aforemen-
tioned network-induced imperfections are present, there is a
need for analysis and synthesis methods including all these im-
perfections. This is especially of importance, because the design
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TABLE I
REFERENCES THAT STUDY MULTIPLE NETWORK-

INDUCED IMPERFECTIONS SIMULTANEOUSLY

of a NCS often requires tradeoffs between the different types.
For instance, reducing quantization errors (and thus transmit-
ting larger or more packets) typically results in larger transmis-
sion delays. To support the designers in making these tradeoffs,
tools are needed that provide quantitative information on the
consequences of each of the possible choices. However, less
results are available that study combinations of these imper-
fections. References that simultaneously consider two types of
network-induced limitations are [5], [9], [13], [18], [25], [29],
.[31], [39], [48], [51], [52] which are categorized in Table I.
Moreover, [37] consider imperfections of type (i), (iii), (v), [8],
[33], [34] study simultaneously type (ii), (iii), (iv), [38] focusses
on type (ii), (iii), (v), and [15] incorporates type (i), (ii), and (iv).
In addition some of the approaches mentioned in Table I that
study varying transmission intervals and/or varying communi-
cation delays can be extended to include type (ii) phenomena
as well by modeling dropouts as prolongations of the maximal
transmission interval or delay (cf. also Remark II.4 below).

Another paper that studies three different types of network
imperfections is written by Chaillet and Bicchi [6]. This paper
studies NCS involving both variable delays, variable trans-
mission intervals and communication constraints, and uses a
method for delay compensation. The delay compensation is
based on sending a larger control packet to the plant containing
not just one control value at one particular time instant, but
containing a control signal valid for a given future time horizon.
For this particular control scheme, [6] provides bounds on the
tolerable delays and transmission intervals such that stability
of the NCS is guaranteed. Also in the present paper we will
study NCS corrupted by varying delays, varying transmission
intervals and communication constraints, while packet dropouts
can be included as well (in the way explained in Remark II.4
below). In other words, this paper considers network-induced
imperfections of type (iii), (iv) and (v). After developing a
novel NCS model incorporating all these types of network
phenomena, we will present allowable bounds on delays and
transmission intervals guaranteeing both stability and perfor-
mance of the NCS. However, in contrast with [6], we consider
the more basic emulation approach in the spirit of [5], [11],
[38], [39], [51], [52], which encompasses no specific delay
compensation schemes. The work in [6] is of interest, as it aims
at allowing larger delays by including specific delay compen-
sation schemes, at the cost of sending larger control-packets
and requiring time-stamping of messages. The features of
compensation and time-stamping of messages are not needed
in our framework. Another distinction with [6] is related to the
admissible protocols that schedule which node is allowed to
transmit its packet at a transmission time. Our work applies
for all protocols satisfying the UGES property (see below
for an exact definition) and not only for so-called invariably

UGES protocols (cf. [6]), which exclude the commonly used
Round-Robin (RR) protocol.

One of the main contributions of this paper is that we ex-
plicitly construct a continuum of Lyapunov functions based on
the standard delay-free conditions as adopted in [5], [11], [38],
[39], [51], [52]. This continuum of Lyapunov functions leads
to tradeoff curves between the maximally allowable transmis-
sion interval (MATI) and the maximally allowable delay (MAD)
guaranteeing stability of the NCS. These tradeoff curves will de-
pend on the specific communication protocol used, so that they
even allow for the comparison of different protocols. In addi-
tion to stability, which is only a basic property that has to be
satisfied by the control loop, there are often additional require-
ments with respect to the performance of the NCS. This paper
also studies the performance in terms of gains between spe-
cific exogenous inputs (e.g., disturbances) and controlled out-
puts of the system. We will show how performance of the
NCS depends on the MATI, the MAD and the protocol used,
leading to tradeoff curves as well. This design methodology and
the method to compute the tradeoff curves will be demonstrated
on the case study of the batch reactor that has developed over the
years as a benchmark system for NCS, see e.g., [5], [38], [39].
Next to stability and performance, also semiglobal practical
stability results will be presented that can be obtained under
weaker conditions.

The paper is organized as follows. The current section will
end with introducing some notational conventions and con-
cepts. Next, in Section II we present a general NCS modeling
framework that extends the NCS models in [5], [11], [38], [39],
[51], [52] to include both communication constraints as well as
varying transmission delays and transmission intervals. In Sec-
tion III we will transform this new NCS model into the hybrid
system framework as introduced in [17] as this will facilitate
further analysis. Also the stability and performance concepts as
used in this paper are defined in this section. In Section IV we
will derive the Lyapunov-based conditions that determine both
the maximally allowable transmission interval (MATI) and the
maximally allowable delay (MAD) guaranteeing global asymp-
totic stability and performance. We also present the results
on semiglobal practical stability in this section. In Section V
we show how the Lyapunov functions can be constructed on
the basis of the widely adopted non-delay conditions in [5],
[11], [38], [39], [51], [52] and show that the non-delay case is a
particular case of general framework. To demonstrate how the
developed methods can be used for explicitly computing MATI
and MAD guaranteeing stability or certain performance, we
apply the framework to the benchmark problem of the batch
reactor [5], [38], [39]. Finally, we state the conclusions and our
ideas for future work.

The following notational conventions will be used in this
paper. will denote all nonnegative integers, denotes all
positive integers, denotes the field of all real numbers and

denotes all nonnegative reals. By and we denote
the Euclidean norm and the usual inner product of real vectors,
respectively. For a collection of real vectors with

, we denote the column vector ob-
tained by stacking the vectors , on top of each
other by . For a symmetric matrix ,
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denotes the largest eigenvalue of . By and we denote the
logical ’or’ and ’and,’ respectively. A function
is said to be of class if it is continuous, zero at zero and strictly
increasing. It is said to be of class if it is of class and it is
unbounded. A function is said to be of
class if it is continuous, is of class for each
and is nonincreasing and satisfies
for each . A function is
said to be of class if it is continuous, and for each ,

and belong to class . We write for
the standard exponential function.

We recall now some definitions given in [17] that will be used
for developing a hybrid model of a NCS later. For the motivation
and more details on these definitions, one can consult [17].

Definition I.1: A compact hybrid time domain is a set
with and

. A hybrid time domain is a set such
that is a compact hybrid time domain
for each .

Definition I.2: A hybrid trajectory is a pair (dom , ) con-
sisting of a hybrid time domain dom and a function defined
on dom that is absolutely continuous in on

for each .
Definition I.3: For the hybrid system given by the state

space , the input space and the data , where
is continuous, is locally

bounded, and and are subsets of , a hybrid trajectory
(dom , ) with : dom is a solution to for a locally
integrable input function if

1) For all and for almost all dom
, we have and .

2) For all dom such that dom , we have
and .

Hence, the hybrid systems that we consider are of the form

We sometimes omit the time arguments and write

(1)

where we denoted as . We also note that typi-
cally and, in this case, if we have that
either a jump or flow is possible, the latter only if flowing keeps
the state in . Hence, the hybrid model (1) may have non-unique
solutions.

In addition, for , , we introduce the norm
of a function defined on a hybrid time domain dom

with possibly and/or , by

(2)

provided the right-hand side exists and is finite. In case is
finite, we say that . Note that this definition is essentially

identical to the usual norm in case a function is defined on a
subset of .

II. NCS MODEL AND PROBLEM STATEMENT

In this section, we introduce the model that will be used to de-
scribe NCS including both communication constraints as well
as varying transmission intervals and transmission delays. This
model will form an extension of the NCS models used before
in [38], [39] that were motivated by the work in [52]. All these
previous models did not include transmission delays. We con-
sider the continuous-time plant

(3)

that is sampled. Here, denotes the state of the plant,
denotes the most recent control values available at the

plant, is a disturbance input and is the output
of the plant. The controller1 is given by

(4)

where the variable is the state of the controller,
is the most recent output measurement of the plant that

is available at the controller and denotes the control
input. The functions , are assumed to be continuous and
and are assumed to be continuously differentiable. At times

, , (parts of) the input at the controller and/or the
output at the plant are sampled and sent over the network. The
tranmission/sampling times satisfy
and there exists a such that the transmission intervals

satisfy for all ,
where denotes the maximally allowable transmission in-
terval (MATI). At each transmission time , , the pro-
tocol determines which of the nodes is granted
access to the network. Each node corresponds to a collection of
sensors or actuators. The sensors/actuators corresponding to the
node that is granted access collect their values of the entries in

or that will be sent over the communication net-
work. They will arrive after a transmission delay of time units
at the controller or actuator. This results in updates of the cor-
responding entries in or at times , . The situ-
ation described above is illustrated for and in Fig. 1 for the
situation of two nodes that obtain access to the network in an
alternating fashion.

It is assumed that there are bounds on the maximal delay in
the sense that , , where
is the maximally allowable delay (MAD). To be more precise,
we adopt the following standing assumption.

Standing Assumption II.1: The transmission times satisfy
, and the delays satisfy

, , where
is arbitrary.

The latter condition implies that each transmitted packet ar-
rives before the next sample is taken. This assumption indicates
that we are considering the so-called small delay case as op-
posed to the large delay case, where delays can be larger than
the transmission interval. The inequalities and

1Extensions of the theory presented below to the case of time-dependent sys-
tems (3) and time-dependent controllers (4) are straightforward.
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Fig. 1. Illustration of a typical evolution of � and �� in case of two nodes that
get access to the network in an alternating manner.

can be taken non-strict with the understanding
that in case the update instant coincides with the next
transmission instant , the update is performed before the
next sample is taken. The updates at satisfy

(5)

where denotes the vector with and
. Hence, with . If the

NCS has nodes, then the error vector can be partitioned
as . The functions and are now up-
date functions that are related to the protocol that determines
on the basis of and the networked error which node is
granted access to the network. Typically when the -th node gets
access to the network at some transmission time we have
that the corresponding part in the error vector has a jump at

. In most situations, the jump will actually be to zero,
since we assume that the quantization effects are negligible. For
instance, when is sampled at time , then we have that

. However, we allow for more freedom in
the protocols by allowing general functions . See [38], [39] for
more details. We will refer to as the protocol.

In between the updates of the values of and , the network is
assumed to operate in a zero order hold (ZOH) fashion, meaning
that the values of and remain constant in between the up-
dating times and for all :

(6)

To compute the resets of at the update times ,
we proceed as follows:

In the third equality we used that due to
the zero order hold character of the network. We also implicitly

employed our Standing Assumption II.1 as we used that there
always occurs an update before the next sample is taken

.
A similar derivation holds for , leading to the following

model for the NCS:

(7a)

(7b)

where with , , are
appropriately defined functions depending on , , and
and . See [38] for the explicit expressions of and

, which also reveal how we use the differentiability conditions
on and imposed earlier.

Standing Assumption II.2: and are continuous and is
locally bounded.

Observe that the system

(8)

is the closed-loop system (3) and (4) without the network (i.e.,
and in (3) and (4)).

The problem that we consider in this paper is formulated as
follows.

Problem II.3: Suppose that the controller (4) was designed
for the plant (3) rendering the closed-loop (3) and (4) without the
network, i.e., and , (or equivalently, (8))
stable in some sense. Determine the value of and so
that the NCS given by (7) is stable as well when the transmission
intervals and delays satisfy Standing Assumption II.1

Remark II.4: Of course, there are certain extensions that can
be made to the above setup. The inclusion of packet dropouts
is relatively easy, if one models them as prolongations of the
transmission interval. Indeed, if we assume that there is a bound

on the maximum number of successive dropouts, the sta-
bility bounds derived below are still valid for the MATI given
by , where is the obtained value
for the dropout-free case. Another extension of the framework
in this paper could be the inclusion of quantization effects. This
step is more involved. It might be based on recent work in [37]
that unifies the areas of networked and quantized control sys-
tems without communication delays. It can be envisioned that
the results presented here can be combined with the framework
in [37] leading to an overall methodology capable of handling
all types of networked phenomena that were mentioned in the
introduction. The specific conditions and types of quantizers for
which this methodology is effective are subject of future re-
search and some preliminary results are reported in [21]. An-
other possible extension of interest is the consideration of the
large-delay case (in which the delays can be larger than the
transmission interval). This would require a more involved NCS
model that does not have the periodicity between transmission
and update events as implied by Standing Assumption II.1. This
is a hard problem, which will be considered in future research.
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III. REFORMULATION IN A HYBRID SYSTEM FRAMEWORK

To facilitate the stability analysis, we transform the above
NCS model into the hybrid system framework as developed in
[17]. This hybrid systems framework was also employed in [5],
where a similar model was obtained without the incorporation of
delays. To do so, we introduce the auxiliary variables ,

, and to reformulate the model in
terms of flow equations and reset equations. The variable is
an auxiliary variable containing the memory in (7b) storing the
value for the update of at the update instant

, is a counter keeping track of the transmission, is a
timer to constrain both the transmission interval as well as the
transmission delay2 and is a Boolean keeping track whether the
next event is a transmission event or an update event. To be pre-
cise, when the next event will be related to transmission
and when the next event will be an update. The Boolean
will be used to guarantee in the model below that the transmis-
sion and update events are alternating in the sense that before a
next sample is taking the previous update is implemented in the
NCS.

The hybrid system is now given by the flow equations

(9)

and the reset equations are obtained by combining the “trans-
mission reset relations,” active at the transmission instants

, and the “update reset relations”, active at the update
instants , given by

when

(10)

with the mapping given by the transmission resets (when
)

(11)

and the update resets (when )

(12)

Two comments on this model are in order. First of all, the role
of is to exclude (instantaneous Zeno) solutions to
satisfying , and

for or with , when
. Also when similar solutions exist that

are only resetting (sometimes called ‘livelock’ in hybrid systems
theory [50]). However, can be taken arbitrarily small to
still allow for small transmission intervals.

Secondly, the choice for when is irrelevant from a
modeling point of view. However, it was selected here as

2We could also have introduced two timers, one corresponding to the trans-
mission interval and one to the transmission delay. However, it turns out that
the NCS can be described using only one timer, which has the advantage of re-
sulting in a more compact hybrid model.

, because it will simplify the analysis later. By taking
the hybrid system above is in the

form (1).
Definition III.1: For the hybrid system with ,

the set given by is
said to be uniformly globally asymptotically stable (UGAS) if
there exists a function such that, for each

, and any initial condition , ,
, , ,

with3

, all corresponding solutions satisfy

(13)

for all in the solution’s domain. The set is uniformly
globally exponentially stable (UGES) if can be taken of the
form for some and

.
Remark III.2: The factor multiplying in the right-hand

side of (13) is motivated by the fact that for small values of
solutions of exist that have many resets without

progressing too fast. Actually, the limit case has ’livelock’
solutions that are only resetting (with remaining 0 and

) as discussed above. The scales the right-hand side of (13)
for this effect.

We also introduce the concept of uniform semiglobal prac-
tical asymptotical stability.

Definition III.3: For the hybrid system with ,
the set is said to be uniformly semiglobally practically asymp-
totically stable (USPAS) with respect to and , if there
exists such that for any pair of positive numbers

there exist and such that
for each , each initial condition ,

, , , ,
with

, ,
, and each corresponding solution we have

(14)

for all in the solution’s domain.
In the presence of disturbance inputs in we might

be interested in reducing its influence on a particular controlled
output variable

(15)

in terms of the induced gain, as formally defined below. The
hybrid model expanded with the output (15) is denoted
by .

Definition III.4: Consider with and let be
given. The hybrid system is said to be stable with gain

, if there is a -function such that for any ,
any input and any initial condition ,

3Note that the next condition is just saying that ���� �� � � � � in the
terminology of (1).
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, , , ,
with

, each corresponding solution
to satisfies

(16)

IV. STABILITY AND PERFORMANCE ANALYSIS

In this section we focus on the analysis of UGAS and UGES,
USPAS, and stability.

A. Stability Analysis

In order to guarantee UGAS or UGES, we assume the exis-
tence of a Lyapunov function for the reset equa-
tions (11) and (12) satisfying

(17a)

(17b)

for all and all and the bounds

(18)

for all , and for some functions
and and .

In Section V we will show how a function satisfying (17)
and (18) can be derived from the generally accepted conditions
on the protocol as used for the delay-free case in [5], [38].
To solve Problem II.3, we extend (17) and (18) to the following
condition.

Condition IV.1: There exist a function
with locally Lipschitz for all

and , a locally Lipschitz function ,
-functions , , and , continuous functions

, positive definite functions and and constants
, , for , and such that:

• for all and all (17) holds and (18) holds
for all ;

• for all , , , and almost
all it holds that

(19)
• for all , , and almost all

(20)

and
(21)

The inequalities (19) and(20) are similar in nature to the delay-
free situation as studied in [5] and are directly related to the

gain conditions from to as adopted in [38]. Although
these conditions may seem difficult to obtain at first sight, this is
not the case. We will demonstrate this in Section VI, where the

complete computational set-up for determining the parameters
in the above conditions is provided. See also Remark V.2 for a
more detailed discussion.

Consider now the differential equations

(22a)

(22b)

where and , are the real constants
as given in Condition IV.1. Observe that the solutions to these
differential equations are strictly decreasing as long as

, .
Theorem IV.2: Consider the system that satisfies Con-

dition IV.1. Suppose satisfy

(23a)

(23b)

for solutions and of (22) corresponding to certain chosen
initial conditions , , with

, and as in Condition IV.1. Then
for the system with the set is UGAS in the
sense of Definiton III.1. If in addition, there exist strictly positive
real numbers , , , and such that ,

, , ,
and , , then this set is UGES.

Proof: The solutions to the differential (22) are scaled
as and for new functions , . The
differential (22) and the conditions (23) transform into

(24)

and
(25a)

(25b)

We consider now the function

(26)

and show that this constitutes a suitable Lyapunov function for
the system , which can be used to conclude UGAS and
UGES under the stated conditions.

Below, with some abuse of notation, we consider the quantity
with

as in (9) even though is not differentiable with respect to
and . This is justified since the components in corre-
sponding to and are zero. We will first show that

whenever the system with resets.
When and a jump occurs, we have that

and obtain, using (11), that
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Similarly, when we have that and obtain,
using (12)

We also have, for all and almost all , that

The above proves that forms a Lyapunov function for the
system with and UGAS and UGES follows now
using standard Lyapunov arguments as are provided in [5] for
the delay-free case. This completes the proof.

From the above theorem quantitative numbers for and
can be obtained by constructing the solutions to (22) for

certain initial conditions. By computing the value of the in-
tersection of and the constant line provides
according to (23a), while the intersection of and gives
a value for due to (23b). Different values of the initial
conditions and lead, of course, to different solu-
tions and of the differential (22) and thus also to different
Lyapunov functions in (26). Hence, a continuum of Lyapunov
functions is obtained by varying the initial conditions and

. Moreover, each different choice of and pro-
vides different and . As a result, tradeoff curves be-
tween and can be obtained that indicate when sta-
bility of the NCS is still guaranteed. This will be illustrated in
Section VI, where the complete analysis framework will be ap-
plied to a benchmark example.

Remark IV.3: The existence of strictly positive and
such that (23) holds follows from in (17)

as this implies the existence of , with
. Moreover, when using

in case , we recover the explicit formula
for the MATI obtained in [5] (which improved earlier results in
[38], [39]) in the sense that we have

(27)
where . Hence, for the delay-free case

we recover the results in [5] as a special case.

B. Uniform Semiglobal Practical Stability

Under a version of Condition IV.1, which is weaker at var-
ious points, we can obtain semi-global practical asymptotical
stability results with respect to and for the zero-input
system of .

Condition IV.4: There are a function
with locally Lipschitz for all

and , -functions , , , and such
that

• for all and all (17) holds and (18) holds
for all ;

• for all , , all and almost all
it holds that

(28)

• The origin of the network-free and zero-input system
is globally asymptotically stable.

Theorem IV.5: Consider the system with that
satisfies Condition IV.4. The set is USPAS with respect to

and in the sense of Definition III.3.
Proof: We will prove the USPAS property with re-

spect to and considering . Since
is globally asymptotically stable and is con-

tinuous, we can apply a converse Lyapunov theorem [7] that
yields the existence of a continuously differentiable function

and a such that

(29)

We consider now the Lyapunov function

(30)

using and as in the proof of Theorem IV.2 and taking
the constant such that with as in (17). Now
exploiting (17), yields that in case of and

In case of and , we have

Finally, considering the evolution of along the flow of
with gives using (18) and (28) for

, all and almost all
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where

Note that is a continuous function due to the contin-
uous differentiability of and the continuity of and

. Moreover, for all . Using
now Lemma 2.1 in [46] guarantees, for each pair of
strictly positive numbers , the existence
of such that for almost all in

it
holds that
In a similar way as in the proof of Theorem IV.2, the USPAS
property can now be derived by straightforward reasoning.

C. Stability Analysis

For the stability analysis, we replace Condition IV.1 by
the following.

Condition IV.6: There exist a function
with locally Lipschitz for all

and , a locally Lipschitz function ,
-functions , , and , continuous functions

, and constants , , for ,
and such that:

• for all and all (17) holds and(18) holds
for all ;

• for all , , , ,
and almost all it holds that

(31)
• for all , , , and almost

all

(32)

for some and , and

(33)

The main difference between Condition IV.6 and Condition
IV.1 is the presence of the disturbance input and the de-
pendence of on both and instead of on only. More-
over, comparing (20) and (32), we observe the additional term

in the right-hand side of (32), which is
needed to obtain a bound on the gain between and .

Theorem IV.7: Consider the system that satisfies Con-
dition IV.6. Suppose satisfy (23) for solu-
tions and of (22) corresponding to certain initial condi-
tions , , with ,

and as in Condition IV.6. Then the system
is stable with gain .

Proof: In a similar manner as in the proof of Theorem IV.2,
we obtain that the function in (26) satisfies

(34)

whenever there is a reset and

(35)

during the flow of the hybrid system . Since we can
without loss of generality assume that by scaling
to . Let be a solution to with corresponding
output for initial condition and input . Denote
the hybrid time domain of by dom
with and possibly and/or . Let be the
corresponding output also considered on dom . Reformulating
(34) by using the hybrid time domain dom gives that for each

we have

(36)

and integrating (35) yields for each and
with that

(37)

Computing now the norm of gives

As a consequence, we have that .
Due to the bounds (33) and(18) on and , respectively, we
can bound as for a suitable

. This proves that the system is stable with gain
, where the -function in (16) can be taken as

.
Remark IV.8: Essentially, in the above proof we constructed

a so-called storage function [53] given by as in (26) for the
system with supply rate during the flow
phases and supply equal to 0 during the resets. In the analysis
of passivity and stability these concepts are exploited for
various classes of systems in, for instance, [4], [19], [49], [53].

V. CONSTRUCTING LYAPUNOV AND STORAGE FUNCTIONS

In this section we will construct Lyapunov and storage func-
tions and as in Condition IV.1, Condition IV.6 and Con-
dition IV.4 from the commonly adopted assumptions in [5],
[38], [39], [51], [52] for the delay-free case. We will start with
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constructing Lyapunov and storage functions as in Condition
IV.1 and Condition IV.6, respectively. For the delay-free case,
one considers in [5], [38] protocols satisfying the following
condition:

Condition V.1: The protocol given by is UGES (uniformly
globally exponentially stable), meaning that there exists a func-
tion that is locally Lipschitz in its second
argument such that

(38a)

(38b)

for constants and .
Additionally we assume here that

(39)

for some constant4 and that for almost all and
all

(40)

for some constant . For all protocols discussed in [5],
[38], [39], [51], [52] such constants exist. In Lemma V.4 below,
we specify appropriate values for these constants in case of the
often used Round Robin (RR) and the Try-Once-Discard (TOD)
protocols (see [38], [52] for their definitions). We also assume
the growth condition on the NCS model (7)

(41)

where , if we are looking for a Lyapunov func-
tion establishing UGAS, and

(42)

where , if we are looking for a storage
function establishing stability. In both cases is a
constant. Building upon slightly modified conditions as used
for the delay-free case in [5] given by the existence of a locally
Lipschitz continuous function satisfying the
bounds

(43)

for some -functions and , and, in case of constructing
a Lyapunov function, the condition

(44)
for almost all and all with , and, in
case of constructing a storage function, the condition

(45)

4In principle this constant can be taken non-negative. However, as all proto-
cols available in the literature satisfy � � �, we take � � � to reduce some
notational burden later.

for almost all and all and all ,
we can derive functions and satisfying Condition IV.1
and Condition IV.6, respectively. The constants in (44) satisfy

, where is sufficiently small.
Remark V.2: Condition V.1 and inequality (44) are essen-

tially the same as in [5] with . The constant
is selected small to sacrifice only a little of the

gain from to . In [38, Thm. 4] the inequality (44) was
actually formulated in terms of an gain, while we use a
Lyapunov-based formulation here. As gains are established
often using Lyapunov functions, this seems to be a natural refor-
mulation (see also [5, Rem. 2]). The only additional condition
we add here is (39), which holds for all protocols considered in
[5], [11], [38], [39], [51], [52] as is demonstrated in Lemma V.4
below for the RR and TOD protocols.

Theorem V.3: Consider the systems and , re-
spectively, such that

• Condition V.1, (39) with and (40) with constant
hold;

• Equation (41) is satisfied for some function
(and (42) for some function

, respectively) and ;
• there exists a locally Lipschitz continuous function

satisfying the bounds (43) for some
-functions , , and (44) with and

(and (45) with ,
and , respectively).

Then, the functions given by

(46)

(47)

satisfy Condition IV.1 (and Condition IV.6, respectively) with
, , , ,

, and ,
(and , respec-

tively), , with as in Condition V.1

(48)

and some positive constants , (and ,
respectively).

Proof: We only prove the theorem for establishing Con-
dition IV.1, as the case for Condition IV.6 is analogous. The
condition (17) with of the form (46) is equivalent to
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Using (38b) and (39), this follows trivially. The condition (17b)
is identical to

which is true as . Based on (46) we obtain four
cases for (19):

• Case 1: and

(49)

• Case 2: and

(50)

• Case 3: and

(51)

• Case 4: and

(52)

Hence, (19) holds for with
and , as in (48). Here we used that

as .
Finally, to obtain (20) observe that for the case , we

have due to (44)

(53)

Similarly, for we obtain

(54)

Take and multiply the inequalities (53) and
(54) by , which give for

and for

Note that the bounds on as in (18) with linear bounding func-
tions and can be easily obtained from the fact that
satisfies (38a) with linear functions. This completes the proof.

To apply the above theorem for a given protocol we need to
establish the values , , , and . The following
lemma determines these constants for the well-known RR and
TOD protocols. See [38], [52] for the exact definitions of these
protocols.

Lemma V.4: Let denote the number of nodes in the network.
For the RR protocol there is a that is
locally Lipschitz in its second argument satisfying (38), (39)
and (40) with , , ,

and . For the TOD protocol
there is a that is locally Lipschitz
in its second argument satisfying (38), (39) and (40) with

, ,
and .
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Proof: The constants , , are derived for both pro-
tocols in [38] and corresponding Lyapunov functions . For
the RR protocol can be taken with

, , and is the
number of nodes in the network, see Example 3 in [38]. This
implies that

Using and the identity

, we obtain that

.

Since for the TOD protocol,
follows from the above by taking for

all .
In the next theorem, we show how to obtain Condition IV.4,

used for establishing USPAS in Theorem IV.5, from the com-
monly adopted conditions in the delay-free case. As the proof is
similar in nature as the proof of Theorem V.3, it is omitted.

Theorem V.5: Consider the system . Assume that Con-
dition V.1 and (39) with hold. Moreover, assume that
there exists a -function such that

(55)

for almost all and all . Assume that the origin
of the network-free and zero-input system is

globally asymptotically stable. Then, the function given by
(46) satisfies Condition IV.4 with , ,

for some positive constants and and
as in Condition V.1.
The conditions in Theorem V.5 are precisely those used in

the delay-free case for obtaining USPAS as adopted in [5, Thm.
2]. To obtain the constants , , and for the RR or
TOD protocol again Lemma V.4 above can be employed.

VI. CASE STUDY OF THE BATCH REACTOR

In this section we will illustrate how the derived conditions
can be verified and how this leads to quantitative tradeoff curves
between , and performance for the case study of
the batch reactor. This case study has developed over the years
as a benchmark example in NCS, see e.g., [5], [11], [38], [52].
The functions in the NCS (7) for the batch reactor are given by
the linear functions and

. The batch reactor, which is
open-loop unstable, has inputs, outputs,
plant states and controller states and nodes (only
the outputs are assumed to be sent over the network). See [38],
[52] for more details on this example. We included here also
a disturbance input that takes values in and a controlled
output , taking values in , given by

. The numerical values for , , as provided in
[38], [52], are given in (56). In [38], [52] and were absent,
as they considered the disturbance-free case. We selected for the
remaining matrices , , and in this case study the
numerical values as in (56), shown at the bottom of the page.

This means that the disturbance is such that affects the
first and third state of the reactor and, affects the second and
fourth state. The controlled output is chosen to be equal to the
measured output , see [38], [52].

(56)
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Fig. 2. Batch reactor functions � , � � �� �with� ��� � � ��� � ��� .

A. Stability Analysis

To apply the developed framework for stability analysis, we
first ignore the controlled output and set . Moreover, we
take and in
(41). To verify (44) we take and consider a quadratic
Lyapunov function to compute the gain from

to (or actually a value close to the
gain by selecting small) by minimizing subject to the
linear matrix inequalities (LMIs)

(57a)

(57b)

Minimizing subject to the LMI (57) with using
the SEDUMI solver [43] with the YALMIP interface [30] pro-
vides the minimal value of . This value of ap-
plies for both the TOD as well as the RR protocol in (44) since

and due to the proof
of Lemma V.4. From Lemma V.4 also the values for the con-
stants , , and can be obtained. Then Theorem V.3
can be applied to construct suitable Lyapunov functions for the
closed-loop NCS system. This results for the TOD protocol in
the values , , and

. Note that and are the same as found in [5]
and [38] for the delay-free case (up to some small numerical dif-
ferences). In case we now take
as , we recover exactly the results
in [5], see Fig. 2. Indeed, checking the conditions (23) gives

and , as also found in [5].
Besides this delay-free limit case, the above numerical values

provide much more combinations of that yield
stability of the NCS by varying the initial conditions and

. Actually, each pair of initial conditions provides a dif-
ferent Lyapunov function as in (26) and different values
for as discussed after the proof of Theorem IV.2.
To illustrate this, consider Fig. 3, which displays the solutions

, , to (22) for initial conditions and
. The solutions , are determined

using Matlab/Simulink [using zero crossing detections to de-
termine the values of and accurately according to

Fig. 3. Batch reactor functions � , � � �� � with � ��� � ������ and
� ��� � ������.

Fig. 4. Tradeoff curves between MATI and MAD.

(23)]. The condition (23a) indicates that is determined
by the intersection of and the constant line with value

and condition (23b) states that is determined
by the intersection of and (as long as ).
For the specific situation depicted in Fig. 3 this would result
in and , meaning that
UGES is guaranteed for transmission intervals up to 0.008794
and transmission delays up to 0.005062. Interestingly, the
initial conditions of both functions and can be used to
make design tradeoffs. For instance, by taking larger, the
allowable delays become larger (as the solid line indicated by
‘o’ shifts upwards), while the maximum transmission interval
becomes smaller as the dashed line indicated by “ ” will shift
upwards as well causing its intersection with (dotted line
indicated by “ ”) to occur for a lower value of . Hence, once
the hypotheses of Theorem IV.2 are satisfied, a continuum of
Lyapunov functions is available leading to different combi-
nations of MATI and MAD. This shows that tradeoff curves
between and can indeed be constructed. Following
this procedure for various increasing values of , while
keeping equal to , provides the graph
in Fig. 4, where the particular point and

corresponding to Fig. 3 is highlighted. Note
that the graph ends where as the developed
model does not include delays larger than the transmission
interval.
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In case of the RR protocol we obtain the values
, , and if

we invoke Theorem V.3 directly. However, improved values for
and can be obtained by exploiting the special structure in

the matrix as was also done in [38, Ex. 3]. This is achieved
by deriving directly the condition (19) instead of following the
general approach based on (49)–(52) using (40) and (41) in the
proof of Theorem V.3. Indeed, using that
for a diagonal matrix (with the values as in the
proof of Lemma V.4 on the diagonal), we can derive directly
for almost all and

where we used that as both matrices
are diagonal. Using this sharper result in (49)–(52) instead of
(40) and (41), we obtain the improved values ,

, and , similar to [5]
and [38], which leads for the delay-free case to
(recovering the result in [5], which outperforms the values
found in [38], [39], [51]). The tradeoff curve between MATI
and MAD is also given in Fig. 4. In this figure also the delay-free
case with and is visualized. These
tradeoff curves can be used to impose conditions or select a
suitable network with certain communication delay and band-
width requirements (note that MATI is inversely proportional
to the bandwidth).

Also different protocols can be compared with respect to each
other. In Fig. 4, it is seen that for the task of stabilization of
the unstable batch reactor the TOD protocol outperforms the
RR protocol in the sense that it can allow for larger delays
and larger transmission intervals. The difference between the
tradeoff curves for different protocols is caused by different
values for the parameters , , and (see Lemma
V.4), which in turn induce different values for the parameters

, , and (see Theorem V.3) and thus different solu-
tions to the differential equations (22). This results in different
combinations of and that guarantee stability due to
Theorem IV.2.

B. Gain Analysis

To apply the developed framework for gain analysis, the
effect of the additional disturbance input on the controlled
variable is studied.

Fig. 5. Pareto optimal curves for ��� �� for the TOD protocol.

We take and
in (41). To verify (45) we

compute simultaneously an upper bound on the gain from
to and on the gain

from to by finding Pareto minimal values for and subject
to the matrix inequalities in the matrix and multiplier
as given in (58), shown at the bottom of the page. These matrix
inequalities demonstrate that there will be a tradeoff between
performance in terms of the gain from to reflected in

on the one hand and the size of and on the other
as reflected in . Recall that directly influences MATI and
MAD through and in (48). The tradeoff between
and can still be made by varying and whilst
guaranteeing a certain gain for the NCS.

To make these observations quantitative, we fix at various
values and search for the smallest value of such that there
exist and satisfying (58). Note that (58) is an LMI
when is fixed and hence, can be solved efficiently. As a lower
bound on we take the gain from to of the system
without the network . This value is found by solving
the standard -gain/ LMI for linear systems (see e.g., [1])
using, again, the SEDUMI solver and the YALMIP interface.
This yields . Using this as a lower bound on the con-
sidered values of the desirable performance level in terms of the

gain , we search minimal values for (corresponding to the
selected value of ) under the feasibility of the LMI (57). These
minimal values yield the “Pareto optimal curves” for as
shown in Fig. 5. This figure demonstrates that the minimal value
of approaches 15.9165 for large values of , which was the
gain from to as computed
in Section VI-A for the stability analysis. This is expected as the
value 15.9165 corresponds to the smallest value of found in

(58)
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Fig. 6. Tradeoff curves between MATI and MAD for various levels of the �
gain of the NCS with the TOD protocol.

Section VI-A if only stability is required (without any additional
performance conditions, so the gain approaches in-

finity). The other extreme, when approaches infinity, recovers
the situation where the values approach the asymptotic value
of being the optimal network-free gain from
to .

As we can see, a smaller gain requires a larger value
of , which will in turn result in smaller values for and

. We will demonstrate this for the TOD protocol. The re-
sults for the RR protocol can be obtained using the same ap-
proach. The computed values of are now used in (45) and
the values for the constants , , and can be obtained
from Lemma V.4, as in the stability analysis above. Then The-
orem V.3 can be applied to construct a continuum of suitable
storage functions for the closed-loop NCS system choosing a
certain combination of in a similar manner as for the sta-
bility analysis. This leads to combinations of
such that the NCS has an gain from to smaller than for
transmission intervals smaller than and communication
delays smaller than . The tradeoff curves for various levels
of the performance are provided in Fig. 6. For the value
of we (almost) recover the tradeoff plot as in Fig. 4
for the TOD protocol, because, loosely speaking, the gain
requirement is very mild as is a relatively large value
that practically approaches the condition that the NCS should be
UGES only. In the other extreme, if very high requirements are
given with respect to robustness to disturbances (in the sense
of a very low gain from to approaching the network-free

gain ), the values for MATI and MAD that guar-
antee this gain are approaching 0. This is clearly shown in
Fig. 6 as the tradeoff curve for the value corre-
sponds to values of and close to zero. The limit case

would actually correspond to and .
Hence, the control and network engineers have to make clear
design tradeoffs between MATI, MAD, robustness in terms of

performance and the choice of the protocol. The provided
framework supports the engineers to make these design choices
in a quantified manner.

VII. CONCLUSION

In this paper, we presented a framework for studying the
stability of a NCS, which involves communication constraints
(only one node accessing the network per transmission), varying
transmission intervals and varying transmission delays. Based
on a newly developed model, a Lyapunov-based characteriza-
tion of stability was provided and explicit bounds on the max-
imally allowable transmission interval (MATI) and the max-
imally allowable delay (MAD) were obtained that guarantee
stability of the NCS. We explicitly showed how a continuum
of Lyapunov functions can be constructed from the commonly
adopted conditions for the delay-free case. The application of
the results on a benchmark example showed how tradeoff curves
between MATI and MAD can be computed providing designers
of NCS with proper tools to support their design choices. In-
terestingly, recently developed improvements in [5] leading to
sharper bounds for the MATI (the non-delay case) are a spe-
cial case of this more general framework. Additionally, we ana-
lyzed the performance of NCS and provided the theoretical
framework that shows how MATI, MAD and can be traded
quantitatively against each other. Under weaker conditions, we
provided also semiglobal practical stability results.

Future work will involve the consideration of the large delay
case (delays larger than the transmission interval) and the devel-
opment of an analysis framework that also includes quantization
effects. Extending the current framework so as to include quan-
tization effects would provide the means to study NCS incor-
porating all the types of network phenomena mentioned in the
introduction (as packet dropouts can be modeled using a prolon-
gation of the MATI as discussed in Remark II.4). We foresee that
such an extension would be extremely valuable to network and
control system designers, provided that the extended framework
leads to quantitative tradeoff curves between the various net-
work parameters (MATI, MAD, quantization error, bandwidth,
etc.) and the performance of the overall control loop. Some pre-
liminary results in this direction can be found in [21].
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