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Hybrid Systems With State-Triggered Jumps:
Sensitivity-Based Stability Analysis

With Application to Trajectory Tracking
Mark Rijnen , J. J. Benjamin Biemond , Nathan van de Wouw ,

Alessandro Saccon , and Henk Nijmeijer , Fellow, IEEE

Abstract—The definition of asymptotic stability for a tra-
jectory of a hybrid system with state-triggered jumps is not
straightforward. Nearby solutions jump at close but nonco-
incident times, making the standard notion of closeness,
based on vector difference, unsuitable to compare trajec-
tories point-wise in time. With tracking control as ultimate
goal, we propose a notion of stability and a constructive
stability proof based on sensitivity analysis applicable to
single-jump-flow trajectories. A key role in the analysis is
played by a time-triggered linear system, associated with
the discontinuous trajectory of interest, whose uniform
asymptotic stability suffices to guarantee the asymptotic
stability of the original discontinuous trajectory. As an il-
lustrative example, the stability analysis is applied to guar-
antee closed-loop stable tracking for a trajectory with ve-
locity jumps of a 2 DoF mechanical system with unilateral
constraint.

Index Terms—Hybrid systems, stability, sensitivity anal-
ysis, trajectory tracking, trajectories with jumps.

I. INTRODUCTION

THIS article studies the problem of defining and assessing
local asymptotic stability of a trajectory of a hybrid dynam-

ical system. These systems show both continuous (flow) and dis-
crete (jump) dynamics [1]. Our analysis concerns, in particular,
hybrid systems with (time- and) state-triggered jumps, where
the state trajectory becomes discontinuous under the effect of
the discrete dynamics. We will refer to this class of systems as
hybrid systems with state-triggered jumps.

Mechanical systems performing motions with hard impacts
are necessarily modeled using the framework of nonsmooth
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mechanics [2], [3] in which complementarity conditions restrict
the configuration space and at the same time, enforce feasibility
of contact forces. In many cases of practical interest, e.g., for
juggling and walking robots [4]–[6], the nonsmooth dynamics
can locally be fitted in the hybrid system formalism [1], an
approach that can also often be taken in trajectory tracking of
mechanical systems with state-triggered jumps [7], [8]. Whereas
the stabilization of jumping trajectories of a mechanical system
with unilateral constraints is the main motivation for our in-
vestigation, the approach and obtained results are applicable to
a larger class of hybrid systems and are, therefore, presented
as such. More specifically, the proposed stability notion and
sensitivity-based stability analysis concerns the specific type of
trajectories termed single-jump-flow trajectories, characterized
by continuous flow phases followed by single discrete jumps.

In earlier investigations [7], [9], [10], tracking problems for
hybrid systems have been solved under the assumption that the
jump times of the system and reference trajectory coincide.
In that case, standard Lyapunov methods can be employed
in terms of the classical Euclidean tracking error to perform
stability analysis. The requirement that the jump times of the
trajectories coincide with those of a reference trajectory is,
however, stringent and this coincidence can generally not be
assumed: this is not the case, in general, for hybrid systems with
state-triggered jumps and, in particular, for hybrid systems that
represent mechanical systems with unilateral constraints.

When reference and closed-loop jump times do not coincide,
the Euclidean error between two trajectories shows a big in-
crease whenever the system trajectory jumps and the reference
trajectory does not or vice versa. This phenomenon is usually
referred to as “peaking” [8], [11], [12]. A few approaches have
been recently proposed in the literature to deal with the mismatch
in the jump times by defining stability on the basis of a different
notion of error/distance between single-jump-flow trajectories.
In [13], the times belonging to the infinitesimal intervals around
the jump times are neglected in defining the tracking problem.
In [14], the reference trajectory together with a mirrored version
of it has been used to construct a new error notion for the tracking
problem of a ball in a polyhedral billiard. In [1, Sec. 5.3],
the concept of graphical closeness of solutions is considered.
In [8], [15], and [16], Biemond et al. proposed to simplify the
stability analysis and tracking control design by suggesting to
use a distance function between two trajectories that is invari-
ant with respect to the discrete jump dynamics. In [17], Kim
et al. used gluing functions to perform a state-transformation
turning the hybrid dynamics into (piecewise) continuous dy-
namics, removing the state jumps. Morarescu and Brogliato [18]
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tackled the trajectory tracking problem for mechanical systems
with frictionless unilateral constraints by adapting the reference
motion online to enforce smooth transitions between free and
constrained motion.

In this article, we employ the notion of error introduced
in [19] to define and analyze asymptotic stability of discon-
tinuous trajectories and to propose a possible solution to the
problem of tracking a reference trajectory for hybrid systems
with state-triggered jumps. The employed error notion is based
on extending the (reference) trajectory about the jump times and
considering the distance between the state of a trajectory and that
at the particular segment of the extended (reference) trajectory
that has encountered the same number of jumps. This error will
not, in particular, show any peaking and presents the basis for an
effective trajectory tracking control approach named reference
spreading control [19]–[21].

For smooth nonlinear control systems, the open- and closed-
loop local stability of a continuous reference trajectory can be
assessed via its associated time-varying linearization. The key
contribution of this article is to show that, for hybrid systems
with state-triggered jumps, the local stability of a discontinuous
single-jump-flow trajectory can be assessed via the study of
its time-triggered linearization, a linear time-triggered hybrid
system (LTTHS) that emerges from the sensitivity analysis orig-
inally developed in [19] and that is independent of the reference
extensions. The reference trajectory is assumed to satisfy a set
of assumptions (in particular, transversality and absence of Zeno
behavior) ensuring continuous dependence of impact times (and
the solution away from impact times) with respect to variations
of initial conditions and control inputs.

This article is organized as follows. In Section II, hybrid
systems with state-triggered jumps are reviewed and the problem
definition is precisely stated together with key regularity as-
sumptions. Section III reviews the concept of extended reference
trajectory, that leads to the error notion used to define stability of
discontinuous trajectories. This section also presents the main
result of this article: the ability to infer stability of a discontin-
uous trajectory of a hybrid system with state-triggered jumps
by analysis of the stability of an associated time-triggered linear
system (the hybrid linearization). Section IV applies the obtained
results to a mechanical system with a unilateral constraint.
Conclusion is presented in Section V.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Hybrid Systems

A hybrid dynamical system can be represented schematically
as in Fig. 1(a). The system has a state x ∈ Rn that continuously
evolves according to a control vector field f : Rn × Rm → Rn,
parameterized by the external input u ∈ Rm. Continuous evo-
lution is only possible when the state x at a given time is in
a closed set C ⊆ Rn called the flow set. Explicitly, the state
evolution satisfies the differential equation

ẋ = f(x, u), x ∈ C. (1a)

A jump in the state can occur whenever the state reaches a set
D ⊆ Rn, called the jump set. A jump implies an instantaneous
state change according to the jump map g : Rn → Rn.

In this article, we consider unique solutions of hybrid systems.
Aside from some basic regularity assumptions on the flow map
f , uniqueness requires that whenever a jump occurs (x ∈ D)

Fig. 1. Hybrid system with one mode of execution without (a) and with
(b) explicit dependency on hybrid time (t, j).

evolving in C is also no longer possible [1, Prop. 2.11]. A way
to enforce this is to assume that D ⊆ ∂C, with ∂C denoting the
boundary of C, together with some transversality assumptions
on the continuous flow to avoid that the flow is tangent to D
when it reaches it (grazing). Transversality (cf. [22]) plays an
important role in this article and will be discussed in more detail
in the problem formulation in Section II-B.

We largely adopt the hybrid system notation from [1]. In
particular, we employ the notion of hybrid time, which merges
regular time t ∈ R with discrete time j ∈ N. Discrete time
should be thought of as a jump counter, indicating how many
times the state has jumped, so that the state jumps satisfy

x(t, j + 1) = g(x(t, j)), x(t, j) ∈ D. (1b)

All these notions are standard and we refer to [1, Def. 2.6] for
the definition of a solution to (1a), (1b).

To allow for time-varying vector fields, jump maps, and time-
varying flow and jump sets, the hybrid dynamical systems that
we consider in this article are (with slight abuse of notation)
written as follows:

ẋ = f(x, u, t, j), x ∈ C(t, j) (2a)

x+ = g(x−, t, j), x− ∈ D(t, j) (2b)

where x+ := x(t, j + 1) and x− := x(t, j). We refer to (2) as a
nonlinear state-triggered hybrid system (NSTHS) and represent
it as shown in Fig. 1(b).

Remark 1: In (2), one could define a new state (x, t, j)
showing that (2) is just a special case of (1). However, we
found that keeping the hybrid time (t, j) explicit leads to a more
intuitive understanding of the stability analysis and reference
spreading control. In Section III, we show that the control law
is of the form u = u(x, t, j), depending, therefore, explicitly on
the continuous flow state x and hybrid time (t, j).

Another reason to keep (t, j) explicitly in (2) is that other-
wise the proposed definition of discontinuous trajectory stability
would require to treat (t, j) differently than the other part of the
state (otherwise, when time would be included in the state, a
state perturbation would also perturb time). �

In Section II-B and Appendix B, we will use the sets

Cj :=
⋃
t∈R

C(t, j)× {t} (3)

Dj :=
⋃
t∈R

D(t, j)× {t} (4)
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to ease the derivations of the results. Note that Cj and Dj ⊆
Rn+1. For a given j ∈ N, C(t, j) and D(t, j) can be interpreted
as the “slices” of Cj and Dj at time t.

We adopt basic regularity assumptions for (2). To be precise,
the flow map f : Rn × Rm × R × N → Rn is assumed to be
locally Lipschitz with respect to the state x on the set Rn and
input u in Rm, continuous and bounded in t for each x and
u and every fixed j. The jump map g : Rn × R × N → Rn is
assumed to be continuous with respect to x and t.

For the NSTHS (2), one may aim at designing a control law
to achieve tracking of a given reference trajectory. A generic
time-varying state feedback to achieve this goal is

u = κ(x, t, j). (5)

The closed-loop NSTHS (cl-NSTHS) resulting from substitut-
ing (5) into (2) is given by

ẋ = fcl(x, t, j), x ∈ C(t, j) (6a)

x+ = g(x−, t, j), x− ∈ D(t, j) (6b)

where fcl(x, t, j) := f(x, κ(x, t, j), t, j).
Suppose x(t, j) is the solution to (6) for a given initial

condition x(t0, 0) = x0 ∈ int C(t0, 0) (int means interior). The
hybrid domain of x(t, j) is written as (cf. [1, Def. 2.3])

dom x =

Jx−1⋃
j=0

Ijx × {j}, Jx ∈ N ∪ {∞} (7)

with Ijx the closed (continuous-time) interval between the jth
and (j + 1)th jump events and Jx the number of time intervals
(Jx = ∞, when an infinite number of jumps occur). The first
interval I0x starts at t0. If Jx < ∞, the last interval IJx−1

x ends
at tf ∈ R ∪ {∞}. The jth jump time is denoted tj so that

Ijx = [tj , tj+1] (8)

and also

tj = min Ijx. (9)

The set of jump times associated with x(t, j) is denoted

Ex :=

Jx−1⋃
j=1

{tj} × {j − 1}. (10)

We conclude this section by introducing several notational
conventions used to indicate the flow map. We will use H to
indicate the closed-loop hybrid system defined by the quadruple
(fcl, g, C,D), representing (6). Sometimes, we regard the solu-
tion toH starting fromx0 at hybrid time (t0, 0), just as a function
of continuous time t instead of hybrid time (t, j) ≥ (t0, 0). To
this end, with a slight abuse of notation, we will write x(t) or,
more explicitly, φH(t, t0, x0) to indicate

x(t) = φH(t, t0, x0) := x(t, jH(t, t0, x0)) (11)

withx(t, j) as in (6) forx(t0, 0) = x0 and where jH(t, t0, x0) :=
max{j | (t, j) ∈ dom x(·, ·)} indicates the discrete time corre-
sponding to assuming that, at time t, all discrete-time transitions
have already occurred. We will also employ

ϕj(t, s, x) (12)

to denote the flow (with no jumps) of the time-varying vec-
tor field fcl(·, ·, j) in (6a) in the time interval [s, t] with ini-
tial condition x(s) = x. Employing (11) and (12), and as-
suming to have just one jump at a time (this will be stated
more formally in Assumption 1), one can write with no ambi-
guity x(t, j) = ϕj(t, tj , x(tj , j)) = ϕj(t, tj , φH(tj , t0, x0)), as
jH(tj , t0, x0) = j by definition of tj . Furthermore, it holds that
x(tj , j) = φH(tj , t0, x0) = g(x(tj , j − 1), tj , j − 1).

B. Problem Formulation

Consider a reference trajectory with jumps and denote it
α(t, j). Assume that α is both t-complete (supt dom α = ∞)
and the unique solution to (2) with α(t0, 0) = α0 ∈ intC(t0, 0)
and u = μ(t, j), continuous in t for each j. The jth event time
of α is denoted τj and Ijα = [τj , τj+1] is the jth time inter-
val between two consecutive events (τ0 = t0). Denote Jα the
number of intervals and Eα the set of event times. We consider
the problem of assessing the stability of α(t, j), both in open
and closed loop. Our stability analysis applies, in particular,
to a single-jump-flow reference trajectory that is t-complete,
non-Zeno, has a bounded interjump time, and intersects the
jump set transversally. Furthermore, some minimal and easily
encountered regularity conditions are also required, leading in
total to six assumptions, detailed below. These assumptions are,
for example, already satisfied for the simulation examples in [8],
[11], [13]–[15], [17], [20], [23]–[25]. Mechanical systems with
smooth unilateral constraints in a neighborhood of trajectories
with nonaccumulating (partially) elastic impacts fit the consid-
ered system class as well. We suggest the reader to skip the
definition of the assumptions and explanatory remarks at first
read, returning to them when necessary (in particular, when
willing to understand the details of the proof of our main result
in Section III-D).

Assumption 1 (t-complete, Non-Zeno, Bounded Interjump
Time): The reference α is defined ∀t > t0 (t-complete) and
∃δt > 0 such that τj+1 − τj ≥ δt, ∀j ∈ {0, 1, . . . , Jα − 1}
(non-Zeno). If Jα = ∞, then moreover ∃δt > 0 such that
τj+1 − τj ≤ δt, ∀j ∈ {0, 1, . . . , Jα − 1} (bounded interjump
time). �

As α is non-Zeno, Jα can become infinite only for t → ∞.
Completeness implies that α ∈ C(t, jH(t, t0, α0)), ∀t ≥ t0. We
require the jumps to be transversal to the boundary of C. In
(nonsmooth) mechanics, for example, a jump is transversal when
the impact between two convex bodies occurs with nonzero
relative normal velocity (otherwise, a grazing impact occurs).
To this end, we make use of guard functions γα that need to be
defined only in a ball about each reference event.

Assumption 2 (Existence of a Guard Function): Given
Assumption 1, ∃εγ > 0 and c1 > 0, and a real-valued guard
function γα(x, t, j), C1 with respect to both x and t, ∀j ∈
{0, 1, . . . , Jα − 1}, such that

γα(x, t, j) > 0, (x, t) ∈ Bj ∩ int(Cj)

γα(x, t, j) = 0, (x, t) ∈ Bj ∩ ∂Cj =: Zj

γα(x, t, j) < 0, (x, t) ∈ Bj ∩ ((Rn × R)\Cj) (13)

where Bj := Bεγ (α(τj+1, j), τj+1). In case Jα is finite, we
pose BJα−1 = ∅. In (13), int and ∂ denote, respectively, the
set’s interior and boundary. We require γα(·, ·, j) = 0 to define
a codimension 1 manifold (γα is the first coordinate of a C1-
diffeomorphism between Bεγ and an open neighborhood of the
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origin on Rn+1). We assume that

Zj ⊂ Dj (14)

and also

‖D1γα(α(t, j), t, j)‖ ≤ c1 (15)

uniformly ∀(t, j) = (τj+1, j) ∈ Eα. In (15), D1 denotes partial
differentiation with respect to the first argument. �

In the assumption above, Bεγ (x, t) denotes an open ball
of radius εγ about (x, t), that is, Bεγ (x, t) := {(y, s) ∈ Rn ×
R | ‖(y, s)− (x, t)‖ < εγ}.

Let us now formalize the assumption on the transversality
property of the jumps of α.

Assumption 3 (Transversality): Let Assumption 2 hold, im-
plying the existence of γα. There exist c2 > 0 such that

D1γα(α(t, j), t, j) · f(α(t, j), μ(t, j), t, j)
+D2γα(α(t, j), t, j) · 1 ≤ −c2 (16)

for every event time (t, j) = (τj+1, j) ∈ Eα. �
Aside from the assumptions on α, we also pose continuity

conditions on the jump map g and vector field f .
Assumption 4 (Locally Differentiable Jump Map): Given

Assumptions 1 and 2, we require g(·, ·, j) to be C1 in the open
ball Bεγ (α(τj+1, j), τj+1), ∀j ∈ {0, 1, . . . , Jα − 1}. �

Assumption 5 (Uniform Lipschitz Condition on f ): In a
neighborhood of the reference state-input trajectory (α, μ),
f(x, u, t, j) is Lipschitz with respect to x and u, uniformly
in t and j. Namely, we assume that ∃εL > 0 independent
of (t, j) and ∃L for which, ∀j ∈ {0, 1, . . . , Jα − 1},
‖f(x, u, t, j)− f(y, v, t, j)‖ < L(‖x− y‖+ ‖u− v‖), ∀t ∈
(τj − εL, τj+1 + εL), x, y ∈ BεL(α(t, j)), and u, v ∈ BεL
(μ(t, j)). �

Remark 2: The Lipschitz constant L is defined for time
intervals t ∈ (τj − εL, τj+1 + εL) that are not contained in
dom α. Therefore, an extended reference state-input trajectory
(α, μ), for which dom α ⊂ dom α, is used in its definition. See
Section III-A for further details. �

The following assumption, imposing natural conditions on α
and the state-triggered hybrid system, ensures that trajectories
sufficiently close to α(t, j) are also t-complete. In the assump-
tion, TpS denotes the tangent cone to S at p as defined, e.g.,
in [1, Def. 5.12].

Assumption 6 (Local Existence of t-complete Solutions): Let
Assumptions 1 to 3 hold. Every state-time pair (x, t) ∈ Zj of the
reference event (α(τj+1, j), τj+1), with Zj defined as in (13)
and j ∈ {0, 1, . . . , Jα − 1}, is mapped by the jump map g to the
subsequent flow set, while avoiding the jump set, i.e.,

(x, t) ∈ Zj ⇒ (g(x, t, j), t) ∈ Cj+1 \Dj+1.

Furthermore, we assume that f(x, u, t, j) satisfies

(f(x, u, t, j), 1) ∈ T(x,t)Cj (17)

∀j ∈ {0, 1, . . . , Jα − 1}, ∀u in a uniform neighborhood of
μ̄(t, j), and for (x, t) ∈ ∂Cj ∩ (Uj \Bj), with Uj defined be-
low and Bj as in (13). In (17)

Uj :=
⋃

t∈[τj−εC ,τj+1]

(BεC (α(t, j))× {t}) (18)

that is, Uj denotes the set of all state-time pairs (x, t) con-
tained in the tube of size εC > 0 about the extended reference
trajectory α. �

Remark 3: The assumption allows to handle solutions close
to the reference trajectory that are only defined on a finite
time domain, without resorting to advanced concepts such as
preasymptotic stability [1, Ch. 7]. The required properties guar-
antee that, away from the jump event times (τj+1, j) (hence, the
asymmetry in the definition of Uj), trajectories in a neighbor-
hood of α(t, j) remain in the flow set and that, after each jump,
flowing is always possible (for the points that are the image
through the impact map of the prejump states, the vector field is
directed inward the flow set). To account for any differences
in jump time of the nearby solutions, the given properties
are required to hold on a larger time domain than dom α,
requiring (similarly to what is discussed for the previous as-
sumption) the availability of an extended reference trajectory α
(see Section III-A). �

In the next section, we introduce the concept of reference
spreading error between two trajectories and we proceed with
the definition of time-triggered linearization of the NSTHS (2)
about a reference trajectory α. Furthermore, we show that the
stability of this time-triggered linear hybrid system (about the
origin) implies local stability of the NSTHS about α.

III. SENSITIVITY-BASED STABILITY ANALYSIS OF

JUMPING TRAJECTORIES

In this section, the stability properties of the reference tra-
jectory α(t, j) of the cl-NSTHS in (6) are analyzed. First, the
notion of extended (reference) trajectory will be introduced to
define a useful error measure on the basis of which a definition
of stability of the jumping reference trajectory will be given.
Secondly, a time-triggered linear hybrid system will be defined,
the trajectories of which can be used to approximate those of
the NSTHS starting near the reference trajectory. This section
is concluded by showing that a switching controller can be
designed using this linear hybrid system, as asymptotic stability
of this system in a closed loop implies asymptotic stability of
the reference trajectory of the cl-NSTHS in (6).

A. Error Definition

Any difference between the initial conditions x0 and α0

will most likely result in differences between the jump times
of the reference and those of the closed-loop system as illus-
trated in Fig. 2. Therefore, as mentioned in the introduction,
designing a tracking controller based on the Euclidean error
defined as the difference between the current state x and α
(for the same t only) may easily result in poor tracking per-
formance (see [14] and [20] for simulation examples supporting
this statement). In order to suitably compare both trajectories
at each point in time, as suggested in [19], each segment of
the reference trajectory α discriminated by the counter j (that
is, corresponding to the interval Ijα × {j}) is extended offline
both forward and backward using the vector field (2a) (see the
dashed lines in Fig. 2). In this, the input u = μ(t, j) that is the
continuously extended version (by design) of μ(t, j) is used
such that each reference segment is defined for all t ∈ [t0, tf ].
This extended reference trajectory is denoted α and is, thus, de-
fined for all (t, j) ∈ [t0, tf ]× {0, 1, . . . , Jα − 1} =: Iα. Note
that (α, μ) coincides with (α, μ) for (t, j) ∈ dom α. Formally,
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Fig. 2. Extended reference α, the tracking error e for a trajectory x,
and their corresponding time domains.

∀j ∈ {0, 1, . . . , Jα − 1}, we define t �→ α(t, j), t ∈ [t0, tf ], as
the solution to

α̇ = f(α, μ(t, j), t, j), (t, j) ∈ Iα (19)

for α(τj , j) = α(τj , j), where τj denotes the jth jump time
(τ0 = t0). The construction of the extended trajectory requires
both forward and backward integration of the vector field to
extend the jth reference segment outside the original interval
[τj , τj+1]. The forward extensions are needed when tj > τj and
the backward extensions when tj < τj for the jth jump. The
forward and backward calculations cannot, in most cases, be
computed analytically but can quite easily be constructed using
numerical integration.

Remark 4: Tracking the reference trajectory α using the no-
tion of extended trajectories as proposed in [19] requires more
than just the state of the reference at the current time, it requires
knowledge of the future reference. The trajectory α needs to
be known beforehand or, at least, the segment up to the next
jump of α. If the closed-loop system encounters a jump prior to
the reference trajectory, for example, it already needs to know
what the desired motion is after the jump event. This knowledge
comes from the backwards integration of the vector field from
the time where the jump is expected to occur (for incremented
jump counter), i.e., the reference jump time.

Philosophically, we also think that in proximity of an expected
impact, it is indeed very natural to imagine that there are two
references to be tracked and that the system should switch from
one to the other only when the actual impact has occurred: if a
jump has not occurred as expected, what should the system do in
order to try to make it happen (ante-impact forward extension)?
If a jump occurred earlier than expected, what should the system
do to get where it is intended to be (postimpact backward
extension)? �

Note that when a hybrid trajectory that is a solution to (2) is
projected onto the continuous time domain, it is single valued for
all t in its domain except for the jump times. This is not the case
for α, as now for each time t, there are Jα extended “reference”
trajectories discriminated by the counter j. This counter will be
used to compare the state x at any given time to the relevant
branch of the extended reference α. Note furthermore that the
domain Iα is not a hybrid time domain as in [1], because

the natural ordering of its points is lost, i.e., the boundaries
of the time intervals do not form an increasing sequence. The
construction of the extended trajectoryα(t, j) requires the vector
field f in (2a), withu = μ(t, j), to be defined (by design) outside
the domain C(t, j), ignoring the presence of the jump set and
allowing the time integration to continue beyond it (see [20] and
[21] for examples). The extended reference trajectory α allows
to define the tracking error as

e(t, j) := x(t, j)− α(t, j), (t, j) ∈ dom x. (20)

A graphical representation of α, its “extended” hybrid time
domain Iα, and the tracking error e(t, j) is given in Fig. 2.

B. Stability Definition

We provide here the definition of stability and asymptotic
stability for a single-jump-flow trajectory α of the NSTHS (6),
using the notion of error introduced in the previous section.

Definition 1 (Stability): Given t0, a trajectory α of (6) that
is t-complete is said to be stable if for all ε > 0, there ex-
ists a δ > 0 such that for every trajectory x of (6) satisfy-
ing ‖x(t0, 0)− α(t0, 0)‖ < δ, it holds that 1) Jx = Jα, 2) for
all (t, j) ∈ dom x, ‖x(t, j)− α(t, j)‖ < ε, and 3) for all j ∈
{1, . . . , Jx − 1}, |tj − τj | < ε, where α is the extension of α
defined in (19) and Jx and Jα are, respectively, the number of
time intervals Ijx and Ijα defined as in (8) for the trajectories
x(t, j) and α(t, j), possibly infinite. �

Remark 5: This definition of stability makes use of the error
definition in (20), which is the Euclidean distance between the
state x and the extended reference trajectory α for each (t, j) ∈
dom x. Note that e(t, j) has the same time domain as x(t, j) and
requires dom x ⊂ Iα for it to be defined. The latter is guaranteed
when Jx ≤ Jα (Jx = Jα in the case α is stable, for sufficiently
small δ, as in Definition 1). �

Definition 2 (Attractivity): Given a trajectory α of (6) that
is t-complete, we say that α is attractive if there exists a
δ > 0 such that ‖x(t0, 0)− α(t0, 0)‖ < δ implies, first, that
Jx = Jα and, second, that ‖x(t, j)− α(t, j)‖ → 0 for t → ∞
with (t, j) ∈ domx, whereα is the extension ofα defined in (19)
and Jx and Jα are, respectively, the number of time intervals Ijx
and Ijα defined as in (8) for the trajectories x(t, j) and α(t, j).
If Jα = ∞, we require that furthermore |tj − τj | → 0 for
j → ∞. �

Definition 3 (Asymptotic stability): A trajectory α of the cl-
NSTHS (6) is asymptotically stable if it is stable and attractive,
respectively in the sense of Definitions 1 and 2. �

C. Linear Time-Triggered Hybrid System

As mentioned in the previous section, a nonzero tracking error
will likely result in a mismatch between the closed-loop jump
times tj and the reference jump times τj . The times tj , with
j ∈ {1, 2, . . . , Jx − 1} are not known in advance. Instead, as
the reference α is assumed to be known, the event times τj are
known. Next, we construct a linear time-triggered system, that
jumps at the reference jump times τj , and solutions of which can
be used to approximate the error in the state evolution for (6)
in a neighborhood of α. We can use this time-triggered linear
system to design a stabilizing feedback of the form (5) and we
show that asymptotic stability of this closed-loop linear hybrid
system implies (local) asymptotic stability of the reference
trajectory α for the original cl-NSTHS (6). In [20] and [26],
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the time-triggered linear system is used in a linear quadratic
regulator setting for mechanical systems with elastic impacts,
respectively, for systems with multiple modes with different state
dimension.

We refer here to this linear system with jumps at the times τj
as the LTTHS associated with the reference trajectory α. The
key feature of this LTTHS is that it converts the state-triggered
behavior of (2) to a time-triggered one (cf., [19]) and incorpo-
rates a first-order approximation of the state-jumps (originally
at slightly different times) in the definition of the jump map, as
explained in detail in [19], [27], [28], and [29, Sec. 5.2]. We will
show that asymptotic stability of α in the sense of Definition 3
can be assessed by studying the LTTHS corresponding to (2) and
the state-input trajectory (α(t, j), μ(t, j)), with (t, j) ∈ dom α.
Hence, the stability analysis is significantly simplified as α(t, j)
and the LTTHS jump at the same time. Let us now formally de-
fine the LTTHS (whose full derivation is given in Appendix D).

Definition 4 (LTTHS): The LTTHS associated with trajec-
tory α and NSTHS (2) is given by

ż = A(t, j)z +B(t, j)v, (t, j) ∈ dom α

z+ = G(j)z−, (t, j) ∈ Eα (21)

with initial condition z(t0, 0) = z0 and where z+ := z(t, j +
1), z− := z(t, j)

A(t, j) := D1f(α(t, j), μ(t, j), t, j) (22)

B(t, j) := D2f(α(t, j), μ(t, j), t, j) (23)

and

G(j) :=
f+ − ġ−

γ̇−
α

D1γ
−
α +D1g

− (24)

with

f+ = f(α+, μ+, τ, j + 1) (25)

f− = f(α−, μ−, τ, j) (26)

g− = g(α−, τ, j) (27)

ġ− = (D1g
−)f− +D2g

− (28)

γ−
α = γα(α

−, τ, j) (29)

γ̇−
α = (D1γ

−
α )f

− +D2γ
−
α (30)

where τ = τj+1, α+ = α(τ, j + 1), α− = α(τ, j), μ+ =
μ(τ, j + 1),μ− = μ(τ, j), andγα(·, ·, j)denotes the guard func-
tions (see Section II-B). �

As will be clarified later on, the linear hybrid system (21)–
(30) provides an approximation of the NSTHS in the sense
that a trajectory of the NSTHS starting at a perturbed initial
condition x0 = α0 + z0 with perturbed input μ(t, j) + v(t, j)
can be approximated as x(t, j) = α(t, j) + z(t, j) + o(‖z0‖)
for (t, j) ∈ dom x. In this, z is the extended trajectory of z
obtained in the same way as α, that is, for each j, it follows
from integrating the vector field ż = A(t)z +B(t)v(t, j) with
t ∈ [t0, tf ] forward and backward in time from initial condition
z(τj , j) = z(τj , j). The term o(‖z0‖) denotes a perturbation that
is of order higher than one. The state z is, thus, a first-order
approximation of the error (20) if Jx ≤ Jα.

The continuous dynamics in (21) and, in particular, the con-
struction of the time-varying A and B matrices are well known.
The precise form of the discrete dynamics in (21), i.e., the reset

mapG in (24), is less well familiar (the reader is referred to [19],
[27], [28], [29, Sec. 5.2], and Appendix D for details). Here,
instead, we present an intuitive description of the components
of G.

The part D1g
− is the traditional sensitivity of the jump map

g to a perturbation in the state. As jumps in x and z take place
at different time instances, the effect of time mismatch needs to
be included in the state jump as well. The term −(1/γ̇−

α )D1γ
−
α

when multiplied with z− gives an approximation of the event
time mismatch tj − τj . The term ġ− appears in the jump map
G to capture the change in the jump during this time mismatch.
The term f+ is there to incorporate the change in the state due to
flow in the mismatch interval. The latter is required to make sure
the approximation is still correct after the mismatch interval.

Given the time-triggered “linearization” of the NSTHS about
a trajectory α, one can attempt to design a control law to make
the origin of the LTTHS uniformly asymptotically stable. The
uniformity property will be required for showing that α is an
asymptotically stable trajectory of the NSTHS if the origin of
the linearization indeed satisfies the posed stability properties
(this will be discussed in Section III-D). Considering the fact
that the LTTHS is a “linearization” and since this article deals
with a local stability property, we restrict attention to feedbacks
of the form

v(t, j) = −K(t, j)z(t, j). (31)

By addition of higher-order terms in the control law, we expect
that the basin of attraction of a stable solution could be enlarged,
but such study is out of scope of the present article. In many
cases, by suitably designing the time-varying feedback gain K,
uniform asymptotic stability of the origin of the closed-loop
LTTHS (cl-LTTHS) can be achieved, by which we mean the
following (see [30, Def. 4.4]).

Definition 5 (LTTHS: Uniform asymptotic stability): The
origin of the cl-LTTHS (21)–(31) is uniformly asymptotically
stable if for every ε > 0, there exists a δ(ε) > 0 such that,
for every T0 ≥ t0, |z(T0, jT0

)| ≤ δ implies |z(t, j)| ≤ ε for all
(t, j) ∈ dom α with t ≥ T0 and that limt→∞ |z(t, j)| = 0. In
this, jT0

is the counter j corresponding to the time T0, that is,
the largest j such that T0 ≥ τj . �

The stability assessment of (21) in closed loop [i.e., with
feedback (31)] is well established in literature (see, e.g., [31,
Secs. 3.2 and 6.4] and [32]).

Using (31) and the fact that z(t, j) is a local approximation
of the error (20), we obtain a cl-NSTHS with input

u = κ(x, t, j) = μ(t, j)−K(t, j)(x(t, j)− α(t, j)). (32)

Note that where z is defined for all (t, j) ∈ dom α, the state
x and error e have a different hybrid time domain that is not
known in advance. For the feedback law to be well defined,
we, thus, require the time-varying feedback gain to be defined
for a larger time domain than dom α, i.e., for all (t, j) ∈ Iα =
[t0, tf ]× {0, 1, . . . , Jα − 1}. Therefore, in (32), we introduced
K(t, j) representing the feedback gain K(t, j), but extended
such that it is defined for all (t, j) ∈ Iα. Due to this extension,
the feedback control is defined for all (t, j) ∈ dom x (as long
as Jx ≤ Jα). Several approaches are possible in constructing
these extensions. However, the extension of the feedback gains
K(t, j) does not influence the LTTHS since it only depends on
the perturbation input v(t, j) for (t, j) ∈ dom α (see [20]). This
property is explained further in Appendix D.
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D. Main Stability Result

The problem considered in this article is that of assessing the
stability properties of a jumping reference trajectory α(t, j) of
the cl-NSTHS (6) under Assumptions 1 to 6. As a stepping stone,
a key fact that we will exploit is that, for any finite time T > t0,
the jump times of the cl-NSTHS (6) in dom x ∩ [t0, T ]× N
depend in a continuously differentiable fashion on the initial
condition x0 as long as x0 is chosen in a sufficiently small
neighborhood of α0 dependent on T . This result follows from
Assumptions 1 to 4 and Assumption 6 as well as some minimal
regularity assumptions on the vector field fcl and jump map
g, and it is proved in Lemma 1. Note that the size of this
neighborhood might vanish for T → ∞. In order to conclude
stability, this dependency of jump times on initial condition,
Assumption 5, and stability of the linear error dynamics are key.
Let us first consider the former property for which we define a
jump counter function for the reference trajectory α.

Definition 6 (Jump counter function): For a given T > t0
and hybrid trajectory α, denote with jα(T ) the number of
encountered jumps of the reference trajectory for t ≤ T . �

The jump counter function jα : (τ1,∞) → N is right con-
tinuous and satisfies the inequality τjα(T ) ≤ T . It is equal to
the jump counter jH, introduced in Section II, when evaluated
along the specific trajectory α, i.e., jα(T ) = jH(T, t0, α0). The
following lemma now holds.

Lemma 1: For the hybrid system (6), assume that the vector
field fcl is locally Lipschitz with respect to x and continuous
and bounded in t. Let α denote a reference trajectory of the
NSTHS (6) satisfying Assumptions 1, 2, 3, 4, and 6, with
initial condition α(t0, 0) = α0 ∈ int(C(t0, 0)). As before, τj ,
j ∈ {0, 1, . . . , Jα − 1}, indicates the nominal event times.

There exists a function δ0 : (τ1,∞) → R>0 such that, for any
T > τ1, a trajectory of the cl-NSTHS (6) with initial condition
x(t0, 0) = x0 satisfying

‖x0 − α0‖ < δ0(T ) with Bδ0(T )(α0) ⊂ C(t0, 0) (33)

is defined at least up to time T and jumps at least jα(T )− 1
times in the interval t ∈ [t0, T ]. Furthermore, when jα(T ) ≥ 2,
the function δ0(·) can be chosen such that, in addition, every
jump time tj except the last is bracketed by the nominal jump
times τj−1 and τj+1, i.e.,

τj−1 ≤ tj ≤ τj+1, for j ∈ {1, 2, . . . , jα(T )− 1}. (34)

Proof: The proof of Lemma 1 is presented in
Appendix A. �

Stability of the reference trajectory α for the cl-NSTHS (6),
(32) can now be related to the stability of the cl-LTTHS (21)–
(31), resulting in the main result of this article as given below.
The result is similar in spirit as [1, Th. 9.11] and [33] (covering
the inherently different problem of stability of points).

Theorem 1: Adopt Assumptions 1–6. Let a state-input tra-
jectory (α, μ) be a solution to the cl-NSTHS (6), (32). If the
origin of the associated LTTHS (21)–(30) in closed loop with
control law (31) is uniformly asymptotically stable, then,α(t, j)
is a (locally) asymptotically stable trajectory of the cl-NSTHS
(6), (32) in the sense of Definition 3.

Proof: The proof of Theorem 1 is given in
Appendix B. �

To bridge the gap between this work and other approaches
in literature for analyzing stability of state-triggered hybrid sys-
tems, in Appendix C, we show that uniform asymptotic stability
of the cl-LTTHS (21)–(31) also implies asymptotic stability of

Fig. 3. Schematic representation of a circular billiard.

the reference trajectory α for (a variant of the) cl-NSTHS (6),
(32) in terms of the distance function defined in [8] and [15].
Mind that, in this implication, the hybrid system class that is
considered is reduced to one where the jump map g, and the
flow and jump sets C and D, respectively, do not depend on
time explicitly as the distance function in [8] and [15] does not
accommodate such time-varying nature.

IV. ILLUSTRATIVE EXAMPLE

In this section, a trajectory tracking example for mechanical
systems with a unilateral constraint is presented. A circular
billiard with periodic reference trajectory is considered. In this,
the number of jumps Jα − 1 becomes infinite as t → ∞. We
only consider a periodic reference here for simplicity, but for
the theory presented in this work no periodicity is required.

Consider the time-invariant system depicted in Fig. 3 (that is
also considered in [11] for fully elastic restitution) consisting
of an actuated point mass moving in a plane that is confined by
a circular boundary. Such a system is commonly referred to in
literature as a billiard.

The position of the point mass in the plane, at a particular
time, is given by the coordinates x1 and x2 (see Fig. 3). The
velocity components of the mass in the x1 and x2 directions are
denoted by x3 = ẋ1 and x4 = ẋ2, respectively. The state of the

point mass, thus, is x =
[
x1 x2 x3 x4

]T
and accelerations

can be imposed inx1 and x2 directions (denoted u1, respectively

u2, such that u =
[
u1 u2

]T
). A rigid object confines the space

in which the mass can move such that the jump set is defined as
D = {x ∈ R4 | x2

1 + x2
2 = 1, x1x3 + x2x4 > 0}. The flow set,

therefore, becomes C = {x ∈ R4 | x2
1 + x2

2 ≤ 1} and a suitable
guard function for the system is γα = 1− x2

1 − x2
2 (satisfying

Assumption 2). Whenever the mass impacts the boundary, par-
tially elastic restitution occurs with a coefficient of restitution e.
The system can be described by (2), with

f(x, u, t, j) =
[
x3 x4 u1 u2

]T
=: Ax+Bu

A =

[
02×2 I2

02×2 02×2

]
, B =

[
02×2

I2

]
(35)

and

g(x, t, j) =

⎡
⎢⎢⎣

x1

x2

(x2
2 − ex2

1)x3 − (1 + e)x1x2x4

(x2
1 − ex2

2)x4 − (1 + e)x1x2x3

⎤
⎥⎥⎦ (36)
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Fig. 4. (a). Reference trajectory α(t, j) (light blue) with extensions
(dashed) and a tracking solution x(t, j) (dark red) to the cl-NSTHS in
Fig. 3 in the x1, x2-plane (where the dot indicates the initial position)
(b) and the evolution of state and input over time (where the open and
closed dots indicate the left, respectively, the right limit).

cf., [11]. In this example, it is assumed that the interaction
between actuated mass and obstacle can be modeled fully using
the impact law, that is, periods of persistent unilateral contact do
not occur and (finite) contact forces, thus, need not be included
in the vector field f . Furthermore, the pair (α, μ) is considered to
be such that grazing incidence of the point mass on the obstacle
is avoided (cf., Assumption 3). Note that, in this example, the
flow set C, jump set D, vector field f , and jump map g do not
depend explicitly on the hybrid time (t, j). This time-invariance
is chosen here for the sake of simplicity of the analysis only, and
is not required for the applicability of the theory in this article.

Consider the reference trajectory shown in Fig. 4(a). It is a
periodic solution to the system description above where the state
returns back to its initial condition after five impacts with coeffi-
cient of restitution e = 0.3. The impacts are separated in time by
a period τ = 1 (cf., Assumption 1) and since the trajectory starts
at the boundary it follows that τj = jτ for j = 0, 1, . . . (taking
t0 = 0). As can be discerned from the fact that the trajectory
segments between impacts are curved, the input μ(t, j) is not
zero for all time. As a consequence, constructing the extended

trajectory α as described in Section III will be different from the
strategy of “mirroring” as is used for billiards in [14], [24], and
[25]. Our approach and the mirroring approach would provide
the same result just if the input would be zero and e = 1 (in
the simulations, we took e = 0.3). Due to the different error
definition, our strategy also does not suffer from the peaking
phenomenon induced by impact time mismatch as seen in the
standard-error-based PD control in [11].

It is straightforward to show that, for the specific example,
Assumptions 1–6 are satisfied. Due to space restrictions, this
proof is not included here but it is available upon request.

To design the stabilizing control law, by using Theorem 1,
we first consider stability of the LTTHS. The desired trajectory
is periodic with a period of 5τ , but due to its point symmetry
with respect to the origin, it is possible to assess stability of
the LTTHS corresponding to the considered system by only
looking at the evolution from one postimpact position and
velocity to the next. When applying a feedback input of the
form (31) (with constant gain K = K(t, j)) to this linearized
system, the state after the jth impact and that just after the next
are related to each other by z(τj+1, j + 1) = G(j) exp((A+
BK)τ)z(τj , j), with G(j) given by (24), combined with γ̇−

α =
D1γ

−
α · f−, ġ− = D1 g− · f−

f+ =
[
α+
3 α+

4 μ+
1 μ+

2

]T
f− =

[
α−
3 α−

4 μ−
1 μ−

2

]T
D1γ

−
α =

[
−2α−

1 −2α−
2 0 0

]

D1g
− =

⎡
⎢⎢⎣

1 0 0 0

0 1 0 0

dg31 dg32 dg33 dg34
dg41 dg42 dg43 dg44

⎤
⎥⎥⎦

where

dg31 = −2eα−
1 α

−
3 − (1 + e)α−

2 α
−
4

dg32 = 2α−
2 α

−
3 − (1 + e)α−

1 α
−
4

dg33 = (α−
2 )

2 − e(α−
1 )

2

dg34 = −(1 + e)α−
1 α

−
2

dg41 = 2α−
1 α

−
4 − (1 + e)α−

2 α
−
3

dg42 = −(1 + e)α−
1 α

−
3 − 2eα−

2 α
−
4

dg43 = −(1 + e)α−
1 α

−
2

dg44 = (α−
1 )

2 − e(α−
2 )

2

and in which α+
s = αs((j + 1)τ, j + 1) and α−

s = αs((j +
1)τ, j) denote the right, respectively, left limit of the sth state
of the reference trajectory at time t = (j + 1)τ . Similarly, μ+

s
and μ−

s denote the right and left limits (that are, in this case,
the same), respectively, of the sth reference input at that time. It
follows that the LTTHS is asymptotically stable if all eigenvalues
of the matrix G(j) exp((A+BK)τ) are within the unit circle
in the complex plane. When taking a feedback gain of the form
K =

[
β 0 2

√
β 0; 0 β 0 2

√
β
]
, it is found that the

eigenvalues are within the unit circle whenβ > 0.393. Applying
Theorem 1, we, therefore, conclude that α is asymptotically
stable for the cl-NSTHS (2), (32), (35), (36) for such choice of
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feedback gain. A solution to the cl-NSTHS (with constant gain
extensions) for β = 3 and initial condition x0 = 0 is depicted in
Fig. 4. The figure shows that the solution indeed converges to-
ward the reference state-input trajectory (α(t, j), μ(t, j)), even
for this large initial error.

V. CONCLUSION

In this article, a notion of asymptotic stability and an asso-
ciated stability analysis for discontinuous trajectories of hybrid
systems with state-triggered jumps are detailed. The results have
also a direct applicability to the related problem of trajectory
tracking.

Asymptotic stability is defined by making use of a notion of
error that allows for the comparison of two nearby discontinuous
trajectories, even when there is a time mismatch between the
jumps of both trajectories. It is shown that asymptotic stability
of a discontinuous trajectory of the hybrid system with state-
triggered jumps is guaranteed when an associate time-triggered
linear system is uniformly asymptotically stable. As this linear
system jumps at the same times as the reference trajectory,
the design of a stabilizing feedback and stability analysis is
greatly simplified. A study of (numerical) methods to estimate
the associated region of attraction is left for future research.
The results of this article are illustrated by means of a tracking
example for a mechanical system with unilateral constraint and
partially elastic impacts.

In a series of related publications, the tracking strategy based
on reference extensions has been given the name of reference
spreading control and has been applied to more complex systems
(such as, e.g., a multibody humanoid model) and even for the
case where the constrained state space after each jump has a
different dimension as, e.g., with inelastic impacts and multido-
main hybrid systems. Investigation of the stability of these more
challenging cases will be presented in future publications.

APPENDIX A
PROOF OF LEMMA 1

The proof of Lemma 1 is split in two parts. First, we show
that the solution x(t, j) to the NSTHS (6) from initial condition
x(t0, 0) = x0 is defined for all t ∈ [t0, T ] as long as x0 is
sufficiently close to α0 (cf., [2, Sec. 1.3.2.3] for a similar proof).
Then, we show that the bracketing condition (34) is satisfied
as long as this neighborhood is chosen small enough, due to a
continuity argument. This sufficiently small neighborhood is, in
essence, what defines the function δ0 at T .

Due to Assumption 1, jα(T ) is finite for any T > t0. The
existence of a solution to (6) up to time T is straightforwardly
guaranteed if, for every j ∈ {1, 2, . . . , jα(T )} and in a neighbor-
hood ofα0, we can define an event-time function x0 �→ tj that is
continuously differentiable, where tj(x0) = τj whenever x0 =
α0. Indeed, if these functions x0 �→ tj , j ∈ {1, 2, . . . , jα(T )}
exist, the flow of the NSTHS (6) is a composition of contin-
uously differentiable jump maps (due to Assumption 4) with
continuously differentiable continuous-time flows on the time
intervals [tj−1(x0), tj(x0)], j ∈ {1, 2, . . . , jα(T )− 1}, termi-
nated by a continuous-time flow over [tjα(T )−1(x0), T ], when
tjα(T )(x0) ≥ T , or over [tjα(T )−1(x0), tjα(T )(x0)] followed by

a jump and another flow phase over [tjα(T )(x0), T ], when
tjα(T )(x0) < T .

Due to Assumption 2, there exists a guard function γα that im-
plicitly defines the jump set in a neighborhood of α. Therefore,
if the event time functions x0 �→ tj exist, they have to satisfy
the implicit conditions

γα(x(tj+1(x0), j), tj+1(x0), j) = 0 (37)

for j ∈ {0, 1, . . . , jα(T )− 1}, where

x(tj+1(x0), j) := ϕj(tj+1(x0), tj(x0), φH(tj(x0), t0, x0))

= ϕj(tj+1(x0), tj(x0), x(tj(x0), j)). (38)

Note that Assumption 6 guarantees that the flowϕj as used above
is defined whenever x0 is sufficiently close to α0. By definition
of α and γα, we know that (37) holds at least when we pose
x0 = α0 and tj(α0) = τj . Using (38), the implicit condition
(37) can equivalently be rewritten as

Mj+1(x0, t) := γα(ϕj(t, tj(x0), x(tj(x0), j)), t, j) = 0.
(39)

We aim to prove that, for each j, t in (39) is a function of x0,
i.e., that t = tj+1(x0). The transversality condition provided in
Assumption 3 guarantees that one can apply the implicit function
theorem for each of the implicit conditions in (39) and conclude
that all the functions x0 �→ tj are continuously differentiable for
a sufficiently small neighborhood of α0.

More precisely, one can employ a proof by induction showing
that x0 �→ t1 is continuously differentiable (base induction) and
that x0 �→ tj being continuously differentiable implies x0 �→
tj+1 to be continuously differentiable (induction step). The base
induction has been proven in [19], while it is straightforward
to show that x0 �→ tj being continuously differentiable implies
that Mj+1 is continuously differentiable in a neighborhood of
(α0, τj+1) being the composition of continuously differentiable
functions. Furthermore, as the partial derivative of Mj+1 in (39)
with respect to t evaluated at (x0, t) = (α0, τj+1) is equivalent
to the left-hand side of (16) and, therefore, nonzero by Assump-
tion 3, the implicit function theorem can be applied to conclude
that t in (39) is indeed a function of x0. There is, however, a
fundamental limitation in carrying out this induction reasoning
for an infinite number of jumps. In the induction step mentioned
above, the neighborhood of α0 for which tj is defined can, in
principle, become smaller and smaller as j is increased and,
in the worst case, ceases to exist if no other conditions are
imposed (this corresponds to a situation where the intersection
of an infinite number of open sets containing α0 just ends up in
the closed set containing just the point itself). This is why, with
the given assumptions, the statement of this lemma holds just
for any finite value of T , but not for T = ∞. We will explain
in the proof of Theorem 1 how to overcome this limitation by
adding an extra condition on the solutions of the cl-LTTHS. This
concludes the first part of the proof.

We now prove the existence of δ0(T ) > 0 to satisfy the brack-
eting condition (34). As the functions x0 �→ tj are continuous
and we are considering the finite set j ∈ {1, . . . , jα(T )− 1},
we can find a closed ball around α0 with radius δ0(T ) that is
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Fig. 5. Subdivision of Theorem 1 in two implication steps, by introduc-
ing the NTTHS and Propositions 1 and 2.

contained in each domain of definition of the functions x0 �→ tj
and such that each function x0 �→ tj is contained in the interval
[τj−1, τj+1].

APPENDIX B
PROOF OF THEOREM 1

The proof of Theorem 1 is divided in two steps. First, a
nonlinear time-triggered hybrid system (NTTHS) related to the
NSTHS will be introduced. The NTTHS hasα(t, j) as a solution
and the LTTHS is its linearization as shown in Appendix D. Fig. 5
schematically depicts the structure of the proof and the role of
the NTTHS therein.

A. Nonlinear Time-Triggered Hybrid System

The NTTHS, introduced below, always jumps at the times τj
of the reference α and, as will be clarified below, its solutions
coincide with solutions of the NSTHS for continuous-times
sufficiently far away from the reference jump times.

When we start with a state-input trajectory (α(t, j), μ(t, j))
of (2) and slightly change its initial condition or input, we
typically obtain a trajectory x(t, j) that jumps at different times
than the reference jump times τj . This has been shown already
schematically in Fig. 2. We illustrate this phenomenon in more
detail in Fig. 6 focussing on a single jump. In constructing
the NTTHS, the procedure is to replace the trajectory of (2)
from initial condition x(t0, 0) = x0 between the time instances
tj and τj with a new trajectory that always jumps at time τj ,
as illustrated in Fig. 6, where the trajectory of the NTTHS

Fig. 6. Relation between trajectory x(t, j) of the NSTHS, correspond-
ing reference α(t, j), and trajectory xTT(t, j) of the NTTHS for jump
(j + 1).

is denoted as xTT. This construction is related to the concept
of zero-time discontinuity mapping and Poincaré discontinuity
mapping in [29, Sec. 6.2]. The trajectory xTT near τj+1 is
attained by flowing according to the vector field f(x, u, t, j)
similarly as the reference trajectory up to τj+1 and after the time
τj+1 by flowing according to the vector field f(x, u, t, j + 1).
A suitable jump map is applied at the nominal event time τj+1

such that it maps the trajectory xTT(t, j) back to the trajectory
x(t, j) at the end of this time mismatch period ([tj+1, τj+1] or
[τj+1, tj+1]).

In order to define this jump map, we denote by ϕu
j (t, τ, x) the

state evolution according to vector field f for jump counter j at
time t with initial condition x at time τ and a given input curve
u(t, j). Note that t ≤ τ implies integration backwards in time
and that this operator is different for different input curves. The
NTTHS, with state xTT, is defined as follows.

Definition 7 (NTTHS): The NTTHS is given by

ẋTT = f(xTT, u(t, j), t, j), (t, j) ∈ dom α

x+
TT = guTT(x

−
TT, t, j), (t, j) ∈ Eα (40)

with initial condition xTT(t0, 0) = x0, where x+
TT = xTT(t, j +

1), x−
TT = xTT(t, j), and the jump map guTT(xTT, t, j), with

(t, j) ∈ Eα, is given by

ϕu
j+1

(
t, tj+1, g(ϕ

u
j (tj+1, t, xTT), tj+1, j)

)
(41)

where tj+1 is the (j + 1)th jump time of the solution x(t, j) of
the NSTHS (2) starting from the initial condition x0. �

The jump map guTT(xTT, τj+1, j) can be defined whenever
tj+1 is defined, i.e., when the trajectory x of the NSTHS with
initial condition x(t0) = x0 and chosen input u(t, j) will expe-
rience the (j + 1)th jump (see Fig. 6). This property is satisfied
if x0 is close enough to α0 and follows from Lemma 1. More
details are provided in the proof of Proposition 1.

Furthermore, since the NTTHS jumps at the same times as the
reference, the time domain of its solution xTT(t, j) is the same
as that of the reference trajectory, i.e., dom xTT = dom α, as
illustrated in Fig. 7. This figure also illustrates the time-triggered
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Fig. 7. Classical error for the time-triggered hybrid system (eTT(t, j) =
xTT(t, j)− α(t, j)) and the hybrid time domains of the corresponding
required trajectories.

error eTT(t, j) := xTT(t, j)− α(t, j) (compare with Fig. 2) and
their hybrid time domains, eTT being the error for trajectories
with jumps at fixed time instants.

When the input u is given by

u = κ(xTT, t, j) (42)

as in (5), we obtain the closed-loop NTTHS (or cl-NTTHS)

ẋTT = fcl(xTT, t, j), (t, j) ∈ dom α

x+
TT = gTT(x

−
TT, t, j), (t, j) ∈ Eα (43)

with xTT(t0, 0) = x0 and where the jump map gTT(xTT, t, j) is
given by

ϕj+1 (t, tj+1, g(ϕj(tj+1, t, xTT(t, j)), tj+1, j)) (44)

with ϕj the closed-loop flow as in (41) with u as in (42). More
specifically, the cl-NTTHS that we will use in the proof of
Theorem 1 is the one employing the affine feedback law

u(t, j) = μ(t, j) +K(t, j)(xTT(t, j)− α(t, j)). (45)

Note that (45) is the same as (32), but that in the latter no “bars”
are needed on top of K and α as the controller will only be used
for the hybrid times (t, j) ∈ dom xTT = dom α.

B. Proposition 1 and Its Proof

As mentioned at the beginning of this appendix, a key property
in the proof of Theorem 1 is that the linearization of the NTTHS
in Definition 7 is the LTTHS provided by Definition 4. Given
α, solutions to the NTTHS and LTTHS clearly have the same
hybrid time domain. Here, we prove that uniform asymptotic
stability of the closed-loop linearization implies that the refer-
ence trajectory α(t, j) is a locally asymptotically stable solution
to the cl-NTTHS.

Proposition 1: A trajectory (α(t, j), μ(t, j)) of the NSTHS
(6), (32) satisfying Assumptions 1, 2, 3, 4, 5, and 6, is an
asymptotically stable trajectory of the cl-NTTHS (43), (45), if
the associated cl-LTTHS (21)–(31) is uniformly asymptotically
stable.

Proof: As both cl-LTTHS and cl-NTTHS are time-triggered
and each jump event corresponds to a jump event of α, we
can employ the jump counter jα : R → N of Definition 6 to
simplify the notation within this proof. To this end, with a slight
abuse of notation, we will write α(t), z(t), xTT(t), etc., to mean
α(t, jα(t)), z(t, jα(t)), xTT(t, jα(t)), etc. At the event times τj ,
we will write α+(τj) and α−(τj) to indicate α(τj , jα(τj)) and
α(τj , jα(τj)− 1), respectively. Similarly, we will employ the
+ and − notation for other signals.

Our goal is to conclude local asymptotic stability of α for the
cl-NTTHS. To this end, let us consider the time-triggered error
eTT(t) between the state of the cl-NTTHS and the reference α.
The error eTT satisfies the hybrid dynamics

ėTT = Acl(t) eTT + r1(eTT, t)

e+TT = G(j) e−TT + r2(e
−
TT, j), for t = τ1, τ2, . . . (46)

with j = jα(t)− 1, eTT(t0) = z0, and where the matrices Acl

and G and the residuals r1 and r2 are defined below. In (46),
eTT is obtained by alternating state resets according to the jump
map with integrations of the ODE until t equals τj+1. In (46),
Acl(t) := A(t, jα(t)) +B(t, jα(t))K(t, jα(t)) and G is given
by (24), therefore corresponding to the cl-LTTHS. The residuals
r1 and r2 are the higher-order terms of the vector field and jump
map of the time-triggered error dynamics associated with the
cl-NTTHS, namely

r1(eTT, t) := fcl(α(t) + eTT, t, jα(t))

− fcl(α(t), t, jα(t))−Acl(t)eTT (47)

r2(eTT, j) := gTT(α
−(τj+1) + e−TT, τj+1, j)

− gTT(α
−(τj+1), τj+1, j)−G(j)e−TT. (48)

The origin eTT = 0 is an equilibrium point for (46) and for the
cl-LTTHS. Both these hybrid systems jump at the same fixed
time instants τj , known in advance. For such class of systems,
denoting generically the system state with y, uniform asymptotic
stability implies that for an arbitrary εTT > 0 and tS ≥ t0 there
exists a δTT such that ‖y(tS)‖ < δTT implies ‖y(t)‖ < εTT for all
t ≥ tS and that, furthermore, limt→∞ |y(t)| = 0 (see, e.g., [31,
Sec. 3.1]). We aim to show that uniform asymptotic stability
of the cl-LTTHS implies that the origin eTT = 0 is uniformly
locally asymptotically stable for (46). Let us now consider two
cases.

Case 1: Consider first the case where the number of events
Jα − 1 is infinite. Denote with Lκ > 0 the Lipschitz con-
stant for which κ in (32) satisfies ‖κ(x, t, j)− κ(y, t, j)‖ <
Lκ‖x− y‖, ∀(t, j) ∈ Iα, that is Lκ = sup(t,j)∈Iα

‖K(t, j)‖.

From Assumption 5, for each time interval Ijα = [τj , τj+1],
j = 0, 1, 2, . . . , the growth of the solution can be bounded (see,
e.g., [34, Cor. 6.4]) according to

‖y(t)‖ ≤ exp(Lcl(t− τj))‖y+(τj)‖, τj ≤ t ≤ τj+1 (49)

with Lcl = L(1 + Lκ). Clearly, we require ‖y+(τj)‖ to be also
sufficiently small to keep ‖y(t)‖ within the region where the
vector field f is uniformly Lipschitz. When the continuous
dynamics satisfies an exponential bound as in (49), asymptotic
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Fig. 8. Illustration of the fact that the transversality assumption (see
Assumption 3) implies a relation between state error and event time
mismatch.

stability of a time-triggered hybrid system is equivalent to the
asymptotic stability of the discrete time system that originates
from only considering the state at the event times τj [35]. Recall
that τj+1 − τj is uniformly bounded from below and from above
(bounded interjump time) due to Assumption 1.

In our case, the local asymptotic stability of the cl-NTTHS
follows directly from uniform asymptotic stability (for linear
systems, equivalent to exponential stability) of the cl-LTTHS,
by considering their respective associated discrete time systems
at the nominal event times. This statement is based on the discrete
time version of [30, Th. 4.13]. This concludes the proof for the
case where Jα = ∞.

Case 2: When the number of events Jα − 1 is finite, it suffices
to consider the stability of the continuous time dynamics after the
last event. This is valid because, from (49) and continuity of gTT

with respect to xTT, an exponential bound on the error ‖eTT‖ of
the cl-NTTHS in the finite time interval [t0, τJα−1] can be found
(in particular, for every ε > 0 and t0 ≤ tS ≤ τJα−1 there is a
δ > 0 such that ‖eTT(tS)‖ < δ implies ‖eTT(τJα−1)‖ < ε). It,
thus, suffices to consider the last flow phase when t ≥ τJα−1.

As the cl-LTTHS is, by assumption, exponentially stable and
it is the linearization of the error system (46), specifically in
the time interval [τJα−1,∞), the origin of the error system is
(locally) asymptotically stable [30, Th. 4.13] and, equivalently,
α is an asymptotically stable trajectory of the cl-NTTHS. This
concludes the proof for finite Jα.

t-completeness: So far, it has been tacitly assumed that the
solution of the cl-NTTHS exists for all t > t0. However, one
has actually to prove this result based on the assumptions in
the proposition statement. For the cl-NTTHS to be defined, the
jump map gTT needs to be defined for all jumps, which requires
that the cl-NSTHS corresponding to the cl-NTTHS experiences
those jumps as well as discussed after (41).

From the proof of Lemma 1 and, in particular, from the
continuity of the map tj(x0), the jth jump of the cl-NSTHS
occurs close to the jth jump time of α as long as ‖eTT(t0)‖
is chosen sufficiently small (equivalently, xTT(t0, 0) is chosen
sufficiently close to α0). This property is illustrated in Fig. 8.
However, a uniform (i.e., independent of j) neighborhood is not
guaranteed to exist when α has an infinite number of jumps (cf.,
proof of Lemma 1). Assuming the exponential stability of the
cl-LTTHS, though, guarantees the existence of such a uniform
neighborhood.

We start by noting that the jth time-triggered jump map of
(46) is defined as long as e−TT(τj) is sufficiently small, fol-
lowing from the fact that the jth jump occurs for the original
cl-NSTHS if x(t, j) is sufficiently close to α(t, j) as discussed
in the proof of Lemma 1. ‖e−TT(τj)‖ is required to be smaller
than εγ , for example (cf., Assumption 2). Equivalently, the jth
time-triggered jump map gTT(·, j) of the cl-NTTHS is defined as
long as x−

TT(τj) is sufficiently close to α−(τj) := α(τj , j − 1).
The proof for the existence of a neighborhood about the origin
for e−TT(τj)where the time-triggered jump map is defined follows
again from a straightforward application of the implicit function
theorem employing the guard function γα(·, ·, j). In particular,
one can show that when ‖e−TT(τj)‖ = ‖x−

TT(τj)− α−(τj)‖ is
sufficiently small, then |tj,TT − τj | < Sj‖e−TT(τj)‖ where the
function tj,TT := tj,TT(e) represents the event time of the cl-
NSTHS corresponding to the time-triggered error trajectory with
value e = e−TT(τj) at τj and Sj a constant that depends on the
continuous-time closed-loop vector field fcl, guard function γα,
and the reference trajectory α.

In details, the function tj,TT(e) is implicitly defined as
Hj(t, e) := γα(ϕj−1(t, τj , α(τj , j − 1) + e), t, j − 1) = 0 and
Assumption 3 provides the sufficient condition for the validity
of the application of the implicit function theorem. Again, note
that due to Assumption 6, the flow ϕj−1 in Hj is defined as
long as it is sufficiently close to the reference trajectory. Fi-
nally, because tj,TT(e) = τj +Dtj,TT(0) · e+ o(|e|), by choos-
ing Sj > ‖Dtj,TT(0)‖ > 0, one obtains |tj,TT − τj | < Sj‖e‖
for sufficiently small e. A uniform bound on the maximum time
shift of the form |tj,TT − τj | < S‖e‖, valid for all (possibly infi-
nite) j, follows from the uniform bound on the derivative of γα in
Assumption 2. It is straightforward to show that ‖D1tj,TT(0)‖ =
‖D1Hj(τj , 0)‖−1‖D2Hj(τj , 0)‖ ≤ c1/c2 (see Assumptions 2
and 3).

From the above, one concludes that as long as eTT(t) remains
within a predetermined sufficiently small neighborhood of the
origin, then the (possibly infinite number of) jump maps gTT

are all defined (implying Jx ≥ Jα), with the difference between
the jump times tj of the cl-NSTHS and the nominal jump times
τj becoming smaller as this neighborhood is chosen smaller.
Uniform asymptotic stability of the cl-LTTHS allows then to
conclude that eTT(t), will remain within such a predetermined,
sufficiently small, neighborhood where all jump maps gTT are
defined as long as the initial condition eTT(t0) is chosen suffi-
ciently close to zero, ensuring the existence of eTT(t) for t → ∞.
This concludes the proof of the proposition. �

C. Proposition 2 and Its Proof

Proposition 2: Let (α(t, j), μ(t, j)) be a trajectory of the
NSTHS (6) satisfying Assumptions 1, 2, 3, 4, 5, and 6. If α(t, j)
is an asymptotically stable solution of the cl-NTTHS (43), (45),
then it is also an asymptotically stable solution of the cl-NSTHS
(6), (32), in the sense of Definition 3.

Proof: By construction, except in suitable neighborhoods of
the event times τj , the solution of the cl-NTTHS is identical,
when it exists, to the solution of the cl-NSTHS. As α is assumed
to be asymptotically stable for the cl-NTTHS, the solution of

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on December 13,2023 at 14:05:55 UTC from IEEE Xplore.  Restrictions apply. 



4580 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 65, NO. 11, NOVEMBER 2020

the cl-NTTHS exists for all t ≥ t0 as long as the corresponding
initial condition is taken sufficiently close to α(t0, 0). This
follows, in particular, from the uniform bound:

|tj − τj | < S ‖eTT(τj , j − 1)‖
= S ‖xTT(τj , j − 1)− α(τj , j − 1)‖ (50)

obtained in the proof of Proposition 1, with S a suitable strictly
positive constant. From the proof of Proposition 1 and Assump-
tion 6 furthermore follows that, if the initial condition of the
cl-NSTHS is taken sufficiently close to α(t0, 0), it is guaranteed
that the number of events Jx − 1 of the cl-NSTHS (equivalently,
of the cl-NTTHS) equals the number of events Jα − 1 of the
reference. The equality Jx = Jα is the first condition that α
has to satisfy for being locally asymptotically stable for the
cl-NSTHS, in the sense of Definition 3.

What is left to be shown in this proof is, therefore, that
the other two conditions of Definition 3 are fulfilled. Namely,
guaranteeing that for an arbitrary ε > 0, there exists a δ = δ(ε)
such that ‖x(t0, 0)− α(t0, 0)‖ < δ implies |tj − τj | < ε and
‖x(t, j)− α(t, j)‖ < ε for all (t, j) ∈ dom x and that both
quantities converge to zero as t → ∞. We will show that taking
εTT = εTT(ε) such that

max (εTT, SεTT, exp(LclSεTT)εTT) ≤ ε (51)

with S > 0 as in (50) and Lcl = L(1 + Lκ) > 0 as in (49) (cf.,
Assumption 5) and δ := δTT(εTT(ε)) will indeed satisfy the
above stability conditions.

First, for a given ε, if εTT is chosen according to (51), then
local asymptotic stability of α for the cl-NTTHS ensures the
existence of a neighborhood of α(t0, 0) containing a ball of
radius δ = δ(ε) such that the corresponding trajectories of the
cl-NSTHS satisfy the bound |tj − τj | < S εTT ≤ ε, as requested
by Definition 3.

Second, from (50) and (51), and local asymptotic stability
of the cl-NTTHS, one concludes immediately that ‖xTT(t, j)−
α(t, j)‖ < εTT ≤ ε for every time interval Iαj . However, in fact,
we need to prove something stronger, namely that ‖x(t, j)−
α(t, j)‖ < ε, for t ∈ Ijx = [tj−1, tj ]. In the simplest case,
namely when τj ≤ tj and tj+1 ≤ τj+1, the condition is trivially
satisfied on the jth time interval Ixj , because there x(t, j) =
xTT(t, j) andα(t, j) = α(t, j). In general, one will have tj ≤ τj
and/or τj+1 ≤ tj+1: indeed, if the simplest case occurs in jth
interval, by construction, it will not occur in the (j − 1)th and
(j + 1)th intervals. Fortunately, as in the proof of Proposition 1,
we can make use of a uniform exponential bound on the growth
of the solutions of locally Lipschitz vector fields, cf., (49).
For a given initial condition x(t0, 0) within the ball of radius
δ = δTT(εTT(ε)) centered at α(t0, 0), if τj+1 ≤ tj+1, then we
can bound the solutions of the cl-NSTHS for t ∈ [τj+1, tj+1] as

‖x(t, j)− α(t, j)‖ ≤ exp (Lcl(t− τj+1)) ‖eTT(τj+1, j)‖
≤ exp (Lcl(t− τj+1)) εTT (52)

where Lcl = L(1 + Lκ) follows from the upper bound L on the
Lipschitz constants as in Assumption 5 and the upper bound Lκ

on Lipschitz continuity of (32). Similarly, if tj ≤ τj , then we

can bound the solutions of cl-NSTHS for t ∈ [tj , τj ] as

‖x(t, j)− α(t, j)‖ ≤ exp (Lcl(τj − t)) ‖eTT(τj , j)‖
≤ exp (Lcl(τj − t)) εTT. (53)

Recalling (50) and for each j, the two equations above, due to
(51), finally lead to ‖x(t, j)− α(t, j)‖ < exp(LS εTT)εTT ≤ ε
for t ∈ Ijx = [tj−1, tj ], as required in Definition 3.

Convergence to zero of ‖tj − τj‖ and ‖x(t, j)− α(t, j)‖ for
t → ∞ follows from the convergence to zero of ‖xTT(τj , j)−
α(τj , j)‖ as j = jx(t) → ∞. This concludes the proof. �

It can be concluded that the trajectory α(t, j) is an asymp-
totically stable solution of the cl-NSTHS (6), (32) if it is an
asymptotically stable trajectory for the cl-NTTHS (43) (Prop.
2), which is the case if the origin of the closed-loop linearization
(21)–(31) about that trajectory, also referred to as the cl-LTTHS,
is uniformly asymptotically stable (Prop. 1). These two steps
together form the proof of Theorem 1.

APPENDIX C
RELATION TO EXISTING DEFINITION OF STABILITY

In this appendix, we will present a link with existing literature
on hybrid system stability analysis. More precisely, we will show
that uniform asymptotic stability of the origin of the cl-LTTHS
(21)–(31) implies asymptotic stability of the reference trajectory
α with respect to a suitable distance function (cf., [8, Def. 1
and 2] and below), As this distance function is not designed to
accommodate nonautonomous jump maps, flow sets, and jump
sets, in this appendix, we consider state-triggered hybrid systems
of the following form:

ẋ = f(x, u, t, j), x ∈ C (54a)

x+ = g(x−), x− ∈ D (54b)

with vector field f(x, u, t, j) : Rn × Rm × R × N → Rn,
jump map g : D → Rn, and constant flow and jump sets C ⊆
Rn andD ⊆ ∂C, respectively. Moreover, for the sake of brevity,
when we refer to x(t) and α(t) in this appendix, one should
read x(t, jx(t)) and α(t, jα(t)), respectively, where jx and jα
are given by Definition 6 in Section III-D for the trajectories x
and α. Asymptotic stability in terms of the distance function d
is defined as follows.

Definition 8 ([8, Definition 2]): The trajectory α is stable
with respect to the distance d if for all εd > 0, there exists
a δd(εd) > 0 such that for every trajectory x of (32), (54)
satisfying d(x0, α0) < δd(εd), it holds that d(x(t), α(t)) < εd
for all t ≥ t0. If it moreover holds thatd(x(t), α(t)) → 0 for t →
∞, then the trajectory α is asymptotically stable with respect
to d. �

We can now formulate the following result.
Corollary 1: Adopt Assumptions 1–6. Let a state-input tra-

jectory (α, μ) be a solution to the cl-NSTHS (32), (54), starting
from the initial condition α(t0) = α0 ∈ int C \ g(D). Let the
closed-loop vector field furthermore satisfy ‖fcl(x, t)‖ < F for
someF > 0 and for all (x, t) in a neighborhood of the graph ofα.
If the origin of the associated cl-LTTHS (21)–(31) is uniformly
asymptotically stable, then, given any uniformly continuous
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distance function d : Rn × Rn → R≥0 that is compatible with
(32), (54) in the sense of [8, Def. 1], the trajectoryα of (32), (54)
is asymptotically stable with respect to the distance d as given
in Definition 8.

Proof: The proof of Corollary 1 can be found in [36,
Appendix C.3]. �

APPENDIX D
DERIVATION OF THE LTTHS FROM THE NTTHS

In this appendix, we show that the LTTHS (21)–(30) is the
linearization of the NTTHS (40), (41). The hybrid dynamics
of the NTTHS are described in terms of the vector field f of
the original NSTHS (2) and the input dependent reset map
guTT given in (41), also graphically represented in Fig. 6. We
now perturb the initial condition and input slightly from the
reference state-input trajectory (α(t, j), μ(t, j)), that is, we
take xTT,ε(t0, 0) = α0 + εz0 and uε(t, j) = μ(t, j) + εv(t, j)
for some initial state perturbation z0, input perturbation v(t, j)
(that may be different for different j) and scalar perturba-
tion parameter ε. Standard results can be used [30] to show
that the trajectory of the NTTHS can be expanded in series
with respect to ε as xTT,ε(t, j) = α(t, j) + εz(t, j) + o(ε). It
follows that ẋTT,ε = f(α+ εz + o(ε), μ+ εv, t, j), for (t, j) ∈
dom α, which can be expanded, in each of the intervals
[τj , τj+1], as

α̇+ εż + o(ε) = f(α(t, j), μ(t, j), t, j)

+ ε [D1f(α(t, j), μ(t, j), t, j) z

+ D2f(α(t, j), μ(t, j), t, j) v] + o(ε).

Matching terms in the expansion allows to conclude that the
flow dynamics of the linear approximation about the state-input
trajectory (α(t, j), μ(t, j)) for each continuous time interval
[τj , τj+1] is given by

ż = D1f(α(t, j), μ(t, j), t, j) z

+D2f(α(t, j), μ(t, j), t, j)v

=: A(t, j)z +B(t, j)v

that matches the expressions given for A and B in (22) and (23),
respectively.

Next, for each jump time τj+1, we seek a relation between
the states z−(τj+1) := z(τj+1, j) and z+(τj+1) := z(τj+1, j +
1) that will eventually be equal to (24). Roughly speaking,
this corresponds to the linearization of the jump map guTT in
(41). We follow a similar strategy in deriving the linear jump
map as detailed in [19], but now fitted in the framework of
hybrid time.

Consider the (j + 1)th event with reference event time
τj+1 and corresponding event time tj+1,ε of the NSTHS. De-
fine Δε = tj+1,ε − τj+1, which is assumed to be small based
on the fact that xTT,ε and α are close to each other and
Assumption 3. To make the derivation of (24) concise, below
we denote the event time τj+1 simply by τ . Furthermore, when

we refer to x−
TT,ε, one should read xTT,ε(τj+1, j) and simi-

larly α− = α(τj+1, j), μ− = μ(τj+1, j), and z− = z(τj+1, j).
Analogously, for the right limits at the time τ , we employ
the notation x+

TT,ε = xTT,ε(τj+1, j + 1), α+ = α(τj+1, j + 1),
μ+ = μ(τj+1, j + 1), and z+ = z(τj+1, j + 1).

The jump map guTT in (41) for the event j + 1 constitutes
phases of flow to and from the event time tj+1,ε that depends
on ε and the choice of v(t, j). These flows can be captured by
extending the solution z, using the continuous time part of (21),
to form z (where states for consecutive counter are related via a
“to be defined” jump map) in a similar fashion as done for the
reference trajectory α as explained in Section III-A. This allows
us to form the extended trajectory of the NTTHS, which, due to
the locally Lipschitz property of the vector field f , is the same
as that of the original NSTHS, i.e., xε(t, j) := xTT,ε(t, j) =
α(t, j) + εz(t, j) + o(ε). It follows that, instead of the jump map
x+

TT,ε = guTT(x
−
TT,ε, τ, j), we can consider

xε(τ +Δε, j + 1) = g(xε(τ +Δε, j), τ +Δε, j) (55)

and use a series expansion to account for the difference in time.
Again to keep notation concise, we append the states α, xε, and
z with a superscript, i.e., (·)� to denote that it is the left limit
for the event time tj+1,ε = τj+1 +Δε, e.g., z� = z(tj+1,ε, j).
For the right limit, we employ the superscript (·)�, e.g., z� =
z(tj+1,ε, j + 1). For the state x�

ε , we find

x�
ε = α� + εz� + o(ε)

= α− + α̇−Δ′
0ε+ (z− + ż−Δ′

0ε)ε+ o(ε)

= α− + (α̇−Δ′
0 + z−)ε+ o(ε) (56)

where Δ′
0 = ∂Δε

∂ε |ε=0 and α̇− = f(α−, μ−, τ, j) and similarly
that

x�
ε = α� + εz� + o(ε)

= α+ + (α̇+Δ′
0 + z+)ε+ o(ε) (57)

where α̇+ = f(α+, μ+, τ, j + 1). These expansions make use
of the dependence of the jump time difference Δε on ε. More
precisely, they contain the derivative of Δε with respect to ε
evaluated at zero. From Assumption 2, it follows that for the
reference jump at time τ holds that γα(α−, τ, j) = 0 since, by
definition, the state will be in the jump set D. Similarly, the
definition of tj+1,ε implies γα(xε(tj+1,ε, j), tj+1,ε, j) = 0, or
formulated differently that γα(x�

ε , τ +Δε, j) = 0. Using (56),
this can be rewritten as

γα
(
α−, τ, j

)
+D1γα(α

−, τ, j)
(
α̇−Δ′

0 + z−
)
ε

+D2γα(α
−, τ, j)Δ′

0ε+ o(ε) = 0.

Since this needs to hold for all ε and since γα(α
−, τ, j) = 0, it

follows that

Δ′
0 = − D1γα(α

−, τ, j)

D1γα(α−, τ, j)α̇− +D2γα(α−, τ, j)
z−. (58)

Note that the transversality assumption (see Assumption 3)
implies that the denominator in (58) is nonzero.
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Incorporating (56) and (57) in (55) and expanding in series
with respect to ε gives

x�
ε = α+ + (α̇+Δ′

0 + z+)ε+ o(ε)

= g(α− + (α̇−Δ′
0 + z−)ε+ o(ε), τ +Δt(ε), j)

= g(α−, τ, j) +D1g(α
−, τ, j)(α̇−Δ′

0 + z−)ε

+D2g(α
−, τ, j)Δ′

0ε+ o(ε).

Now we recall that α+ = g(α−, τ, j) and match terms of ε to
obtain z+ = (−α̇+ + ġ−)Δ′

0 +D1g(α
−, τ, j)z−, where ġ− =

D1g(α
−, τ, j)α̇− +D2g(α

−, τ, j). After incorporating (58), it
follows that the linearized jump map satisfies

z+ =

[(
α̇+ − ġ−

) D1γα(α
−, τ, j)

γ̇−
α

+D1g(α
−, τ, j)

]
z−

with γ̇−
α = D1γα(α

−, τ, j) · α̇− +D2γα(α
−, τ, j) · 1, which is

equivalent to (24).
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