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Abstract: Chatter is an instability phenomenon in high-speed milling that limits machining
productivity by the induction of tool vibrations. In this paper, a design methodology for low-
order Pyragas-type delayed feedback controllers is proposed. These controllers enable dedicated
shaping of the chatter stability boundary such that working points of higher machining
productivity become feasible while avoiding chatter. The control design problem is cast into
a nonsmooth optimization problem, which is solved using bundle methods. Distinct benefits
of this approach are the a priori fixing of the controller order, the limitation of the control
action, and the fact that no finite-dimensional model approximations and online chatter
estimation techniques are required. A representative example illustrates the merit of the
proposed methodology in terms of increasing the chatter-free depth of cut, thereby enabling
significant increases in the productivity of milling processes.
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1. INTRODUCTION

High-speed milling is a widely used manufacturing tech-
nique to produce, for example, moulds and dies or com-
ponents for the aerospace industry. The productivity in
milling is often limited by the occurrence of an instability
phenomenon called (regenerative) chatter. Chatter causes
heavy vibrations of the tool resulting in rapid tool wear,
an inferior workpiece surface quality, and noise.

The occurrence of chatter can be analyzed using so-called
stability lobes diagrams (SLD). In an SLD, the chatter
stability boundary between a stable cut (i.e. without
chatter) and an unstable cut (i.e. with chatter) is depicted
in terms of two key machining parameters: the spindle
speed and depth of cut. To overcome chatter vibrations in
high-speed milling and, therewith, to enable the chatter-
free increase of the material removal rate, dedicated active
control strategies are required.

Most of the results on active chatter control in milling
involve the active damping of the machine dynamics
(Dohner et al., 2004; Kern et al., 2006) or workpiece
(Zhang and Sims, 2005). Damping the machine or work-
piece dynamics, either passively or actively, results in a
uniform increase of the stability boundary for all spindle
speeds. To enable more dedicated shaping of the stability
boundary (e.g. lifting the SLD locally around a specific
spindle speed), the regenerative effect, which is inherent to
the metal cutting process and which is the root cause for
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chatter, should be taken into account in chatter controller
design (Shiraishi et al., 1991; Chen and Knospe, 2007; van
Dijk et al., 2011a). All aforementioned research either does
not include the regenerative effect during controller design
or utilizes high-order finite-dimensional approximations of
the milling model for controller design, yielding high-order
controllers which is disadvantageous from an implementa-
tion perspective.

Building upon the results of (van Dijk et al., 2011b), this
paper presents a low-order controller design methodology,
which can guarantee chatter-free milling operations in an a
priori defined range of process parameters, while explicitly
taking into account the regenerative effect responsible for
chatter. In particular, we propose a design for low-order
chatter controllers for the milling process using Pyragas-
type feedback (Pyragas, 1992). The choice for Pyragas-
type feedback design is motivated as follows. An important
aspect of the chatter controller design is the selection
of the variable used for feedback, see (van Dijk et al.,
2011a). In the latter paper, it has been shown that so-
called perturbation feedback (i.e. only using the chatter
vibrations, as opposed to the full vibration of the milling
machine, in the feedback loop ) is favorable in terms of
limiting the control action, which is important in practice.
To enable perturbation feedback, online estimation tech-
niques for the chatter vibrations are needed since these
cannot be measured directly, see (van Dijk et al., 2010,
2011a). Here, we propose an alternative way to achieve
such perturbation feedback while still only using measure-
ments of the full vibrations of the milling machine. To
this end, we propose to employ Pyragas -type delayed
output feedback, which avoids the need for complex online
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estimation techniques for chatter vibrations by the grace
of the structure of such type of control.

The main contributions of this paper are summarized
below. Firstly, we propose a fixed-order controller de-
sign technique for the high-speed milling process. This
technique guarantees the avoidance of chatter in a pre-
defined range of working points (in terms of spindle speed
and depth-of-cut). In this way, large increases in pro-
ductivity (material removal rate) can be achieved while
avoiding chatter. Secondly, the proposed control strategy
has favorable properties from an implementation perspec-
tive in three ways. Firstly, it allows the user to pre-
specify the order of the controller and hence supports low-
order controller design, which is desirable in a real-time
implementation. Secondly, the proposed strategy limits
the control action by employing so-called perturbation
feedback and, thirdly, it implements such perturbation
feedback through Pyragas-type delayed output-feedback.
Additional contributions of the current paper with respect
to (van Dijk et al., 2011b) are the following: firstly, the
synthesis methodology has been extended to accommodate
the design of Pyragas-type delayed output feedback con-
trol and, secondly, the inclusion of the design of dynamic
output feedback chatter controllers (which can improve
performance with respect to static controllers).

2. HIGH-SPEED MILLING PROCESS

A model of the milling process will be described concisely
below, see e.g. (Altintas, 2000; Faassen et al., 2003; Stépán,
2001; Insperger et al., 2003) for more details.

In Figure 1, a schematic representation of the milling
process is depicted. The predefined motion of the tool
with respect to the workpiece is characterized in terms
of the static chip thickness hj,stat(t) = fz sinφj(t), where
fz is the feed per tooth and φj(t) the rotation angle
of the j-th tooth of the tool with respect to the y
(normal) axis (see Figure 1). However, the total chip
thickness hj(t) also depends on the interaction between
the cutter and the workpiece. This interaction causes
cutter vibrations resulting in a dynamic displacement

vt(t) = [vt,x(t) vt,y(t)]
T

of the tool, see Figure 1, which
is superimposed on the predefined tool motion and results
in a wavy workpiece surface. The next tooth encounters
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Fig. 1. Schematic representation of the milling process.

this wavy surface, generated by the previous tooth, and,
in turn, generates its own waviness. This is called the
regenerative effect. The difference between the current and
previous wavy surface is called the dynamic chip thickness,
denoted by hj,dyn(t) = [sinφj(t) cosφj(t)] (vt(t)−vt(t−τ))
with τ = 60/(zn) the delay, z the number of teeth and n
the spindle speed in revolutions per minute (rpm). Hence,
the total chip thickness removed by tooth j at time t, hj(t),
equals the sum of the static and dynamic chip thickness:
hj(t) = hj,stat(t) + hj,dyn(t).

The cutting force model relates the total chip thickness
to the forces acting at the tool tip. The tangential and
radial forces, Ft and Fr in Figure 1, for a single tooth j
are described by the following exponential cutting force
model:

Ftj (t) = gj
(

φj(t)
)

Kt ap hj(t)
xF ,

Frj (t) = gj
(

φj(t)
)

Kr ap hj(t)
xF ,

(1)

where 0 < xF ≤ 1 and Kt,Kr > 0 are cutting parameters
which depend on the workpiece material. Moreover, ap
is the axial depth of cut. The function gj

(

φj(t)
)

in (1)
describes whether a tooth is in or out of cut:

gj
(

φj(t)
)

=

{

1, φs ≤ φj(t) ≤ φe ∧ hj(t) > 0,

0, else,
(2)

where φs and φe are the entry and exit angle of the cut,
respectively. The total cutting forces in the x- and y-

directions, F t(t) = [Ft,x(t) Ft,y(t)]
T
, can be obtained by

summing over all z teeth:

F t(t) = ap

z−1
∑

j=0

gj
(

φj(t)
)

((

hj,stat(t)

+[sinφj(t) cosφj(t)]
(

vt(t)−vt(t− τ)
)

)xF

Sj(t)

[

Kt

Kr

]

)

(3)

with

Sj(t) =

[

− cosφj(t) − sinφj(t)
sinφj(t) − cosφj(t)

]

.

The cutting force interacts with the machine (spindle and
tool) dynamics, which are modeled with a linear multi-
input-multi-output (MIMO) state-space model,

ẋ(t) = Ax(t) +BtF t(t) +BaF a(t),

vt(t) = Ctx(t), va(t) = Cax(t),
(4)

where x(t) is the state. F a(t) = [Fa,x(t) Fa,y(t)]
T

denote
the control forces, where Fa,x(t) and Fa,y(t) are the control
forces acting in the x- and y-direction, respectively.

Substitution of (3) into (4) results in the nonlinear, non-
autonomous delay differential equations (DDE) describing
the dynamics of the milling process:

ẋ(t) = Ax(t) +BaF a(t)

+Btap

z−1
∑

j=0

gj
(

φj(t)
)

((

hj,stat(t)

+[sinφj(t) cosφj(t)]Ct

(

x(t)−x(t− τ)
)

)xF

S(t)

[

Kt

Kr

])

,

va(t) = Cax(t).
(5)
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The static chip thickness hj,stat(t) is periodic with period
time τ = 60

zn
. In general, the uncontrolled (i.e. F a(t) ≡ 0)

milling model (5) has a periodic solution x∗(t) with period
time τ (Faassen et al., 2007). In the absence of chatter,
this periodic solution is (locally) asymptotically stable and
when chatter occurs it is unstable. Hence, the chatter
stability boundary can be analyzed by studying the (local)
stability properties of the periodic solution x∗(t). Hereto,
the milling model is linearized about the periodic solution
x∗(t) for zero control input (i.e. F a(t) ≡ 0) yielding the
following linearized dynamics in terms of perturbations
x̃(t) (x(t) = x∗(t) + x̃(t)):

˙̃x(t) = Ax̃(t) + apBt

z−1
∑

j=0

Hj(φj(t))Ct(x̃(t)− x̃(t− τ))

+BaF a(t), ṽa(t) = Cax̃(t),
(6)

where
Hj(φj(t)) =

gj
(

φj(t)
)

xF (fz sinφj(t))
xF−1S(t)

[

Kt

Kr

][

sinφj(t)
cosφj(t)

]T

.

(7)

The linearized model (6), (7) is a delayed, periodically
time-varying system. As described in (Altintas, 2000), for
full immersion cuts (studied in this paper) it is sufficient to

average the dynamic cutting forces
∑z−1

j=0
Hj(φj(t)) over

the tool path such that the milling model becomes a time-
invariant DDE model. Since the cutter is only cutting
when φs ≤ φ ≤ φe the averaged cutting forces are given
by

H̄ =
z

2π

∫ φe

φs

z−1
∑

j=0

Hj(φ)dφ. (8)

Then, a linear time-invariant model of the milling process

is obtained by combining (6) with
∑z−1

j=0
Hj(φj(t)) = H̄

and H̄ given in (8).

3. PROBLEM FORMULATION

The objective of this paper is to design a low-order linear
controller K to generate control inputs F a based on
measurements va, which guarantees:

• robust stability of x̃ = 0 in (6), (7) for ‘uncertainties’
in depth of cut ap and time delay τ ;

• performance by minimizing the total amount of actu-
ator energy.

By ensuring robust stability for ‘uncertainties’ in ap and
τ , chatter-free milling operations can be guaranteed in an
a priori defined range of spindle speeds n = 60

zτ
and depth

of cut ap. Moreover, we will include the limitation of the
actuator forces as a performance criterion in the controller
design since it is also an important practical performance
specification. An important aspect in the development of
an active chatter control design strategy is the selection
of the variable used for feedback (van Dijk et al., 2011a).
In particular, it is concluded that perturbation feedback
(i.e. using ṽa as an input to the controller) is beneficial for
reducing required actuator forces without compromising
performance (in terms of the achievable closed-loop depth

p

z

y

q

r

F a

P

K

∆

Fig. 2. Generalized plant interconnection.

of cut/spindle speed interval for which chatter can be
eliminated). Here, we introduce dynamic Pyragas-type
delayed output feedback for robust stabilization of the
high-speed milling process to implement such perturbation
feedback.

The proposed (Pyragas-type) controller K, with input
ṽa ∈ R2 and output (control action) F a ∈ R2, has the
following state-space description:

ξ̇(t) = Acξ(t) +Bc(ṽa(t)− ṽa(t− τ)),

F a(t) = Ccξ(t) +Dc(ṽa(t)− ṽa(t− τ)).
(9)

Herein, ξ ∈ Rnc , Ac ∈ Rnc×nc , Bc ∈ Rnc×2, Cc ∈ R2×nc

and Dc ∈ R2×2 with nc the order of the controller. The
benefit of employing Pyragas-type feedback control lies in
the fact that the signal ṽa(t) can typically not be measured
directly. By realizing that ṽa(t) − ṽa(t − τ) = va(t) −
va(t− τ), since v∗a(t) = v∗a(t− τ) (with v∗a = Cax

∗) holds
due to the periodic nature of the chatter-free solution,
the controller in (9) can be directly implemented using
only measurement of va(t) (without the need for online
estimation algorithms to estimate the chatter vibrations
ṽa(t)).

4. GENERALIZED PLANT FORMULATION

To solve the problem formulated in Section 3, the milling
model will be extended with uncertainties in depth of cut
ap and spindle speed n. For this purpose, the control
goal will be cast into the generalized plant framework,
see Figure 2. The generalized plant P is a given system
with three sets of inputs and three sets of outputs. The
signal pair p, q denote the in-/outputs of the uncertainty
channel connecting the plant to the uncertainty block
∆. The signal r represents an external input in which
possible disturbances, measurement noise and reference
inputs are stacked. The signal F a is the control input.
The output z can be considered as a performance variable
while y(t) = Ca(x̃(t)− x̃(t−τ)) = ṽa(t)− ṽa(t−τ) denotes
the outputs used for feedback.

To construct the generalized plant formulation, consider
the linear time-invariant model of the milling process,
obtained by combining (6) with

∑z−1

j=0
Hj(φj(t)) = H̄ and

H̄ given in (8). Let us define the following uncertainty sets:

ap = 1

2
āp(1 + δap

) and τ = τ0 + δτ , (10)

where āp is the maximal depth of cut for which stable

milling is desired, δap
∈ C, |δap

| ≤ 1, τ0 =
τ̄+τ

2
and δτ ∈

τ̄−τ

2
[−1, 1], such that 0 < τ < τ̄ . Here, τ and τ̄ together

define the range of spindle speeds
[

60

zτ̄
, 60

zτ

]

for which stable

milling is desired. Moreover, as motivated in Section 3, it
is desired to limit the magnitude of the actuator forces.
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Therefore, the performance output z is chosen as the
weighted control input z(s) = WKS(s)F a(s), s ∈ C, where
WKS is a stable weighting filter with the following state-
space realization:

ẋKS(t) = AKSxKS(t) +BKSF a(t),

z(t) = CKSxKS(t) +DKSF a(t).
(11)

Substituting (10) in (6) with
∑z−1

j=0
Hj(φj(t)) = H̄ and

H̄ given in (8) and by adding the performance in-/output
channels to the system (and rearranging terms), the state-
space representation of the generalized plant P is given
by:

ẋP (t) = AP,0xP (t) +AP,1xP (t− τ0) +BPuP (t)

vP (t) = CP,0xP (t) +CP,1xP (t− τ0) +DPuP (t)
(12)

with the state vector xP (t) = [x̃T (t) xT
KS(t)]

T , input vec-

tor uP (t) = [qT (t) rT (t) FT
a (t)]

T , with r ∈ R2 representing
measurement noise on the output y, and output vector

vP (t) = [pT (t) zT (t) yT (t)]T . The (structured) uncertainty
channel input p(t) and output q(t) are defined as

p(t) =





p
1
(t)

p
2
(t)

p
3
(t)



 :=





Ctx(t− τ0)
Cax(t− τ0)

1

2
āpCt(x(t)− x(t− τ0))−

1

2
āpq1(t)



,

(13)

q(t) =





q
1
(t)

q
2
(t)

q
3
(t)



 :=





(Dδτ − 1)p
1
(t)

(Dδτ − 1)p
2
(t)

δapp
3
(t)



, (14)

where the delay-operatorDδτ is defined as Dδτx(t) = x(t−
δτ ). The state-space matrices of the generalized plant in
(12) are given by

AP,0 =

[

A+ 1

2
āpBtH̄Ct 0
0 AKS

]

, AP,1 =

[

− 1

2
āpBtH̄Ct 0

0 0

]

,

BP =

[

− 1

2
āpBtH̄ 0 BtH̄ 0 Ba

0 0 0 0 BKS

]

,

CP,0 =











0 0
0 0

1

2
āpCt 0

0 CKS

Ca 0











, CP,1 =











Ct 0
Ca 0

− 1

2
āpCt 0

0 0
−Ca 0











,

DP =











0 0 0 0 0
0 0 0 0 0

− 1

2
āpI2 0 0 0 0

0 0 0 0 DKS

0 −I2 0 I2 0











with identity matrix In ∈ Rn×n.

The transfer function description of the generalized plant
P is given by:

P(s) =
(

CP,0 +CP,1e
−sτ0

)[

sI−AP,0 (15)

−AP,1e
−sτ0

]−1
BP +DP , (16)

where s ∈ C. By ∆(s) we denote the Laplace transform of
the uncertainty term (14), such that q(s) = ∆(s)p(s) with

∆(s) =

[

(e−sδτ − 1)I4 0
0 δap

I2

]

. (17)

The uncertainty term ∆ depends on the frequency. The
delay uncertainty e−sδτ − 1 can be upper bounded by a
(non-rational) frequency-dependent upper bound κ(ω) as
follows (Huang and Zhou, 2000):

κ(ω) =







2 sin
δτω

2
, ∀ω, 0 ≤ ω ≤ π/δτ

2, ∀ω ≥ π/δτ ,
(18)

in the sense that |e−iωδτ − 1| ≤ κ(ω). By defining L(s) =
diag(κ(ω)I4, I2), for all s = ξ + iω, with ξ, ω ∈ R, the
(scaled) generalized plant and uncertainty term can be
written as follows:

P̃(s) = diag(L(s), I2, I2)P(s), ∆̃ = ∆(s)L−1(s). (19)

5. SYNTHESIS OF LOW-ORDER PYRAGAS-TYPE
FEEDBACK CONTROLLERS

Based on the above clarifies that the design of a con-
troller guaranteeing robustness properties with respect to
the (scaled) uncertainty ∆̃ requires the solution of the
following optimization problem:

min
K

sup
ω∈R

µ
∆̃

(

N
)

,

subject to Ψ(K) < 0,
(20)

with N the lower fractional transformation (LFT) of P̃ in
(19) and fixed-structure controller K in (9) and Ψ(K) the
spectral abscissa function of the closed-loop system defined
as:

Ψ(K) := sup{ℜ(λ) : det(λI− Ā0 − Ā1e
−λτ0) = 0}, (21)

where

Ā0 =

[

A+ 1

2
āpBtH̄Ct 0
0 0

]

+

[

Ba 0
0 I

] [

Dc Cc

Bc Ac

] [

Ca 0
0 I

]

,

Ā1 =

[

− 1

2
āpBtH̄Ct 0

0 0

]

+

[

Ba 0
0 I

] [

Dc Cc

Bc Ac

] [

−Ca 0
0 0

]

.

The constraint on the objective function, defined above, is
a necessary condition to guarantee the existence of the
H∞-norm of N along with stability of the closed-loop
system (Zhou et al., 1996).

The robust stability and performance requirement can
now be translated into the demand that the objective
function in (20) is smaller than one. It is in general hard to
calculate µ

∆̃
(N). Nevertheless, an upper bound on µ

∆̃
(N)

can be obtained by calculating the scaled H∞ norm of N
(Zhou et al., 1996). Since the uncertainties are modeled as
complex uncertainties, see (10) and (17), D-K-iteration,
see (Zhou et al., 1996), pro ides a reasonable approach
towards solving the problem. Hereby, the optimization
problem is described by:

min
K

inf
D∈H∞

‖DND−1‖∞,

subject to Ψ(K) < 0,
(22)

which is iteratively solved for K and D. Herein,

‖DND−1‖∞ = sup
ω∈R

σ̄
(

D(iω)N(iω)D(iω)−1
)

,

H∞ denotes the set of functions that are analytic and
bounded in the open right half plane, and the structure of
D is chosen such that D commutes with the uncertainty
set ∆̃, i.e. satisfies D∆̃ = ∆̃D. For more details on the
computation of lower and upper bounds on the complex
structured singular value, we refer to (Packard and Doyle,
1993). For a given K, the problem of finding the scaling
matrix D can be formulated as a convex optimization
problem which is generally solved pointwise in the fre-
quency domain (for example, by using the mussv command
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Table 1. Milling model parameters.

Parameter Value Parameter Value

mt,x = mt,y 0.015 kg Kt 462 [N/mm(1+xF )]

ma,x = ma,y 0.14 kg Kr 38.6 [N/mm(1+xF )]
ωt,x = ωt,y 2350 Hz z 4 [-]
ωa,x = ωa,y 1400 Hz φs 0 [rad]
ζt,x = ζt,y 0.05 [-] φe π [rad]
ζa,x = ζa,y 0.12 [-] fz 0.2 mm/tooth

from the Robust Control Toolbox of Matlab. Given our
goal of designing fixed-structure controllers, the problem
of finding K, for a given D, in general results in the fol-
lowing non-convex, non-smooth, constrained optimization
problem:

min
K

f(K), subject to Ψ(K) < 0 (23)

with f(K) := sup
ω∈R

σ̄
(

D(iω)N(iω)D(iω)−1
)

.

The non-smooth dependency of the objective function (23)
on the controller parameters of K typically occurs when
the maximum of the objective function is located at two
(or more) different frequencies. Due to the non-smoothness
in (23), standard optimization algorithms cannot be used
to determine the (optimal) parameters of controller K.
Instead, we employ a non-smooth optimization technique,
namely a gradient bundle method called gradient sampling
developed in (Burke et al., 2005).

For further details on the optimization-based algorithm
(and the role of gradient sampling herein) used to solve the
above fixed-structure robust controller synthesis problem
and other fixed-order control designs than those based on
Pyragas-type feedback, we refer to (van Dijk, 2011; van
Dijk et al., 2015).

6. CONTROLLER SYNTHESIS RESULTS

This section presents the results of the application of the
controller synthesis methodology, presented in Section 5,
to the robust chatter control problem.

Here, the machine spindle-toolholder-tool dynamics in (4)
is modeled by two decoupled subsystems (representing the
dynamics in two (x,y) orthogonal directions perpendicular
to the spindle axis). The dynamics in both the x- and
y-directions are modeled as two-degree-of-freedom mass-
spring-damper systems with masses mi,k, i ∈ {a, t}, k ∈
{x, y}, with mt,x, mt,y the tool mass in x-, y-direction
and ma,x, ma,y the spindle/actuator mass in x-, y-

direction, the eigenfrequencies ωi,k =
√

(ci,k/mi,k), i ∈
{a, t}, k ∈ {x, y}, and dimensionless damping ratios ζi,k =

bi,k/2
√

(ci,kmi,k), i ∈ {a, t}, k ∈ {x, y}. This model is
adopted to capture the inherent dynamics between the
actuator/sensor system (denoted by subscript a) and the
cutting tool (denoted by subscript t). The parameters
of the milling model are given in Table 1. Moreover,
xF = 0.744, reflecting a nonlinear cutting model. Next,
the results of synthesizing dynamic Pyragas-type delayed
output controllers as defined by (9) are presented.

The Pyragas-type dynamic output feedback controller will
be designed such that milling operations between n ∈
[34000, 36000] rpm are stabilized, for a depth of cut which
is as large as possible given the performance requirement

Table 2. Results from fixed-structure controller
synthesis for three different controller orders.

nc [-] No. D-K-steps µ
∆̃

[-] āp [mm] ap,max

0 7 0.9983 1.1250 1.4690
2 10 0.9918 1.8250 2.1456
4 9 0.9810 2.0000 2.3992
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Fig. 3. Stability lobes diagram for controllers of order
nc = 0, 2 and 4, respectively, and without control.
The area for which robust stability is guaranteed is
indicated by the dashed boxes, see also Table 2.

on the weighted control sensitivity. Here, the performance
weighting WKS is chosen as

WKS(s) = Kp

1

2πfr,l
s+ 1

1

2πfp,l
s+ 1

·

1

2πfr,h
s+ 1

1

2πfp,h
s+ 1

, (24)

with Kp = 1 · 10−6 mm/N, fr,l = 100 Hz, fr,h = 7500 Hz,
fp,l = 1 · 10−2 Hz and fp,h = 2 · 104 Hz.

Three low-order Pyragas-type controllers are synthesized,
namely for nc = 0 (i.e. static delayed output feedback),
and nc = 2 and nc = 4 (i.e. dynamic delayed output
feedback), using the algorithm as presented in Section 5.
The results are listed in Table 2. Herein, āp denotes the
maximal depth of cut for which robust performance can
be guaranteed and ap,max denotes the maximal depth of
cut in the Stability Lobes Diagram (SLD) for the desired
spindle speed interval. The resulting controllers are given
in Figure 4. This figure shows that the controllers designed
for nc = 2 and nc = 4 are dynamic MIMO controllers with
notch characteristics. The SLDs are computed using the
semi-discretization method (Insperger and Stépán, 2004)
with the designed controllers and without control using
the linearized time-variant model of the milling process
in (6). The corresponding results are given in Figure 3.
From the figure, it can be observed that for the case where
nc = 0 the fixed-structure controller indeed alters the
SLD. In this case, based on the SLD, the depth of cut
can be increased from ap,max = 1.067 mm in open loop
to 1.469 mm in closed loop, which is an improvement of
approximately 38%. The peak of the closed-loop stability
lobe is approximately located at n = 38700 rpm, which is
outside the domain of desired spindle speeds. Of course,
if the peak of the SLD could be placed inside the desired
interval of spindle speeds, then a higher maximum depth of
cut could be achieved. In order to shift the peak of the lobe
at such a spindle speed, the controller, in this case, needs
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Fig. 4. Magnitude of the fixed-structure controllers of order
nc = 0 (black dashed), nc = 2 (grey solid) and nc = 4
(black solid). Also the magnitude of the inverse of the
performance weighting function WKS is given.

to exhibit more complex dynamics, which is obtained by
increasing the controller order.

For the dynamic fixed-structure controllers with nc = 2
and nc = 4 it can be observed in Figure 3 that the
SLD is altered such that a lobe is indeed created at the
desired spindle speed interval. Clearly, by increasing the
order of the fixed-structure controller, the area for which
robust stability is guaranteed is increased. In this case,
based on the SLD in Figure 3, the depth of cut can be
increased from ap,max = 1.067 mm to ap,max = 2.146 for
nc = 2 and to ap,max = 2.399 for nc = 4, which leads
to a productivity increase of approximately 101% and
125%, respectively. Figure 3 clearly illustrates the benefit
of dynamic controllers over the static controllers proposed
in (van Dijk et al., 2011b).

7. CONCLUSION

This paper presents a strategy for the design of low-order
controllers guaranteeing robust stability and performance
of the high-speed milling process; in particular, the avoid-
ance of chatter in a predefined area of depth-of-cut and
spindle speed while respecting limitations regarding the
required actuator forces.

We have proposed Pyragas-type delayed dynamic output-
feedback controllers, thereby simplifying their implemen-
tation in practice as no additional estimators for chatter-
related vibrations are needed. Moreover, the approach
enables the design of relatively low-order controllers, which
is desirable from a real-time implementation perspective
especially given the high-frequency characteristics of the
milling dynamics. The presented example illustrates the
merit of the proposed controller synthesis strategy in terms
of ensuring a significantly higher material removal rate in
closed loop while avoiding chatter.
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