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from the detector. Simulation results are presented to illustrate the performance of our tools.
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1. INTRODUCTION

During the past decades, scientific and technological ad-
vances have greatly improved the performance of control
systems. From heating/cooling devices in our homes, to
cruise-control in our cars, to robotics in manufacturing
centers. However, these new technologies have also led to
vulnerabilities of some our most critical infrastructures
– e.g., power, water, transportation. Advances in com-
munication and computing have given rise to adversaries
with enhanced and adaptive capabilities. Depending on
their resources, attackers may deteriorate the functionality
of systems even while remaining undetected. Therefore,
designing efficient attack detection schemes and attack-
robust control systems is of key importance for guaran-
teeing the safety and proper operation of critical systems.
Tools from sequential analysis and fault detection have
to be adapted to deal with the systematic, strategic, and
persistent nature of attacks. These new challenges have
attracted the attention of many researchers in the control
and computer science communities, see e.g., (Cárdenas
et al., 2011; Pasqualetti et al., 2013; Mo et al., 2010;
Kwon et al., 2013; Miao et al., 2014; Bai et al., 2015),
and references therein.

? This work was supported by the National Research Foundation
(NRF), Prime Minister’s Office, Singapore, under its National Cyber-
security R&D Programme (Award No. NRF2014NCR-NCR001-40)
and administered by the National Cybersecurity R&D Directorate.

This paper addresses the problem of characterizing the
impact of sensor attacks on Linear Time-Invariant (LTI)
stochastic systems when fault detection techniques are
deployed for attack detection, see, e.g., (Chen and Patton,
1999; Kyriakides and Polycarpou, 2015; Pasqualetti et al.,
2013; Cárdenas et al., 2011). The main idea behind fault
detection theory is the use of an estimator to forecast the
evolution of the system dynamics. If the difference between
measurements and the estimation is larger than expected,
there may be a fault in or an attack on the system. The
complete fault detection scheme consists of two parts: the
estimator and a change detection procedure (used to de-
cide whether the estimator and the system are sufficiently
different to declare the presence of faults/attacks). We
use observers, (Luenberger, 1966; Nijmeijer and Mareels,
1997), as estimators; and the chi-squared procedure for
change detection (Gustafsson, 2000).

The main contribution of the paper is a set of mathema-
tical tools for quantifying and minimizing the impact of
sensor attacks on the system dynamics. This effect depends
on where, when, and how, the attack occurs in the system.
To capture this, we model attacks as additive pertur-
bations affecting sensors measurements (Kyriakides and
Polycarpou, 2015; Pasqualetti et al., 2013; Cárdenas et al.,
2011). These perturbations are propagated to the system
dynamics through output-based controllers. To quantify
the effect of attacks, we need to introduce some measure
of impact. However, because malicious adversaries may
launch any arbitrary attack, we need a measure which can
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capture all possible states that the attacker can induce
in the system, given how it accesses the dynamics (i.e.,
through the control scheme by tampering with sensor
measurements). We propose to use the reachable set of
the attack (Boyd et al., 1994) as our measure of impact.

We remark that all detectors produce false alarms – due
to the stochastic nature of the system and measurement
noise. We refer to attacks that are able to maintain the
alarm rate of the detector equivalent to its attack-free
false alarm rate as hidden attacks (since they make the
behavior of the detector of the attacked system indis-
tinguishable from its behavior without attacks). Contrast
hidden attacks with zero alarm attacks, which ensure that
no alarms are raised during an attack by maintaining the
detection statistic just beneath its detection threshold,
see, e.g., (Murguia and Ruths, 2016a,b; Giraldo et al.,
2016; Cardenas et al., 2009). In this work, we characterize
the reachable sets that hidden attacks can induce in the
system. We refer to these sets as the hidden reachable
sets of the attack sequence. In general, it is intractable
to compute these sets exactly. Instead, for given system
dynamics, control structure, and attack detection proce-
dure, we derive ellipsoidal bounds on the hidden reachable
sets using Linear Matrix Inequalities (LMIs), (Boyd et al.,
1994). We provide synthesis tools for minimizing these
bounds (minimizing thus the hidden reachable sets) by
properly redesigning controllers and detectors.

There are a few results in this direction already; chiefly
the work in (Mo and Sinopoli, 2016), where a recursive
algorithm to compute ellipsoidal inner and outer bounds
of hidden reachable sets is provided. We assert our analysis
tools are more constructive and easier to implement, which
we achieve by reformulating the problem of computing the
ellipsoidal bounds as a convex optimization problem in
terms of LMIs. Another aspect that takes our work beyond
the analysis results of (Mo and Sinopoli, 2016) is that
we also provide synthesis tools for minimizing the hidden
reachable sets by redesigning detectors and controllers.

2. SYSTEM DESCRIPTION & ATTACK DETECTION

We study LTI stochastic systems of the form:{
x(tk+1) = Fx(tk) +Gu(tk) + v(tk),

y(tk) = Cx(tk) + η(tk),
(1)

with sampling time-instants tk, k ∈ N, state x ∈ Rn, mea-
sured output y ∈ Rm, control input u ∈ Rl, matrices F , G,
and C of appropriate dimensions, and i.i.d. multivariate
zero-mean Gaussian noises v ∈ Rn and η ∈ Rm with
covariance matrices R1 ∈ Rn×n, R1 ≥ 0 and R2 ∈ Rm×m,
R2 ≥ 0, respectively. The initial state x(t1) is assumed
to be a Gaussian random vector with covariance matrix
R0 ∈ Rn×n, R0 ≥ 0. The processes v(tk), k ∈ N and
η(tk), k ∈ N and the initial condition x(t1) are mutually
independent. It is assumed that (F,G) is stabilizable and
(F,C) is detectable. At the time-instants tk, k ∈ N, the
output of the process y(tk) is sampled and transmitted
over a communication network. The received output ȳ(tk)
is used to compute control actions u(tk) which are sent
back to the process, see Fig. 1. The complete control-loop
is assumed to be performed instantaneously, i.e., the sam-
pling, transmission, and arrival time-instants are supposed
to be equal. In this paper, we focus on attacks on sensor

Figure 1. Cyber-physical system under sensor attacks.

measurements. That is, in between transmission and re-
ception of sensor data, an attacker may replace the signals
coming from the sensors to the controller, see Fig. 1.
After each transmission and reception, the attacked output
ȳ takes the form:

ȳ(tk) := y(tk) + δ(tk) = Cx(tk) + η(tk) + δ(tk), (2)

where δ(tk) ∈ Rm denotes additive sensor attacks. Denote
xk := x(tk), uk := u(tk), vk := v(tk), ȳk := ȳ(tk),
ηk := η(tk), and δk := δ(tk). Using this new notation, the
attacked system is written in the following compact form:{

xk+1 = Fxk +Guk + vk,
ȳk = Cxk + ηk + δk.

(3)

2.1 Observer

To estimate the state of the process, we use the observer

x̂k+1 = Fx̂k +Guk + L
(
ȳk − Cx̂k

)
, (4)

with estimated state x̂k ∈ Rn, x̂1 = E[x(t1)], where E[ · ]
denotes expectation, and observer gain matrix L ∈ Rn×m.
Define the estimation error ek := xk−x̂k. Given the system
dynamics (3) and the observer (4), the estimation error is
governed by the following difference equation

ek+1 =
(
F − LC

)
ek + vk − Lηk − Lδk. (5)

The pair (F,C) is detectable; hence, the observer gain
L can be selected such that (F − LC) is Schur. More-
over, under detectability of (F,C), the covariance matrix
Pk := E[eke

T
k ] converges to steady state (in the absence

of attacks) in the sense that limk→∞ Pk = P exists, see
Aström and Wittenmark (1997). For δk = 0 and given L
(such that (F − LC) is Schur), it can be verified that the
asymptotic covariance matrix P = limk→∞ Pk is given by
the solution P of the following Lyapunov equation:

(F − LC)P (F − LC)T − P +R1 + LR2L
T = 0, (6)

where 0 denotes the zero matrix of appropriate dimen-
sions. It is assumed that the system has reached steady
state before an attack occurs.

2.2 Residuals and Hypothesis Testing

Attacks can be regarded as intensionally induced faults in
the system. Then, it is reasonable to use existing fault
detection techniques to identify sensor attacks. The main
idea behind fault detection theory is the use of an estima-
tor to forecast the evolution of the system. If the difference
between what it is measured and the estimation is larger
than expected, there may be a fault in or attack on the
system. Although the notion of residuals and model-based
detectors is now routine in the fault detection literature,
the primary focus has been on detecting and isolating
faults with specific structures (e.g., constant biases in
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sensor measurements or random faults in sensors and actu-
ators following specific distributions). Now, in the context
of an intelligent adversarial attacker, new challenges arise
to understand the effect that an adaptive intruder can have
on the system without being detected. In this paper, we
use the observer introduced in the previous section as our
estimator. Define the residual sequence rk, k ∈ N, as

rk := ȳk − Cx̂k = Cek + ηk + δk, (7)

which evolves according to the difference equation:{
ek+1 =

(
F − LC

)
ek + vk − Lηk − Lδk,

rk = Cek + ηk + δk.
(8)

If there are no attacks, the mean of the residual is

E[rk+1] = CE[ek+1] + E[ηk+1] = 0m×1, (9)

and its asymptotic covariance matrix is given by

Σ := E[rk+1r
T
k+1] = CPCT +R2. (10)

It is assumed that Σ ∈ Rm×m is positive definite. For this
residual, we identify two hypotheses to be tested: H0 the
normal mode (no attacks) and H1 the faulty mode (with
faults/attacks). Then, we have

H0 :

{
E[rk] = 0m×1,

E[rkr
T
k ] = Σ,

H1 :

{
E[rk] 6= 0m×1, or

E[rkr
T
k ] 6= Σ,

where 0m×1 denotes an m-dimensional vector composed
of zeros only. In this manuscript, we use the chi-squared
procedure for examining the residual and subsequently
distinguishing between H0 and H1.

2.3 Distance Measure and Chi-squared Procedure

The input to any detection procedure is a distance measure
zk ∈ R, k ∈ N, i.e., a measure of how deviated the
estimator is from the sensor measurements. We employ
distance measures any time we test to distinguish between
H0 and H1. The chi-squared procedure uses a quadratic
form as distance measure to test for substantial variations
in the covariance of the error between the measured output
and the estimate. Consider the residual sequence rk, (8),
and its covariance matrix Σ, (10).

Chi-squared procedure:

If zk := rTk Σ−1rk > α, k̃ = k. (11)

Design parameter: threshold α ∈ R>0.
Output: alarm time(s) k̃.

Thus, the procedure is designed so that alarms are trig-
gered if zk exceeds the threshold α. The normalization by
Σ−1 makes setting the value of the threshold α system
independent. This quadratic expression leads to a sum of
the squares of m normally distributed random variables
which implies that the distance measure zk follows a chi-
squared distribution with m degrees of freedom, see, e.g.,
Ross (2006) for details.

2.4 False Alarms

The occurrence of an alarm in the chi-squared when
there are no attacks to the CPS is referred to as a
false alarm. Operators need to tune this false alarm rate

depending on the application. To do this, the thresh-
old α must be selected to fulfill a desired false alarm
rate A∗. Let A ∈ [0, 1] denote the false alarm rate of
the chi-squared procedure defined as the expected pro-
portion of observations which are false alarms, i.e., A :=
pr[zk ≥ α], where pr[·] denotes probability, see van
Dobben de Bruyn (1968) and Adams et al. (1992).

Proposition 1. [Murguia and Ruths (2016b)]. Assume that
there are no attacks on the system and consider the chi-
squared procedure (11) with residual rk ∼ N (0,Σ) and
threshold α ∈ R>0. Let α = α∗ := 2P−1(m2 , 1−A

∗), where

P−1(·, ·) denotes the inverse regularized lower incomplete
gamma function (see Ross (2006)), then A = A∗.

2.5 Output Feedback Controller

We consider observer-based output feedback controllers of
the form:

uk := Kx̂k, (12)

where x̂k ∈ Rn is the state of the observer (4) and
K ∈ Rl×n denotes the control matrix. The pair (F,G) is
stabilizable; hence, the matrix K can be selected such that
(F+GK) is Schur. The closed-loop system (3),(4),(12) can
be written in terms of the estimation error ek = xk − x̂k:{

xk+1 = (F +GK)xk −GKek + vk,

ek+1 =
(
F − LC

)
ek + vk − Lηk − Lδk.

(13)

Note that the attack sequence δk directly affects the
estimation error dynamics, whereas the effect of the attack
on the system dynamics is through the interconnection
term GKek due to the control structure.

3. HIDDEN REACHABLE SETS

In this section, we provide tools for quantifying (for given
L and K) and minimizing (by selecting L and K) the
impact of the attack sequence δk on both the estimation
error and the state of the system when the chi-squared
procedure is used for attack detection. We are interested
in attacks that can change the false alarm rate A of the
detector by a small amount, say ε ∈ R>0, i.e., Ā < A+ ε,
where Ā denotes the alarm rate under the attacker’s
action. This class of attacks is what we refer to as hidden
attacks. Here, we characterize ellipsoidal bounds on the
set of states that hidden attacks can induce in the system.
In particular, we provide tools based on Linear Matrix
Inequalities (LMIs) for computing ellipsoidal bounds on
the reachable set of the attack sequence δk given the
system dynamics, the control strategy, the chi-squared
procedure, and the bias ε on the false alarm rate A.

Define the stacked noise vector ωk := (vTk , η
T
k )T . Following

the approach in Mo and Sinopoli (2016), we rewrite the
estimation error as ek = ek,ωk

+ ek,δk , where ek,ωk
denotes

the part of ek that is driven by noise and ek,δk is the part
driven by the attack sequence. Similarly, write the state
of the system as xk = xk,ωk

+ xk,δk and the residual as
rk = rk,ωk

+ rk,δk . Using this new notation, because the
system and the observer are linear, we can write the closed-
loop dynamics (13) as follows:
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xk+1,ωk

= (F +GK)xk,ωk
−GKek,ωk

+ vk,
ek+1,ωk

= (F − LC)ek,ωk
− Lηk + vk,

rk,ωk
= Cek,ωk

+ ηk,
(14)


xk+1,δk = (F +GK)xk,δk −GKek,δk ,
ek+1,δk = (F − LC)ek,δk − Lδk,
rk,δk = Cek,δk + δk,

(15)

and the distance measure as zk = ||Σ− 1
2 (rk,ωk

+ rk,δk)||2,

where Σ−
1
2 denotes the symmetric squared root matrix of

Σ−1. Note that, in the absence of attacks, rk,ωk
and rk have

the same asymptotic distribution. Hence, the contribution
of attacks to the alarm rate of the detector is solely
determined by rk,δk generated by (15). Moreover, using
the triangle inequality, we can write the following

zk = ||Σ−
1
2 (rk,ωk

+ rk,δk )||2 ≤ (||Σ−
1
2 rk,ωk

||+ ||Σ−
1
2 rk,δk ||)

2;

then, if the attack sequence is restricted to satisfy

||Σ− 1
2 rk,δk ||2 = ||Σ− 1

2 (Cek,δk + δk)||2 ≤ κ, ∀ k ∈ N, (16)

for some κ ∈ R>0, it is intuitive to think that Ā < A + ε
for some ε ∈ R>0, i.e., the alarm rate under the attacker’s
action, Ā, is biased from the false alarm rate, A, by ε. This
observation is formally stated in the following theorem,
which is slightly modified from Mo and Sinopoli (2016).

Theorem 1. [Mo and Sinopoli (2016)]. Consider the chi-
squared procedure (11) with threshold α ∈ R>0. Let
inequality (16) be satisfied for some κ ∈ (0,

√
α); then

Ā ≤ 1− P
(
m
2 ,

(
√
α−κ)2
2

)
, (17)

where P(·, ·) denotes the regularized lower incomplete
gamma function (see Ross (2006)). Moreover

1− lim
κ→0+

P
(
m
2 ,

(
√
α−κ)2
2

)
= A. (18)

Therefore, by selecting κ sufficiently small, the attacker
can make Ā arbitrarily close to A . This complicates the
operator’s task to distinguish between the attacked system
and the system without attacks. The set of feasible attack
sequences that the opponent can launch while satisfying
(17) can be written as the following constrained control
problem on δk:δk ∈ Rm

∣∣∣∣∣∣∣
xk+1,δk = (F +GK)xk,δk −GKek,δk ,
ek+1,δk = (F − LC)ek,δk − Lδk,
||Σ− 1

2 (Cek,δk + δk)||2 ≤ κ, ∀ k ∈ N,

 . (19)

We are interested in the state trajectories that the attacker
can induce in the system restricted to satisfy (19). To this
end, we introduce the notion of a hidden reachable set, Rκ,
defined as follows.

Rκ :=

{
xk,δk , ek,δk ∈ Rn

∣∣∣∣ x1,δk = e1,δk = 0n×1,

δk, xk,δk , ek,δk satisfy (19),

}
.

In general, it is analytically intractable to compute Rκ
exactly. Instead, using LMIs, for some positive definite
matrices Pe,Px ∈ Rn×n, we derive outer ellipsoidal bounds
of the form Ee = {ek,δk ∈ Rn|eTk,δkPeek,δk ≤ 1} and

Ex = {xk,δk ∈ Rn|xTk,δkPxxk,δk ≤ 1} containing Rκ. Note

that the ek,δk dynamics in (19) does not depend on xk,δk .
Thus, we first compute Ee and then we analyze how it
propagates to Ex. The following result is used to compute
these ellipsoids.

Lemma 1. [That et al. (2013)]. Let Vk be a positive definite
function, V1 = 0, and ζTk ζk ≤ κ ∈ R>0. If there exists a
constant a ∈ (0, 1) such that

Vk+1 − aVk −
1− a
κ

ζTk ζk ≤ 0,∀ k ∈ N, (20)

then, Vk ≤ 1.

Define ζk := Σ−
1
2 (Cek,δk + δk), then, from (19), we can

write the hidden reachable set of the estimation error, Re,
as follows.

Re =

{
ek,δk ∈ Rn

∣∣∣∣ ek+1,δk = Fek,δk − LΣ
1
2 ζk,

e1,δk = 0, ζTk ζk ≤ κ, ∀ k ∈ N,

}
. (21)

Note that if for some k = k∗, ek∗,δk 6= 0 and ρ[F ] > 1,
where ρ[·] denotes spectral radius, then ||ek,δk || diverges to
infinity as k →∞ for any non-stabilizing ζk. That is, Re is
unbounded if the system is open-loop unstable. If ρ[F ] ≤ 1,
then ||ek,δk || may or may not diverge to infinity depending
on algebraic and geometric multiplicities of the eigenvalues
with unit modulus of F (a known fact from stability of LTI
systems), see Aström and Wittenmark (1997) for details.

Theorem 2. For given F , observer gain L, and residual
covariance matrix Σ, consider the set Re in (21). If there
exists a positive definite matrix Pe ∈ Rn×n and a ∈ (0, 1)
satisfying the following matrix inequality:

aPe FTPe 0 0

PeF Pe −PeLΣ
1
2 0

0 −Σ
1
2LTPe 1−a

κ I 0
0 0 0 I

 ≥ 0; (22)

then, Re ⊆ Ee, i.e., the hidden reachable set is contained
in the ellipsoid Ee = {ek,δk ∈ Rn|eTk,δkPeek,δk ≤ 1}.

Proof : For a positive definite matrix Pe ∈ Rn×n, consider
the function Vk := eTk,δkPeek,δk , then, from (21), inequality

(20) takes the form:

−ϑT
[
aPe − FTPeF FTPeLΣ

1
2

Σ
1
2LTPeF 1−a

κ I − Σ
1
2LTPeLΣ

1
2

]
ϑ

=: −ϑTQeϑ ≤ 0,

where ϑ := (eTk,δk , ζ
T
k )T . The above inequality is satisfied if

and only if Qe ≥ 0. Matrix Qe can be written as the Schur
complement of a higher dimensional matrix Q′e; hence,
Qe ≥ 0⇔ Q′e ≥ 0, i.e.,

Qe ≥ 0⇔ Q′e :=


aPe 0 FTPe 0

0 1−a
κ I −Σ

1
2LTPe 0

PeF −PeLΣ
1
2 Pe 0

0 0 0 I

 ≥ 0. (23)

Finally, inequality (22) follows from (23) after the congru-
ence transformation:

T :=

I 0 0 0
0 0 I 0
0 I 0 0
0 0 0 I

 .
The assertion follows now from Lemma 1. �

The result in Theorem 2 provides a tool for computing
ellipsoidal bounds onRe. To make the bounds most useful,
we next construct ellipsoids with minimal volume, i.e.,
the tightest possible ellipsoid bounding Re. In this case,
we minimize detP−1e subject to (22) (because detP−1e is
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proportional to the volume of eTk,δkPeek,δk = 1). This is
formally stated in the following corollary of Theorem 2,
see Boyd et al. (1994) for further details.

Corollary 1. For given matrices (F,L,Σ) and a ∈ (0, 1),
the solution Pe of the following convex optimization:{

min
Pe

− log detPe,
s.t. Pe > 0 and (22),

(24)

minimizes the volume of the ellipsoid Ee bounding Re.

See Lofberg (2004) for an example of how to solve (24)
using YALMIP.

As we now move toward designing L to minimize the
ellipsoids, we note that as ||L|| → 0, the volume of the
ellipsoid Ee goes to zero because the attack-dependent
term in (21), LΣ

1
2 ζk, vanishes. To make this concrete,

without any other considered criteria, the observer gain
leading to the minimum volume ellipsoid is trivially given
by L = 0. While this is effective at eliminating the
impact of the attacker, it implies that we discard the
observer altogether and, therefore, forfeit any ability to
build a reliable estimate of the system. If we impose a
performance criteria that the observer must satisfy in
the attack-free case (e.g., convergence speed, noise-output
gain, or minimum asymptotic variance), it has to be added
into the minimization problem (24) so as to minimize the
volume of Ee while still achieving the observer performance
in the attack-free case. For completeness, in the following
proposition, we provide an LMI criteria for ensuring that
the H∞ gain from the noise to the residual rk in (8) is less
than or equal to some γ ∈ R>0. Then, using this criteria
and Theorem 2, we provide a synthesis tool for minimizing
Ee while ensuring a desired H∞ performance in the attack-
free case.

Proposition 2. For given matrices (F,C, L), if there exists
a positive definite matrix Pe ∈ Rn×n and γ ∈ R>0

satisfying the following matrix inequality:
Pe 0 0 (F − LC)TPe CT
0 γ2I 0 −LTPe I
0 0 γ2I Pe 0

Pe(F − LC) −PeL Pe Pe 0
C I 0 0 I

 ≥ 0, (25)

then, the H∞ gain from the noise ωk = (ηTk , v
T
k )T to the

residual rk = Cek + ηk of the estimation error dynamics
(8) is less than or equal to γ.

The proof of Proposition 2 is omitted here due to the page
limit. However, this is a standard result and details about
the proof can be found in, e.g., Scherer and Weiland (2000)
and references therein.

Remark 1. Note that the attack sequence δk enters the
estimation error dynamics in the same manner as the
sensor noise ηk (see (8)). It follows that, in this particular
configuration, minimizing the influence of sensor noise
(e.g., by using H∞ techniques) would also reduce the effect
of sensor attacks on the estimation error dynamics. This
would tend to reduce the size of the hidden reachable sets
but it would not necessarily lead to minimal ones. See
Figure 5 in Section 4.

In the following corollary of Theorem 2 and Proposition 2,
we formulate the optimization problem for designing the

observer gain L such that the volume of the ellipsoid Ee is
minimized and a desired H∞ performance is achieved in
the attack-free case.

Corollary 2. For given (F,C,Σ), a ∈ (0, 1), and γ ∈ R>0,
if there exist matrices Pe ∈ Rn×n and M ∈ Rn×m solution
to the following convex optimization:

min
Pe,M

− log detPe,

s.t. Pe > 0,


aPe FTPe 0 0

PeF Pe −MΣ
1
2 0

0 −Σ
1
2MT 1−a

κ I 0
0 0 0 I

 ≥ 0, and


Pe 0 0 FTPe − CTMT CT

0 γ2I 0 −MT I
0 0 γ2I Pe 0

PeF −MC −M Pe Pe 0
C I 0 0 I

 ≥ 0,

(26)

then, the observer gain L = P−1e M minimizes the volume
of the ellipsoid Ee bounding Re and guarantees that the
H∞ gain from the noise ωk to the residual rk of (8) is less
than or equal to γ in the attack-free case.

Proof : This follows from Theorem 2 and Proposition 2
and the linearizing change of variables M = PeL. �

Next, once we have an ellipsoid Ee such thatRe ⊆ Ee, from
(19), we can write the attacker’s reachable states, Rx, as:

Rx =

xk,δk ∈ Rn
∣∣∣∣∣∣
xk+1,δk = (F +GK)xk,δk

−GKP̄−1e ξk,

x1,δk = 0, ξTk ξk ≤ 1, ∀ k ∈ N,

 . (27)

where ξk := P̄eek,δk and the matrix P̄e ∈ Rn×n is such that
Pe = P̄Te P̄e (Cholesky factorization). Then, analogous to
Theorem 2, we have the following result for computing
ellipsoidal bounds on Rx.

Theorem 3. For given matrices (F,G), controller gain K,
and positive definite matrix Pe, consider the set Rx in
(27). If there exists a positive definite matrix Px ∈ Rn×n
and b ∈ (0, 1) satisfying the following matrix inequality:

bPx (F +GK)TPx 0 0
Px(F +GK) Px −PxGKP̄−1e 0

0 −(GKP̄−1e )TPx (1− b)I 0
0 0 0 I

 ≥ 0,

(28)

then, Rx ⊆ Ex, i.e., the hidden reachable set is contained
in the ellipsoid Ex = {xk,δk ∈ Rn|xTk,δkPxxk,δk ≤ 1}.

The proof of Theorem 3 follows the same lines as the proof
of Theorem 2 and it is omitted here. As before, if an
ellipsoid with minimal volume is required, we minimize
detP−1x subject to (28). This is formally stated in the
following corollary of Theorem 3.

Corollary 3. For given (F,G,K,Pe) and b ∈ (0, 1) the
solution Px of the following convex optimization:{

min
Px

− log detPx,
s.t. Px > 0 and (28),

(29)

minimizes the volume of the ellipsoid Ex bounding Rx.

Remark 2. Similar to the case with the observer gain L
and Ee, note that as ||K|| → 0, the volume of Ex goes to
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Figure 2. Alarm Rate Ā under hidden attacks for different
values of the chi-squared threshold α.

Figure 3. Ellipsoid Ee for different values of κ.

zero because the term GKP̄−1e ζk in (27) vanishes. This
implies that without any other performance specification,
the control gain leading to the minimum volume ellipsoid
is trivially given by K = 0. However, as we have done in
Corollary 2 for designing L subject to satisfying some H∞
performance, we should impose a performance criteria to
be satisfied by the controller in the attack-free case. This
must be added to the minimization problem (29) so as
to minimize the volume of Ex while guaranteeing the con-
troller performance in the attack-free case. However, for
the sake of briefly, we do not include a result considering
this case.

4. SIMULATION EXPERIMENTS

Consider the closed-loop system (3),(4),(12) with matrices:

F =

(
0.84 0.23
−0.47 0.12

)
, G =

(
0.07
0.23

)
, C = (1 0) ,

K = (−1.85 −0.96) , L =

(
1.16
−0.69

)
,

R1 =

(
0.45 −0.11
−0.11 0.20

)
, R0 =

(
1 0
0 1

)
, R2 = 1,

Σ = 3.26.

(30)

Using Proposition 2, the observer gain L is designed such
that the H∞ gain from the noise to the residual rk of
(8) is less than or equal to γ = 1.86 in the attack-free
case. For α = {6.63, 3.84, 2.70, 1.64} and corresponding
A = {0.01, 0.05, 0.10, 0.20}, as a function of κ, Figure 2
depicts the upper bound on the alarm rate Ā, in (17),
under hidden attacks. For a false alarm rate A = 0.10
(α = 2.70), we select κ = {0.09, 0.17, 0.24} which leads to,
correspondingly, A ≤ {0.12, 0.14, 0.16}, i.e., increments of
2% on A. For these values of κ and a = 0.65 (this value
of a leads to minimal volume ellipsoids), in Figure 3, we

Figure 4. Ellipsoid Ex for different values of κ.

Figure 5. In red, improvement in the hidden reachable set
ellipsoidal bound Ee through application of Corollary
2 to design the optimal observer gain. In blue, ellip-
soidal bound obtained for the gain L minimizing the
H∞ gain from the noise to the residual in (8).

Figure 6. The improvement in the hidden reachable set
ellipsoid bound Ex through application of Corollary 2
to design the optimal observer gain.

depict the ellipsoidal bounds Ee on the hidden reachable
sets Re obtained using Theorem 2 and Corollary 1. Next,
Figure 4 shows the corresponding ellipsoidal bounds Ex
on Rx obtained through Theorem 3 and Corollary 3.
Finally, for κ = 0.24 (A ≤ 0.16), using Corollary 2, we
redesign the observer gain L to minimize the volume of
Ee while maintaining the H∞ performance of γ = 1.86.
The obtained optimal ellipsoidal bounds, Ee and Ex, are
depicted in Figure 5 and Figure 6 for the optimal observer
gain L = (0.1272,−0.0160)T . In light of Remark 1, for
comparison, we compute the gain L leading to the minimal
H∞ gain, γ, from the noise to the residual rk in (8). The
obtained gain is L = (0.4812,−0.2936)T leading to γ =
1.2518. Figure 5 depicts the ellipsoidal bound obtained us-
ing this L. Note that even though the obtained ellipsoid is
smaller than the one obtained with the original L, it is still
bigger than the optimal one obtained using Corollary 2.
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5. CONCLUSION

In this paper, for a class of discrete-time LTI systems
subject to sensor/actuator noise, we have provided tools
for quantifying and minimizing the negative impact of
sensor attacks on the system performance given how
the opponent accesses the dynamics (i.e., through the
controller by tampering with sensor measurements). We
have proposed to use the reachable set as a measure of
the impact of an attack given a chosen detection method.
For given system dynamics, control structure, and attack
detection scheme, we have derived ellipsoidal bounds on
these reachable sets using LMIs. Then, we have provided
synthesis tools for minimizing these bounds (minimizing
thus the reachable set) by properly redesigning controllers
and detectors.
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