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Abstract: This paper presents an experimental implementation of an observer-based

controller design strategy on a piecewise linear beam system comprising a flexible steel

beam with a one-sided support. The observer-based controller design strategy guarantees

a unique globally asymptotically stable steady-state solution of the closed-loop system,

which allows for unique performance evaluation in terms of disturbance attenuation.

Experimental and simulation results are presented to demonstrate the effectiveness of the

strategy. Copyright c©2006 IFAC.

1. INTRODUCTION
This paper presents an experimental study of an

observer-based controller design strategy for a contin-

uous piecewise linear (PWL) system by application to

an elastic beam with a one-sided support. The experi-

mental beam system consists of a flexible steel beam,

which is clamped on two sides and is locally supported

by a one-sided linear spring. Due to the one-sided

spring the beam has two different dynamical regimes,

which can both be well described as linear. As such the

beam system can be represented by a bi-modal PWL

system. The experimental beam system is periodically

excited by a rotating mass unbalance.

The mechanical motivation to study such a PWL beam

system is the analysis and control of the dynamics

of complicated engineering constructions including

structural elements with PWL restoring characteris-

tics, such as tower cranes, suspension bridges, solar

panels on satellites, offshore oil production facilities

and many more.

For this experimental beam we will design an observer-

1 Supported by European project SICONOS (IST −2001−37172)

and HYCON (511368)

based controller using the strategy from (Pavlov, 2004;

Doris et al., 2005b) in order to ultimately achieve

performance of the closed-loop system in terms of

disturbance attenuation.

Results related to performance of control designs of

PWL/PWA systems, in terms of disturbance attenu-

ation, were given in (Rantzer and Johansson, 2000),

(Hassibi and Boyd, 2005) and (Feng et al., 2002).

The performance results of these papers are based on

quadratic or piecewise quadratic Lyapunov functions

and provide an upper bound for the system output

(given bounds on the input) by bounding the L2 gain

from the system input to the system output. These

results have been derived under the assumption of zero

initial conditions.

In (Doris et al., 2005b) output-feedback controllers

are considered for PWL systems, such as the exam-

ined PWL beam system. The applied strategy is based

on extended notions of convergence ((Demidovich,

1967), (Pavlov et al., 2004)) presented in (Pavlov,

2004). These extended notions of convergence are

the notions uniform convergence and input-to-state

convergence. A uniformly convergent system has a

unique globally asymptotically stable steady-state so-



lution which is determined only by the system input

and does not depend on the initial conditions.

The implemented controller is a combination of a bi-

modal PWL observer, see (Juloski et al., 2002) and

(Doris et al., 2005a) and a state-feedback controller

that uses the estimated states of the system. A dis-

tinguishing feature of the observer is that it does not

necessary need to know in which ’mode’ the system

is, in contrast to observers proposed in (Alessandri and

Coletta, 2001a), (Alessandri and Coletta, 2001b) and

(Alessandri and Coletta, 2003).

To the best of the authors knowledge, this work

presents for the first time experimental results for

an observer-based controller design for a real PWL

system. These results show the performance of the

closed-loop system in terms of disturbance attenua-

tion.

The controller design strategy focuses on the atten-

uation of exogenous periodic input disturbances on

the system state by rendering the closed-loop system

convergent. The theory related to this strategy gives

conditions under which global exponential conver-

gence and input-to-state-convergence (Pavlov, 2004)

of the interconnected system (observer-controller-

PWL beam) is achieved. These conditions imply that

the closed-loop system at hand exhibits a unique

steady-state solution. The latter feature allows for a

unique performance evaluation in terms of disturbance

attenuation.

The focus of the paper is on the implementation of

this observer-based controller design strategy for the

experimental beam system and on the evaluation of

the obtained results using experimental measurements

and simulations.

The paper is structured as follows. In section 2, a

description of the experimental set-up is given and

the modeling of the beam system is discussed. The

observer-based controller design strategy is intro-

duced in section 3. In section 4, simulation and experi-

mental results related to the controller performance in

terms of disturbance attenuation are presented. Con-

clusions are given in section 5.

2. EXPERIMENTAL SET-UP AND MODELING

OF THE BEAM SYSTEM

The experimental set-up, in which we apply the con-

troller design proposed in (Doris et al., 2005b), con-

sists of a steel beam which is mounted at both ends

by two leaf springs see Figures 1 and 2. The steel

beam is excited by a force generated by a rotating

mass-unbalance. The mass-unbalance is mounted in

the middle of the beam. A tacho-controlled motor, that

enables a constant rotation speed, drives the mass-

unbalance. An actuator is mounted on the beam in

order to control the beam dynamics. A second beam

is placed parallel with respect to the first beam and

represents a one-sided spring. This one-sided spring

represents a non-smooth nonlinearity in the system.

Therefore, the system has non-smooth and nonlinear

dynamics. Assuming that the restoring characteristics

of the spring are linear, the beam-spring system can be

described as a PWL system.

Fig. 1. Photo view of the PWL beam system.

Fig. 2. Schematic view of the PWL beam system.
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Fig. 3. Elastic beam with one-sided support.

The dynamics of the PWL beam system can be ex-

pressed by a three-degree-of-freedom (3DOF) model

(Doris et al., 2005b):

Mq̈+Bsq̇+Ksq+ fnl(q) = h1 w(t)+h2 u(t), (1)

where h1 = [1 0 0]T , h2 = [0 1 0]T and q =
[qmid qact qξ ]T . Herein, qmid is the displacement of

the middle of the beam and qact is the displacement of

the point of the beam at which the actuator is mounted,

see Figure 3. Moreover, qξ reflects the contribution of

the first eigenmode of the beam and M, Bs and Ks are

the mass, damping and stiffness matrices of the 3DOF

model, respectively. We apply a periodic (harmonic)

excitation force

w(t) = Asinωt, (2)

which is generated by the rotating mass-unbalance at

the middle of the beam. Herein, ω is the excitation

frequency and A the amplitude of the excitation force.

Moreover, u(t) ∈ R is the control force applied by the

actuator to the beam and fnl is the restoring force of

the one-sided spring:

fnl(q) = knl h1 min(0,hT
1 q) = knl h1 min(0,qmid), (3)

where knl is the stiffness of the spring. In other words,

the force fnl acts when there is contact between the

middle of the beam and the one-sided spring.

For the 3DOF model, three types of steady-state be-

havior are known to exist, namely: periodic, quasi-

periodic and chaotic solutions (Fey et al., 1996).

Herein, it is also shown that such steady-state solution



can coexist (both periodic and sub-harmonic).

In a state-space formulation, the model takes the fol-

lowing form

ẋ(t) =

{

A1x(t)+Bw(t)+B1u(t) for HT x(t) ≤ 0

A2x(t)+Bw(t)+B1u(t) for HT x(t) > 0

(4a)

y(t) = Cx(t), (4b)

where x = [qT q̇T ]T ∈ R
6 is the state and H =

[hT
1 0T ]T . Furthermore, y(t)∈R is the system output

and

A1 =

[

0 I

−M−1(Ks + knl h1 hT
1 ) −M−1Bs

]

,

A2 =

[

0 I

−M−1Ks −M−1Bs

]

,

B =

[

0

M−1h1

]

, B1 =

[

0

M−1h2

]

.

Note that the vectorfields in (4a) coincide on the

switching boundary HT x = 0 and y(t) describes a

transversal displacement of a point on the beam, de-

picted in Figure 3 (point 1). The numerical values of

M, Bs, Ks, knl and C are given in the Appendix.

3. OBSERVER-BASED CONTROLLER DESIGN

For the system (4), we consider a switching observer

of the following structure (Juloski et al., 2002):

˙̂x(t) =
{

A1x̂(t)+Bw(t)+B1u(t)+L1∆y(t), if HT x̂ ≤ 0

A2x̂(t)+Bw(t)+B1u(t)+L2∆y(t), if HT x̂ > 0,
(5)

with L1,L2 ∈ R
6 and x̂(t) ∈ R

6. The observer output

is ŷ(t) = C x̂(t) and ∆y(t) = y(t)− ŷ(t). The system

output y is used as observer output injection.

The dynamics of the observer error ∆x(t) = x(t)− x̂(t)
is described by

˙∆x(t) =














(A1 −L1C)∆x, if HT x ≤ 0 ∧ HT x̂ ≤ 0

(A2 −L2C)∆x+∆Ax, if HT x ≤ 0 ∧ HT x̂ > 0

(A1 −L1C)∆x−∆Ax, if HT x > 0 ∧ HT x̂ ≤ 0

(A2 −L2C)∆x, if HT x > 0 ∧ HT x̂ > 0,
(6)

where ∆A = A1 −A2.

Using the control law

u(t) = −Kx̂(t), (7)

in (4a) yields the closed-loop system:

ẋ(t) =

{

Aax(t)+Bw(t)−B1K∆x(t), if HT x ≤ 0

Abx(t)+Bw(t)−B1K∆x(t), if HT x > 0.
(8)

with Aa = A1 −B1K and Ab = A2 −B1K. The inter-

connected system consist of the equations (6) and (8).

In order to use the controller (7) for disturbance atten-

uation, we show first that the interconnected system

is uniformly convergent. Hereto, we use the notion of

uniform convergence and input-to-state convergence

(Pavlov, 2004).

Consider the system

ż = F(z,w, t), (9)

t ∈ R, z ∈ R
d , w ∈ R

m, where F(z,w, t) is piecewise

continuous in t, continuous in w and locally Lipschitz

in z. The input w(t) is a piecewise continuous function

of t.
Definition 1. System (9) with given input w(t) is said

to be (uniformly, exponentially) convergent if

(1) all solutions z(t) are well defined for all t ∈
[t0,+∞) and all initial conditions t0 ∈ R, z(t0) ∈
R

m;

(2) there exists a unique solution z̄w(t) defined and

bounded for all t ∈ (−∞,+∞);
(3) the solution z̄w(t) is globally (uniformly, expo-

nentially) asymptotically stable.

Definition 2. (Pavlov, 2004) System (9) is said to be

input-to-state convergent if it is uniformly convergent

for a class of piecewise continuous inputs and, for

every input w(t) taken from this class, the system

is input-to-state stable with respect to the system’s

solution z̄w(t), i.e. there exist a KL-function β (r,s) and

a class K∞-function γ(r) such that any solution of this

system corresponding to some input w̃(t) := w(t) +
∆w(t) satisfies

|z(t)− z̄w(t)| ≤
β (|z(t0)− z̄w(t0)|, t − t0)+ γ( sup

t0≤τ≤t

|∆w(τ)|). (10)

The problem at hand now can formally be stated as:

Problem: Determine, if possible, the controller gain K

in (7) and the observer gains L1, L2 in (5) such that 1)

the interconnected system is uniformly convergent for

a class of piecewise continuous inputs w : R
+ −→ R

m

and 2) for a given disturbance w(t) the maximum ab-

solute value of the state components of (8), max(|xi|),
i = 1, ...,n, is smaller than the maximum absolute

value of the uncontrolled state components max(|xi|),
i = 1, ...,n .

Note that here we consider a class of bounded periodic

disturbances w(t) and that the uncontrolled system can

be derived from (4) when u=0.

In order to render the interconnected system uni-

formly convergent we use a property presented in

(Pavlov, 2004):

Property 1. Consider the system

{

ż = F(z,y,w), z ∈ R
d

ẏ = G(z,y,w), y ∈ R
q.

(11)

Suppose that the z-subsystem is input-to-state conver-

gent with respect to y and w. Assume that there exists

a class KL-function βy(r,s) such that for any piece-

wise continuous input (w(·), z(·)), any solution of the

y-subsystem satisfies

|y(t)| ≤ βy(|y(t0)|, t − t0). (12)

Then the interconnected system (11) is uniformly con-

vergent.

In Figure 4, a schematic representation of the inter-

connected system (11) is depicted.
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Fig. 4. Schematic representation of the interconnected

system (11).
In the present case system (6) is the y-subsystem and

system (8) is the z-subsystem in (11).

In order to render the closed-loop system (8) input-to-

state convergent we use the results in (Pavlov, 2004).

In this paper conditions under which system (8) is

uniformly convergent and input-to-state convergent

for all piecewise continuous bounded disturbances are

given:

Theorem 1. (Pavlov, 2004) Consider the state-space

R
d which is divided into regions Λi, i = 1, ..., l, by

hyperplanes given by equations of the form HT
j z +

h j = 0, for some H j ∈ R
d and h j ∈ R, j = 1, ...k.

Consider the piece-wise affine system

ż = Aiz+bi +Dw(t), for z ∈ Λi, i = 1, ..., l. (13)

Suppose that the right-hand side of (13) is continuous

and there exists Q = QT > 0 such that

QAi +AT
i Q < 0, i = 1, ..., l. (14)

Then system (13) is exponentially convergent and

input-to-state convergent for any piecewise continu-

ous bounded input w(t).

Using Theorem 1 for (8), the following LMI con-

straints are derived to guarantee uniform convergence

and input-to-state convergence:

Q = QT > 0, (15a)

AT
a Q+QAa < 0, (15b)

AT
b Q+QAb < 0. (15c)

The inequalities (15a)-(15c) are nonlinear matrix in-

equalities in {Q,K} but are linear in {Q,KT Q} and

thus can be efficiently solved using standard LMI

solvers (such as the LMITOOL in MATLAB).

In order to prove that there exists a class KL function

βy(r,s) such that for any piecewise continuous input

(w(·), z(·)), any solution of the observer error dynam-

ics (6) satisfies (12) we show that these are globally

exponentially stable. Results for global exponential

stability of (6) are given in (Doris et al., 2005b),

(Juloski et al., 2002):

Theorem 2. The observer error dynamics (6) is glob-

ally exponentially stable (GES) for all x : R
+ −→ R

n

(in the sense of Lyapunov), if there exist matrices

P = PT > 0, L1,L2 and constants τ1,τ2 ≥ 0, α > 0 such

that the following set of matrix inequalities is satisfied:



















(A2 −L2C)T P+ P∆A+

+P(A2 −L2C)+αP +
1

2
τ1HHT

∆AT P+ −τ1HHT

+τ1
1

2
HHT



















≤ 0 (16a)



















(A1 −L1C)T P+ −P∆A+

+P(A1 −L1C)+αP +
1

2
τ2HHT

−∆AT P+ −τ2HHT

+τ2
1

2
HHT



















≤ 0. (16b)

Now, using Property 1 we can conclude that if the

LMIs (15) and (16) are satisfied the controlled system

(6), (8) is uniformly convergent. Consequently, for any

bounded disturbance w(t), with period T there exists

a unique globally asymptotically periodic steady-state

solution with period T , see (Pavlov, 2004). The latter

fact is favorable since it allows to uniquely assess the

performance of the controller in terms of disturbance

attenuation.

4. EXPERIMENTAL AND SIMULATION

RESULTS
In order to validate the applicability and the perfor-

mance of the presented controller design strategy, sim-

ulation and experimental results related to the exper-

imental PWL system are shown for periodic excita-

tions.

More specifically, we show that the PWL beam system

in closed-loop with the observer-based controller is

uniformly convergent and that the maximum value of

the transversal displacement of a point on the beam is

significantly smaller when the controller is active than

in the open-loop case. The numerical values of the

gains L1, L2 and K (calculated using the LMIs (15) and

(16)), that guarantee global exponential stability of the

observer error dynamics, input-to-state convergence

of (8) with respect to the input ∆x(t) and w(t) and,

moreover, guarantee disturbance attenuation for the

closed-loop system, are shown in the Appendix.

a: open-loop stable steady-state solution (simulation)

b: open-loop unstable steady-state solution (simulation)

c: open-loop steady-state solution (experiment)

d: closed-loop steady-state solution (experiment)

e: closed-loop steady-state solution (simulation)
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Fig. 5. max(|qmid |)/A for the open-loop system (4)

(solid doted line, dashed line) and the controlled

system (6) and (8) (dashed-dotted line, thin solid

line).

In Figure 5, the scaled maximum absolute value of the

transversal displacement of the middle of the beam for



a frequency range of periodic disturbances, is shown.

More specifically, in this Figure the dashed line (a)

represents the simulated stable open-loop (u = 0)

steady-state response, while the thick solid line (b)

represents the simulated unstable open-loop steady-

state response. Both responses are based on numeri-

cal computations. For the numerical computation of

these responses the path following procedure (Ascher

et al., 1995) is used. In the same Figure, the solid line

with the black points (c) represents the experimental

(stable) steady-state response of the open-loop system.

These data where taken from a displacement trans-

ducer (LVDT) that is mounted on the middle of the

beam. Note that by using experimental data we can

only show the stable steady-state response of the PWL

beam system for obvious reasons. Based on the results

related to the open-loop system we conclude that it is

not uniformly convergent since it has two steady state-

solutions within the frequency range of 35 − 55Hz.

In this frequency range, the unstable steady-state re-

sponse is a harmonic solution and the stable steady-

state response is a 1
2

subharmonic solution.

Comparing the experimental and the computational

results for the open-loop case, we can conclude that

the PWL model predicts with high accuracy the re-

sponses of the real system. Small differences are due

to unavoidable model inaccuracies and noise in the

experimental measurement signals.

In the same Figure, the closed-loop response of the

PWL beam system is shown. In order to derive this

response we use simulation and experimental results.

The thin dashed-dotted line (e) depicts the numerically

computed closed-loop response (using the same com-

putational methods as in the open-loop case), while

the thin solid line (d) depicts the experimentally ob-

tained response (using a LVDT). Based on the ex-

perimental and model results, we can conclude that

the closed-loop steady-state response is indeed unique

in the given frequency range, due to the fact that the

closed-loop system (6), (8) is uniformly convergent.

Given the fact that the controlled system is uniformly

convergent, performance assessment in terms of dis-

turbance attenuation can be performed. Based on the

presented results we conclude that there is a nice

match between experiments and model results for the

closed-loop case. Note that in the frequency range

above 50Hz there is a significant difference between

simulation and experimental results. This difference

is due to the fact that resonance frequencies that are

insignificant in the open-loop case become significant

in the closed-loop case. An explanation of this phe-

nomenon for the experimental system follows. The

open-loop system corresponds to the PWL beam with-

out the control action. The 3DOF model that is used to

simulate the system dynamics considers only the first

eigenmode which occurs at 21Hz. The second eigen-

mode, which occurs at 23Hz, is due to the flexibility

of the leaf springs and forces the beam to move in a

longitudinal direction. Therefore, it has a minor influ-

ence in the transversal displacements of the beam that

we want to attenuate. In the third eigenmode (54Hz)

the middle of the beam stands still. Due to the fact that

the excitation mechanism (rotating mass-unbalance) is

mounted in the middle of the beam this eigenmode is

not excited. By applying a control action on the point

depicted in Figure 3, the third eigenmode becomes

active and influences the closed-loop response.

For additional insight in the obtained results, we

present a time response of qmid(t) for four different

initial conditions x0i, i = 1, ...,4, in Figure 6. In this

Figure, the thin solid line and the dashed (thin and

thick) lines represent a time response which has been

computed using the 3DOF model of the PWL beam.

In the same Figure the thick solid line represents a

time response which is based on experimental data.

Herein, the excitation frequency and the force ampli-

tude are f = 38 Hz and A = 58 N, respectively. Figure

6 shows that the time response qmid(t) converges to a

unique steady-state solution for different initial condi-

tions see small picture in Figure 6.

The comparison of the plot of max(|qmid |) in Figure

5 for the open- and closed-loop system shows that the

closed-loop system responses are significantly smaller

than those of the open-loop system. Based on this

comparison, it is concluded that the effect of the dis-

turbances w to the PWL beam is attenuated due to the

control. Note that especially the nonlinear resonances

are suppressed. This can also be noticed in Figure 7,

where the time response of qmid(t) in steady-state is

shown. In this Figure, the thin solid line corresponds

to the open-loop solutions of qmid while the thick solid

line corresponds to the closed-loop solution. The exci-

tation frequency for this case is 21.5 Hz and the force

amplitude is A = 20.5 N (see also the vertical solid line

in Figure 5). It should be noted that we have achieved

similar results for every point on the beam.

5. CONCLUSIONS AND FUTURE WORK

An observer-based controller design strategy is ap-

plied to a periodically excited beam with a one-sided

support in order to achieve disturbance attenuation.

A linear output-feedback control law is used for this

purpose. A non-smooth yet simple model in combi-

nation with a model-based piecewise linear observer

estimates the states of the experimental beam system

with high accuracy.

The controller design strategy is based on the no-

tion of input-to-state convergence and uniform conver-

gence. By using the input-to-state convergence prop-

erty we render the observer/controller combination

stable. Moreover, the uniform convergence property of

the closed-loop guarantees that we can uniquely define

the performance of the closed-loop system in terms of

disturbance attenuation.

Experimental and simulation results are presented to

assess the controller performance. According to these

results the controller performs well, since it renders

the closed-loop convergent and suppresses all the

(nonlinear) resonance peaks of the beam’s transversal

vibrations considerably in the presence of periodic

disturbances. Despite the fact that uncertain factors



are present, such as inevitable model mismatch and

noise in the output injection term of the observer,

the observer-based controller attenuates the periodic

disturbances in all given excitation frequencies.

Due to the fact that the proposed low-order ob-

server/controller combination is able to cope with dis-

tributed parameter systems, the presented case study

can be considered as a benchmark for observer and

controller designs for complex non-smooth and hybrid

engineering systems.
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(dashed line) system for ω = 2π21.5 rad/s and

A = 20.5 N.
6. APPENDIX

The matrices M, Ks, Bs, L1, L2, K, C and knl are

M =





3.7898 0.1626 1.6218

0.1626 6.5622 2.4830

1.6218 2.4830 2.7756



 ,

Ks = 106





2.4148 0.0061 1.1254

0.0061 0.7704 0.3082

1.1254 0.3082 0.658



 ,

Bs = 102





108.9828 3.3894 52.0716

3.3894 89.0314 33.9348

52.0716 33.9348 41.7312



,

L1 = 104 [ 0.0101 0.0079 −0.0197

0.7094 0.5963 −1.4450 ],

L2 = 104 [ 0.01 0.0078 −0.0196

0.8823 0.6426 −1.5885 ],

K = 104 [ −0.8796 0.6541 −1.6953

0.0027 0.0055 −0.0236 ],
C = [−0.9579 1.2165 −0.2642 0 0 0]

and knl = 160000 N/m.
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