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Abstract: Directional drilling techniques, based on rotary steerable systems, are used to
generate complex curved boreholes. In practice, however, boreholes drilled with such systems
often show instability-induced borehole spiraling, which negatively affects the borehole quality
and increases drag losses while drilling. As a basis for controller synthesis, we present a
directional drilling model in terms of delay differential equations characterizing the evolution
of the borehole inclination. Next, the problem of curved well-bore generation is formulated as
a tracking problem and an output-feedback control strategy is developed, solving this tracking
problem while guaranteeing the prevention of borehole spiraling.

Keywords: Directional drilling, output-feedback control, tracking control, delay differential
equations.

1. INTRODUCTION

Enhanced access to underground energy resources (such
as oil and gas) requires drilling complex curved boreholes.
So-called directional drilling rigs, which include down-
hole robotic systems known as rotary steerable systems
(RSS), are used to drill such curved boreholes. This work
focuses on a push-the-bit RSS, which steers the borehole
propagation by exerting a force on the borehole using
extendable pads, and pursues the development of novel
strategies for inclination control.

Although RSSs are extensively used in drilling practice, it
is known from experimental evidence that their usage can
induce borehole oscillations, see e.g Prensky (2010); Marck
et al. (2014). These oscillations in the borehole geometry
are undesirable as they 1) endanger borehole stability,
2) induce increased drag while drilling (thereby reducing
drilling efficiency), 3) reduce target accuracy, 4) make it
more difficult to insert the borehole casing to prepare for
production, and 5) reduce the rate-of-penetration (i.e. the
speed of the drilling process). Current control techniques
seem unable to prevent this so-called borehole spiraling.
In this work, we aim to develop a model-based controller
synthesis approach, which enables the drilling of complex
borehole geometries while preventing borehole spiraling.

Many numerical directional drilling models exist, see Mill-
heim et al. (1978); Amara (1985); Birades and Fenoul
(1986); Rafie et al. (1986); Chen and Wu (2008), which
do, however, not provide a closed-form dynamic model
description for borehole propagation in directional drilling.
In order to design a model-based controller for the di-
rectional drilling system, a closed-form dynamic model is
needed to predict the bit trajectory given RSS actuation
commands. Such a closed-form model, in terms of a delay

differential equation (DDE) describing the borehole prop-
agation, was first developed by Neubert and Heisig (1996).
The next model development is due to Downton (2007),
who formulated the borehole propagation equations for
a class of directional drilling systems (either completely
rigid or flexible with the addition of an equivalent spring)
and analyzed the stability of the resulting (linear) DDE.
The papers of Perneder (2013); Perneder and Detour-
nay (2013b,a) and Downton and Ignova (2011) treat the
BHA as an Euler-Bernoulli beam, similarly to Neubert
and Heisig (1996), and consider a force actuation of a
push-the-bit RSS. Although these two models describe the
same physics, their formulation is different. The PD model
in Perneder (2013); Perneder and Detournay (2013b,a,
2012); Detournay and Perneder (2011) is based on an
angular description of the BHA and borehole tendencies
and can thus naturally be used for describing boreholes
undergoing large rotations, while the directional propa-
gation of the borehole in the formulation of Downton
(2007) and Downton and Ignova (2011) is described using
the lateral displacement of the BHA with respect to an
initial configuration, which needs to be regularly updated.
Recently, it has been shown, using field data, that the
PD model can predict the effect of borehole spiraling, see
Marck et al. (2014).

Several works exist on the topic of the control of bore-
hole propagation using an RSS. In Panchal et al. (2010,
2012b,a), controllers are developed based on empirical
models of the borehole propagation process in which a
direct link between the force applied by the RSS and the
curvature of the borehole is assumed. This approach ig-
nores (physically relevant) transient behavior of the bore-
hole propagation, which is essential in preventing borehole
spiraling. In Bayliss and Matheus (2009), a state-space
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model for borehole propagation is derived and on the
basis of this model, a controller is designed. However,
the essential delay nature of the borehole propagation
dynamics is not captured in this model. In Sun et al.
(2011), an L1 adaptive controller is designed, based on
the directional drilling model of Downton (2007). In this
approach, it assumed that the inclination of the borehole
at the bit can be measured directly, which is generally not
the case. The same restrictive assumption is made in most
of the works above. This assumption is invalid in practice,
since an inclination sensor can not be placed at (close to)
the bit. In addition, even if available in practice, such an
inclination sensor would measure the local inclination of
the deformed BHA at the bit, which is not necessarily
equal to the borehole inclination at the bit (due to bit
tilt).

The main contribution of this work is the development
of a synthesis strategy for output feedback inclination
controllers for directional drilling systems. More detailed
contributions are as follows. Firstly, this synthesis method
is based on a closed-form (PD) model description of the
borehole propagation, which captures the essential, phys-
ically relevant, behavior of a directional drilling system.
Secondly, the resulting controllers can be used to gener-
ate complex borehole geometries. Unlike existing control
methods, the goal of the controller synthesis method is
to design a controller which reduces borehole spiraling
and prevents oscillations in the transient closed-loop re-
sponse (both of which are detrimental to borehole qual-
ity). Thirdly, we assume that only local inclination mea-
surements of the deformed BHA are available at dis-
crete locations other than at the bit. For this reason,
an observer-based output feedback control strategy is de-
veloped. Lastly, the influence of (quasi-) constant distur-
bances, such as the influence of gravitational effects, on the
accuracy of borehole propagation, is reduced by dedicated
designs of both the controller and observer.

2. DIRECTIONAL DRILLING MODEL

In this work, we only consider the directional propagation
of the borehole in a vertical plane. The directional drilling
model used here builds upon the work in Perneder (2013);
Perneder and Detournay (2013b,a). It consists of three
components, as illustrated in Figure 1. Firstly, the forces
and moments acting on the bit are calculated by modeling
the deformation of the BHA inside the borehole. Since the
BHA is constrained in the borehole by the stabilizers in
contact with the borehole wall, see Figure 2, the existing
borehole geometry affects the forces and moments on the
bit in a spatially delayed manner. Secondly, the bit-rock
interface laws govern how these forces and moments acting
on the bit are related to the penetration of the bit into the
rock. Finally, the bit motion is related to the propagation
of the borehole geometry through kinematic relationships.

2.1 Borehole evolution equations

This model leads to the formulation of an evolution equa-
tion for the borehole inclination Θ, defined in Figure 2, in
terms of a single delay differential equation:

Fig. 1. Three components of the model and their interac-
tion (Perneder and Detournay (2013b)).
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where (·)′ indicates a derivative with respect to the (di-
mensionless) length of the borehole ξ := L/λ1 with L
the length of the borehole and λ1 the distance between
the bit and the first stabilizer, see Figure 2. Moreover, Π
denotes the active weight-on-bit (which is assumed to be
constant) and η, χ are respectively the lateral and angular
steering resistance of the bit. The number of stabilizers
is given by n. In (1), the inclination at the ‘delayed’
location of the i-th stabilizer is given as Θi := Θ(ξi), for

i ∈ {1, 2, . . . , n}, with ξi := ξ −
∑i
j=1 κj and κj := λj/λ1

the dimensionless length of the j-th BHA segment between
two adjacent stabilizers. The average inclination of the i-th
BHA segment 〈Θ〉i is given as:

〈Θ〉i :=
1

κi

∫ ξi

ξi−1

Θ(σ)dσ, (2)

which induces terms with distributed delays in (1). The
factors F and M in (1) (with appropriate indices) only
depend on the specific configuration of the BHA, see

Fig. 2. Overview of BHA constrained inside the borehole
(after Perneder and Detournay (2013b)).
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Perneder (2013). The term involving W := Υ sin〈Θ〉1 in
(1), with Υ a scaled measure of the BHA weight, is related
to the influence of gravity on the BHA. We consider this
term to be a quasi-constant perturbation, since the average
inclinations only change slowly with the distance drilled.
Finally, Γ := Frss

F∗
is the (scaled) RSS force, i.e. the control

input, where Frss is the RSS actuation force and F∗ := 3EI
λ2
1

with EI denoting the BHA’s bending stiffness.

2.2 State-space model formulation

In this section, the DDE (1) with distributed delays is
transformed into a first-order state-space formulation with
point-wise delays by considering the average inclinations
〈Θ〉i as states:

x′(ξ) = A0x(ξ) +

n∑
i=1

Aix(ξi) +B0Γ +B1Γ
′
+B2W, (3)

where the state vector is given as x := [Θ, 〈Θ〉1, .., 〈Θ〉n]T

and the system matrices are in accordance with (1) and
(2). In this respect, we note that the expressions for the

derivatives 〈Θ〉′i in (3) are obtained by differentiation of
(2) with respect to ξ. As a consequence, n additional poles
at zero have been added to (3). It can be shown that these
poles are inconsequential for the stability of the original
DDE in (1) and hence can be ignored in the stability
analysis of (3), see Kremers (2013).

In practice, the states of the DDE model in (3) can not be
measured. Only sensors measurements of the local BHA
inclination are available (not of the borehole inclination).
Such measured outputs, denoted by ym, can generally be
expressed as a function of the state vector x and the input
force Γ:

ym = Cx+DΓ, (4)

where the matrices C,D depend on the configuration of
the BHA and the location of the inclination sensors. The
influence of the gravity term W on the measured output
ym is generally very small compared to the influence of W
in (3), and is hence neglected in (4).

3. CONTROL PROBLEM FORMULATION

The main goal of directional drilling is the generation of
a borehole with some particular geometry. In terms of
the model in (3), this objective can be formulated as a
tracking problem. More specifically, we aim to track some
inclination reference trajectory Θr(ξ), for ξ ∈ [−κtot,∞],
with κtot :=

∑n
i=1 κi. Note that defining Θr(ξ) immedi-

ately results in the state reference trajectory xr(ξ) being
fully defined, since the average inclination state references
〈Θr〉i, i = 1, 2, . . . , n, can be obtained by integration of
Θr, see (2). Hence, the problem can be formulated as
a state tracking problem. We will assume that Θr(ξ) is
continuously differentiable, which is reasonable at the scale
at which the problem is treated as it avoids curvature
discontinuities. Given the directional drilling model (3),
(4), an output-feedback controller needs to be designed
such that the control input Γ(ξ) renders xr(ξ) the globally
asymptotically stable solution of the closed-loop system.

Besides the above formulation of the control goal as a
state tracking problem, certain additional objectives stem

from the fact that the spiraling behavior in the bore-
hole, which is often observed in practice, needs to be
reduced/eliminated. Such borehole spiraling can either
be caused by poles in the right-half complex plane (i.e.
instability), which is avoided if the state tracking problem
is solved, or by weakly damped poles (i.e. undesired tran-
sient behavior). For this reason, we focus on appropriate
placement of the poles of the tracking error dynamics (with
the tracking error defined as e := x − xr), in order to
reduce/eliminate borehole spiraling. Another control ob-
jective is related to the fact that there exist several sources
of force disturbances. We focus on the effect of the gravity-
induced forces here. Although strictly speaking, the grav-
ity term in (1) acts as a non-linear term in the DDE, it
can be seen as a slowly varying quasi-constant disturbance
force, see (3), since the average inclination 〈Θ〉1, on which
the gravitational term in the directional drilling model
depends, only changes slowly with the distance drilled ξ.
We aim to reduce the influence of this disturbance on the
steady-state inclination error eΘ := Θ−Θr.

4. CONTROLLER SYNTHESIS APPROACH

4.1 Controller structure

For the sake of transparency, we focus on the directional
drilling model for the case of a two-stabilizer BHA, i.e.
(3) with n = 2. This model contains terms in both the

RSS force Γ and its derivative Γ
′
. In support of controller

design, we introduce a control input u defined by Bu(ξ) =

B0Γ(ξ)+B1Γ
′
(ξ), with B = [1, 0, 0]T , which is well-defined

by the grace of the specific structure of B and that of B0

and B1 (namely, B0 = [b0, 0, 0]T and B1 = [b1, 0, 0]T ).
Substituting this expression for u in (3) (for n = 2) results
in the following DDE model:

x′(ξ) = A0x(ξ) +A1x(ξ1) +A2x(ξ2) +Bu(ξ) +B2W.
(5)

The input force Γ, supplied to the RSS actuator, now
satisfies the following differential equation:

Γ
′

=− b0
b1

Γ +
1

b1
u. (6)

For the filter (6) to be asymptotically stable, b0/b1 needs
to be positive. The latter assumption is only violated for
rather high values of the composite parameter ηΠ (e.g.
high weight-on-bit Π), see Perneder (2013), which are not
under consideration here.

The control input u is decomposed as u(ξ) = v(ξ) +ur(ξ),
where ur is a model-based feedforward signal and v is
the control input used for feedback. The influence of the
quasi-constant gravity disturbance W in (3) will not be
taken into account in the feedforward design. Hence, the
feedforward input ur is obtained by solving the inverse
dynamics:

Bur(ξ) = x′r(ξ)−A0xr(ξ)−A1xr(ξ1)−A2xr(ξ2). (7)

To obtain ur(ξ) satisfying (7), it suffices to ensure the
satisfaction of the first scalar equation of the vector
equation (7), since by definition if Θ(ξ) = Θr(ξ) then
〈Θ〉1(ξ) = 〈Θr〉1(ξ) and 〈Θ〉2(ξ) = 〈Θr〉2(ξ). The so-
lution for ur that solves (7) is thus given as: ur(ξ) =
BT (x′r(ξ)−A0xr(ξ)−A1xr(ξ1)−A2xr(ξ2)).
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Next, we propose a feedback control strategy (for v) that
consists of a model-based observer with integral action
in combination with a dynamic state-feedback controller
including a low-pass filter and integral action.

The observer provides a state estimate x̂ to be employed
by the state-feedback controller. The following observer is
proposed:

x̂′ =A0x̂(ξ) +A1x̂(ξ1) +A2x̂(ξ2) + L(ym − ŷm)

+B(q + u),

q′ =ζo[l1, l2](ym − ŷm), (8)

ŷm =Cx̂+DΓ,

where a ‘hat’ is now used to denote an estimate. The
observer gain matrix L is defined as:

L =

[
l1 l2
0 0
0 0

]
. (9)

This structure in L ensures that the estimates of the
average inclinations ˆ〈Θ〉1 and ˆ〈Θ〉2 are simply given by

integration of the inclination estimate Θ̂ (i.e. are obtained
purely by model-based prediction). This choice reduces the
number of observer parameters that needs to be designed.
The strength of the weak integral action is determined by
the parameter ζo in (8). This integral action is included
to ensure convergence of the observer error to zero in the
presence of the gravitational disturbance W acting on the
system (which is not modeled in (8)).

The dynamic state-feedback controller is designed as fol-
lows:

z1
′ = ζ[k1, 0, 0](x̂− xr)

z2
′ = −γz2 + γ(z1 +K(x̂− xr)) (10)

v = z2,

where the control gain matrix K = [k1, k2, k3]. Weak
integral action is included in order to remove the influence
constant of disturbances (such as gravitational effects) on
the steady-state tracking error. The cut-off frequency of
the weak integral action is determined by the control pa-
rameter ζ. Moreover, the controller contains a low-pass fil-
ter to reduce oscillations in the transient borehole inclina-
tion response (to further reduce borehole oscillations). The
controller parameter γ determines the cut-off frequency of
the low-pass filter. Note that indeed the observer-controller
combination (8), (10) (and in particular the inclusion of
the low-pass and integrals actions) aims at addressing the
additional performance aspects discussed in Section 3: 1)
improving the transient response in an attempt to reduce
undesired borehole oscillations and 2) robustness to quasi-
constant (gravity-related) disturbances.

Remark 1. The dynamics of the directional drilling model
exhibits three essential length scales: 1) short-range, ξ =
O(10−1), related to fast inclination changes (borehole
kinking) induced by changes in the RSS force, 2) medium
range, ξ = O(100 − 101), related to borehole oscillations,
and 3) long-range, ξ = O(102 − 103), related to the
steady-state inclination behavior, see Perneder (2013). The
structural design of the controller proposed above targets
these different length scales in the following way:

• Short-range: the low-pass filtering properties in the
feedback controller (10) ensure that excitation of the

short-range (boundary layer) dynamics is avoided,
therewith avoiding severe borehole kinking.

• Medium-range: The design of both the observer in (8)
and the controller in (10) aims at the stabilization
of the medium-range dynamics (through design of
the gains K and L to be addressed in Section 4.3),
therewith guaranteeing the absence of instabilities
related to borehole oscillations.

• Long-range: The inclusion of integral action in both
the observer in (8) and the controller in (10) ensure
the long-range tracking error to be zero in the pres-
ence of (e.g. gravity-related) disturbances.

4.2 Error dynamics

In support of the optimization-based tuning of the con-
troller and observer parameters, we now construct the
tracking and observer error dynamics. We define the track-
ing error as e := x− xr and the observer error as δ := x−
x̂. Applying the control decomposition u = ur + v and
observer-based controller (8), (10) to (5), we obtain the
following closed-loop error dynamics:

e′

z′1
z′2
δ′

q′

 =


A0 0 B 0 0

ζ[k1, 0, 0] 0 0 −ζ[k1, 0, 0] 0
γK γ −γ −γK 0
0 0 0 A0 − LC −B
0 0 0 ζ0[l1, l2]C 0



e(ξ)
z1(ξ)
z2(ξ)
δ(ξ)
q(ξ)



+


A1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 A1 0
0 0 0 0 0



e(ξ1)
z1(ξ1)
z2(ξ1)
δ(ξ1)
q(ξ1)

 (11)

+


A2 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 A2 0
0 0 0 0 0



e(ξ2)
z1(ξ2)
z2(ξ2)
δ(ξ2)
q(ξ2)

 .
Note that the quasi-constant disturbanceW of the gravity
is neglected in (11), since the error dynamics are con-
structed to support the design of a stabilizing controller.
The effect of gravity-induced disturbances on the closed-
loop response is further investigated in Section 5. The
origin (corresponding to zero tracking and observer errors)
is an asymptotically equilibrium point of (11) if all poles
of these closed-loop dynamics are located in the open left-
half complex plane. As mentioned before, the n poles at
zero, caused by the inclusion of the average inclination
states in the state-space description, can be disregarded
for the stability analysis of the system. Note that due to
the block-diagonal structure of the system matrices in (11),
the separation principle holds. This means that the poles of
the closed-loop system are given by the union of the poles
of the ‘tracking error’ subsystem, with state [e, z1, z2]T

and [δ, q]T as input, and the ’observer error’ subsystem,
with state [δ, q]T . This allows the controller parameters
K, ζ, γ and the observer parameters l1, l2, ζ0 to be designed
separately, such that the poles of the respective subsystems
are properly placed in the left-half complex plane and
stabilization is achieved.

4.3 Optimization-based tuning for stabilization

To guarantee asymptotic stability of the closed-loop sys-
tem, the controller and observer parameters need to be
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tuned such that the poles of the error dynamics are located
in the left-half complex plane. An optimization-based ap-
proach is taken to design such stabilizing controller and
observer parameters. Herein, we aim to minimize the real
part of the right-most pole of both the closed-loop track-
ing error dynamics and the observer error dynamics. By
the grace of the separation principle, mentioned above,
if these right-most poles have negative real part, then
the origin is a globally asymptotically stable equilibrium
point of the error dynamics. Moreover, this eigenvalue-
and optimization-based approach towards controller and
observer tuning also aims to improve transient perfor-
mance in order to limit transient borehole oscillations.
Here, we only optimize the controller gain matrix K and
the observer gains l1, l2 in (9). The parameters ζ, γ and ζo,
corresponding to the properties of the dynamic low-pass
and integrating filters in (8), (10), are designed a priori as
1) these effectuate the desired controller properties at dif-
ferent length scales (see Remark 1) and 2) this reduces the
number of parameters that need to be optimized. Since the
separation principle holds, the synthesis method consists
of separately minimizing the objective function αc(K),
that describes the right-most pole of the tracking error
dynamics, and minimizing the objective function αo(L),
that describes the right-most pole of the observer error
dynamics. This allows us to place the poles of the observer
error dynamics further into left-half complex plane, such
that the observer error δ converges to zero faster than the
inclination error e. These objective functions are given as:

αc(K) = sup
i∈[1,2,. . . ,∞]

{<(pCi(K)} , (12)

αo(L) = sup
i∈[1,2,. . . ,∞]

{<(pOi(L)} , (13)

where pCi(K) indicates poles relating to the tracking error
dynamics for controller gain K and pOi(L) indicates the
poles corresponding to the observer error dynamics for ob-
server gain L. As shown in Michiels and Niculescu (2007),
the objective functions in (12), (13) are typically non-
convex and non-smooth. Because of this fact, standard op-
timization tools such as gradient-based optimization tools
are not suitable for this optimization problem. Instead, the
gradient sampling method Burke et al. (2005) can be used
to support the optimization of these non-smooth objective
functions.

5. ILLUSTRATIVE BENCHMARK STUDY

In this section, a simulation study is performed in order
to confirm that the proposed control strategy indeed
solves the tracking (borehole generation) problem. Here,
we consider a particular BHA with two stabilizers and
characterized by geometric properties listed in Table 1
(The inner and outer radius Ir and Or of the BHA are
needed to compute the scaled BHA weight Υ and its
second moment of area I). It is assumed that the entire
BHA is made of steel with Young’s modulus E = 2e11
N/m2 and density ρ = 7800 Kg/m3. Moreover, Π =
0.0093, η = 30 (i.e. ηΠ = 0.279) and χ = 0.1.

Table 1. Geometry of the benchmark BHA.

λ1 κ1 λ2 κ2 Λ Ir Or

3.66 m 1 6.10 m 2
1.2

1
6

0.053 m 0.086 m
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Fig. 3. Comparison of the poles of the open-loop dynamics,
tracking error dynamics and observer error dynamics.

Let us design a controller and an observer for this bench-
mark BHA system using the design strategy proposed
in Section 4. The controller parameters are chosen as
γ = 0.8 and ζ = 0.5; the optimization for designing
the controller gain K is terminated when αc(K) < −0.5.
The observer objective function is optimized such that
αo(L) < −0.8 with ζo = 0.45. Optimization of both
objective functions results in the controller gain matrix
K = [−2565,−742, 161] and observer gains l1 = 133 and
l2 = 2998. Figure 3 shows a comparison of the open-
loop poles, the poles of the tracking error subsystem and
the poles of the observer error subsystem. This figure
shows that the open-loop dynamics is not asymptotically
stable. Moreover, it can be observed that the optimization
procedure successfully places the poles of the closed-loop
system, such that closed-loop stability is guaranteed and
the tracking problem is solved.

The performance of this controller/observer combination
can be verified by means of a simulation of the closed-
loop system. Here, we consider the situation in which
we transition from constant inclination borehole into a
constant curvature borehole. The inclination reference
trajectory is given as: Θr(ξ) = π

4 for ξ ∈ [−(κ1 + κ2), 5],
Θr(ξ) = π

4 + 0.01(ξ − 5) for ξ ∈ [5,∞].

The initial borehole inclination is given as Θ(s) = π
4 +

0.01, for s ∈ [−(κ1 + κ2), 0], and the initial inclination

estimate is given as Θ̂(s) = π
4 , for s ∈ [−(κ1 + κ2), 0],

i.e. there exists both an initial inclination tracking error
as well as an initial observer error. Figure 4 shows the
inclination tracking error eΘ := Θ − Θr and the observer
inclination error δΘ := Θ − Θ̂. Clearly, the desired bore-
hole geometry is generated (corresponding to e = 0) in
steady state and borehole oscillations are avoided. Note
that the (non-linear) influence of the gravity disturbance
(W = Υ sin〈Θ〉1) on the system (1) has been successfully
compensated for by the integral action in both the con-
troller and observer and as a result the steady-state errors
converge to zero. Although the observer error contains
some fast transients, the inclination error remains very
smooth due to low-pass filter included in the controller.
Due to the adopted feedforward design for ur, no error is
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Fig. 4. Inclination and observer error for the observer with
weak integrating action and the dynamic controller.

induced at the transition between the constant inclination
and constant curvature borehole at ξ = 5. In other words,
during a transition from a constant inclination section to
a constant curvature section, no kinks in the borehole or
borehole oscillations are induced (as would be the case
with conventional constant RRS force actuation).

6. CONCLUSION

In this work, an output-feedback inclination control strat-
egy for directional drilling has been proposed. The prob-
lem of drilling complex curved boreholes using down-hole
robotic systems has been formulated as a tracking prob-
lem. The benefits of the proposed control strategy are as
follows. Firstly, it guarantees the stable generation of com-
plex curved boreholes without the occurrence of undesired
borehole oscillations. Secondly, the observer-based con-
trollers only need limited measurements of the inclination
of the bottom-hole-assembly. Thirdly, the resulting closed-
loop system is robust against (gravity-induced) pertur-
bations. The effectiveness of the proposed observer-based
output feedback control strategy has been illustrated by a
case study.
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