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Abstract: This paper presents a model reduction approach for systems of hyperbolic partial
differential equations (PDEs) with nonlinear boundary conditions. These systems can be
decomposed into a feedback interconnection of a linear hyperbolic subsystem and a static
nonlinear mapping. This structure motivates us to reduce the overall model complexity by
only reducing the linear subsystem (the PDE part). We show that the linear PDE subsystem
can effectively be approximated by a cascaded structure of systems of continuous time difference
equations (CTDEs) and ordinary differential equations (ODEs), where the CTDE captures the
infinite-dimensional nature of the PDE model. These systems are constructed by adapting an
interpolation method based on frequency-domain data. Models in the form of hyperbolic PDEs
with nonlinear boundary conditions are for example encountered in managed pressure drilling
(MPD). The proposed technique is verified by application to such an MPD model.
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1. INTRODUCTION

Hyperbolic partial differential equations (PDEs) govern a
variety of physical phenomena occurring in fluid mechan-
ics, astrophysics, groundwater flow, meteorology, semicon-
ductors and power systems (Kurganov and Tadmor, 2000).
Although hyperbolic models were initially used merely for
simulation and analysis purposes, these models have in
recent years gained much attention in the design of model-
based control systems (Krstic and Smyshlyaev, 2008; Davé
et al., 2019). However, system analysis and controller
design techniques developed for this type of models are
still relatively elementary and those mostly focus on sta-
bilization aspects. Namely, the complexity of these models
currently handicaps the design of controllers that can meet
more advanced performance criteria.

To enable controller synthesis for such performance crite-
ria, a common approach is to approximate the hyperbolic
system by rational models in terms of ordinary differen-
tial equations (ODEs) (Litrico and Fromion, 2006; Kaasa
et al., 2012; Landet et al., 2013; Naderi Lordejani et al.,
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2018; Zlotnik et al., 2015), for which systems and control
theory is well-developed. A key feature of hyperbolic sys-
tems is their advective nature, which causes wave propaga-
tion effects (also known as the waterhammer effect in the
drilling industry (Kaasa et al., 2012)). As this effect is cru-
cial in many applications, a high-performance controller
design should be based on (approximative) models that
accurately capture such effects. However, this typically
requires high-order approximate ODE models, which in
turn hamper the design and implementation of controllers
based on such models.

The boundary input-output behavior of hyperbolic sys-
tems with a single advection equation can be described
exactly by continuous-time difference equations (CTDESs)
(Karafyllis and Krstic, 2014). It is also possible to have
such exact descriptions for 2x 2 hyperbolic systems for spe-
cial cases of coupling source terms (Cooke and Krumme,
1968). This fact has been known since long and has
been used in the delay modeling of lossless transmission
lines (see (Rasvan, 2006) for examples). More generally,
the presence of coupling source terms leads to delay
differential equations with distributed delay terms with
complex kernel functions (Auriol and Di Meglio, 2019),
which are difficult to handle from both simulation and
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system-theoretic perspectives. In this paper, we seek to
construct approximate models of low complexity for hy-
perbolic systems which preserve key system properties,
such as the wave propagation effect. Moreover, this ap-
proximate model should potentially facilitate the design
and implementation of high-performance controllers and
also speed up numerical simulations.

In this study, we consider a special class of systems consist-
ing of two sets of linear isothermal Euler equations with
coupling source terms and nonlinear boundary conditions.
This particular model has strong practical motivations
behind it. In particular, it is used to model drilling systems
for managed pressure drilling (MPD) applications (Kaasa
et al., 2012; Naderi Lordejani et al., 2018).

The contributions of this paper are as follows. First,
we show that the original PDE system with nonlinear
boundary conditions can be decomposed into a feedback
interconnection of a linear distributed-parameter subsys-
tem and a low-dimensional, nonlinear mapping due to the
boundary conditions. We care to stress that given the fact
that 1) the boundary conditions in the original model
have a physical interpretation and 2) the control inputs
are applied through the boundary conditions, we are in-
terested in preserving this physical insight in the reduced
model. Such structure preservation is supported by the
proposed model decomposition. Second, we show that the
linear PDE subsystem can effectively be approximated by
a series connection of low-order models in terms of CTDEs
and ODEs. The CTDE part is employed to embed the
advective nature of the system and the ODE part is used
to approximate in-domain coupling effects between system
variables due to the source terms. Because the wave prop-
agation effect is embedded through the CTDE model, the
ODE part no longer needs to be of high-order, as opposed
to conventional high-order ODE-based approximate mod-
els. Third, we propose an adapted and efficient interpola-
tion technique for the construction of the CTDE and ODE
models from frequency-domain data of the original model.
Lastly, we apply the proposed model reduction technique
to single-phase flow MPD-controlled drilling systems, and
present simulation results to illustrate the effectiveness of
this method for such MPD applications.

Organization. After introducing notation, a problem
statement is given in Section 2. In Section 3, we review
the relevance of the proposed model in the context of
MPD automation. A model reformulation is presented
in Section 4. Section 5 introduces a structure for the
reduced model, whereas Section 6 presents a data-based
model reduction approach for constructing the reduced
model. Numerical examples are provided in Section 7 and
conclusions are presented in Section 8.

Notation. R, C and I, refer to the fields of real and com-
plex numbers and the m x m identity matrix, respectively.
A block-diagonal matrix with Ay, ..., A4,, on the diagonal
is represented as blkdiag{A;, -, A, }.

2. PROBLEM STATEMENT AND MOTIVATIONS

Consider a system of balance laws composed of two sets of
linearized isothermal Euler equations (a 2 x 2 hyperbolic
system)
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where £ € (0,1) and ¢t > 0 are the spatial and temporal
variables, respectively, and QT (¢,t) = [qF (€,1), % (&, 1)]
is the vector of variables with ¢ = [q11,qi2] and ¢F =
[q21, g22]. Note that ¢ (¢, &), q2(t, &) € R%. Moreover,
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with ¢ [m/s] and [ [m] the speed of sound and length of the
spatial domain, respectively. This system is accompanied
by nonlinear boundary conditions of the form

£,0 £,0
where u(t) € RP is the input vector, ¥(-,-) € R™ is in
general a nonlinear function, and II; € R**8 T ¢ R"*8

and II; € R**™ are given matrices. Furthermore, we
assume that for the matrix H € R™*", the output is given

by

vio=mr | 360 ] ®)
where we assume that p > m. Given the system in (1),
(2) and (3), the objective is to approximate the input-
output behavior of this system from the input u to the
output y with a model of a lower complexity which allows
for faster yet accurate time-domain simulations. Moreover,
this model should possess a structure that potentially fa-
cilitates the design of high-performance controllers. Given
the fact that the nonlinear boundary conditions have phys-
ical interpretation, these equations should be recovered
explicitly in the reduced model.

Remark 1. In model in (1), the term F.Q models the in-
domain interactions among the components of @) and it is
called the coupling source term.

In the next section, we review the relevance of the pre-
sented model in the context of MPD automation.

3. MANAGED PRESSURE DRILLING

Automated MPD is a method for fast and accurate pres-
sure control in drilling to avoid, on the one hand, an
influx from underground formations during drilling and,
on the other hand, fracturing those formations. For many
drilling scenarios, a drilling system with MPD can be
described by a linear system of PDEs of the form (1) and
boundary conditions of the form (2). Specifically, to model
the hydraulics of a drilling system, we use the so-called
U-tube modeling approach, where the drilling system is
modeled as two connected pipes which respectively model
the drillstring and annulus of the drilling system. The flow
behavior in each of these pipes is then modeled by a set of
Euler equations (Strecker et al., 2017; Kaasa et al., 2012),
leading to a PDE model of the form (1). For a drilling
system, [ represents the length of the well, ¢ is the sound
velocity in the drilling mud and F, is characterized by

0 0 0 0
o . 324 5 . 324
—gsin() — | sin() —=

with 6 [rad] , p [Pa.s], du [m], dgq [m] and g [m/s?] being
the well inclination, viscosity of mud, hydraulic diameter
of the annulus, inner diameter of the drillstring and
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gravitational acceleration, respectively. With this selection
of parameters, g; represents the vector of the density and
momentum along the drillstring, i.e., ¢11 = pq [kg/m?] and
qi2 = pava [kg/(m?s)], with vq [m/s] the speed of liquid
in the drillstring. Likewise, ¢o is composed of the density
and momentum of the drilling mud along the annulus. The
boundary conditions of this system given by the pump, bit,
mass conservation over the bit and choke equations, are as
follows:

1)
where Aq [m?], 4, [m?], Ay, [m?], cq [-] and k. [m?] are the
area of the drillstring, area of the annulus, area of the bit
nozzles, discharge coefficient of the bit nozzles and the flow
factor of the choke, respectively. Furthermore, J,, [kg/s], zc
[-] and G(-) are the pump mass flow rate, the choke opening
an the choke characteristic. In MPD, the main control
inputs are J, and z.. For details, see (Naderi Lordejani
et al., 2020, 2018; Naderi Lordejani et al., 2020).

4. MODEL REFORMULATION

To be able to reduce the complexity of the model de-
scribed in (1) and (2) while preserving the structure of
the boundary conditions, we decompose the model into
a feedback interconnection of a linear subsystem and a
nonlinear mapping. This decomposition is motivated by
the fact that the nonlinearities occur in the model only
locally, and it enables us to reduce the complexity of this
model by only reducing the complexity of the linear PDE
part and leaving the nonlinearities untouched. The next
statement presents the details of the decomposed model.

Statement 1. Consider the system described by (1), (2)
and (3). This system can be cast into a feedback intercon-
nection of an infinite-dimensional linear system ¥ and a
nonlinear mapping (-, -) of the following forms:

9Q 9Q _ _
E"‘\I/caig"’FcQ_(L Q(§70)_0a
0
5 | 60 | = vt 5)

v(t) = ¥ (w(t), u(t)), (6)
where w(t) € R” is the output of ¥ and v(t) € R™ is its
input.

A block diagram of the reformulated model is presented
in Fig. 1. Considering this figure, the model complexity
reduction objective in this paper is pursued by approxi-
mating ¥ by a model 3 of desirable properties, which are
yet to be introduced.

Remark 2. We assume that the linear system X is expo-
nentially stable for zero input, i.e., there exist a > 0 and
b > 0 such that

l l
\/ / QT (1, $)Q(t, s) ds < b\/ / QT(0,5)Q(0, ) ds,
0 0

T.C.PF. Leenen et al. / I[FAC PapersOnLine 53-2 (2020) 7698—-7703

y(?) & (1)
w(t) o(t) [ w(t)

u(t) v(-)

%
v(t)[
¢(7)

Fig. 1. A block diagram of the reformulated model in Statement 1:
(left) before reduction, (right) after reduction.

for all initial conditions Q(0,-) € L2([0,1],R*) and zero
input v = 0.

The next lemma gives the transfer function of X.

Lemma 8. Consider the linear system ¥ in (5). The matrix
transfer function T'(s) of this system from the input v to
the output w in the Laplace domain is given by

o=t ][ £])

where s € C is the Laplace variable and Z(s) =
blkdiag(Z1, Za), Zi(s) = —¥ ! (sly + F}), for i = 1,2, and
exp(Z¢) = blkdiag(exp(E1§), exp(E2€)).

Proof.
brevity.

The proof has been omitted for the sake of

Remark 4. The explicit expression of exp(Z;(s)€), 1 = 1,2,
in Lemma 3 is given by

s+ fo2 .
E(E _ gak :}n(s,f) - 23 sinh (5¢) |
S i (8 maa(s.9)
(8)
with .
maa(s, §) = cosh (B(s)§) + (a — fi2) Sinhﬂ((i(;)f)’ (10)

and B(s) = /a2 + (s + fa2)(s + f11)/c? — fizfo1/c? and
a=0.5(f12+ f21/62), for

P =

fi1 fiz
[le f22]’

where the subscript ¢ has been dropped from the elements
of F; for simplicity.

5. STRUCTURE OF THE REDUCED MODEL

As the first step in designing the approximate model f],
we design a structure for it in this section.

If we neglect the source term in (5), i.e., if we assume
F. =0, the model reduces to a number of pure advection
equations with the boundary conditions in (2). It is well-
known that an advection equation is a representation for
a delay of [/c seconds. It means that ¥ in the absence
of source terms can be modeled by a system of CTDEs,
which represent the transport phenomena in the system.
However, the source terms lead to distributed in-domain
couplings among the traveling waves. Our observations
show that these interactions in particular affect the low-
frequency behavior of the system X. We can also show
that exp(Z;(s)l), ¢ = 1,2, in (7) converges to a periodic
behavior of a period of 2m¢/l at high frequencies. A Bode
plot of the function exp(Z;(jw)l) for the drillstring of a
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Fig. 2. Element-wise comparison of exp(Z1(jw)l) and the periodic
function to which it converges for w — oo, for the drillstring of
a drilling system with parameter values in Table 1, except for
the viscosity which is set to be p = 0.35 Pa.s.

drilling system is plotted in Fig. 2. This figure illustrates
the fact that exp(Z; (jw)!) converges to a periodic function
when w — oo. The periodic behaviour of exp(Z;(jw)l),
which is also induced in T'(jw), is a manifestation of the
advective nature of the system. Thus, we conclude that in
the presence of these source terms, the system behaviour
is composed of two dominating aspects: 1) advection and
2) dynamics governing the shape of advective waves at
the boundaries. As said before, the (advection-induced)
transport aspects can be modeled by CTDEs. This is the
dominating aspect at high frequencies. Given that the
second aspect has its most dominance at low frequencies,
we compensate for that by a system of ODEs.

This explanation motivates us to consider for 3 a structure
which consists of an interconnection of a CTDE model
Yetde and an ODE model ¥,q.. Here, we adapt a series
interconnection between Y tq. and Y46, as in Fig. 3, and
refer to it as the cascaded system. We propose the following
realizations for Y tge and Yoqe

Bz (t) = —Ayz (t — 7) + Bio(t),

thde : { (t) Clw (t)7 (11)
By (t) = Agws(t) + Baz(t),

Zode { ( ) 02:172( )+ DQZ( ) (12)

where z1(t) € R™ and z2(f) € R™ are the state vectors,
z(t) € R™ is the output of Y¢tqe and the input of
Yode- Moreover, 7 is the delay and Ey, Es, Ay, As, Cy,
Cs, B1, By and Dy are system matrices of appropriate
dimensions which, together with the orders n; and ns,
will be constructed in the next section.

Remark 5. The transfer function Teige(jw) of the CTDE is
a periodic function with a period of 27 /7, and this function
should capture the periodic behavior of T'(jw), the transfer
function of X, at high frequencies. Thus, given 27m¢/l, the
period of T'(jw), we should set 7 =1/c.

Remark 6. Here, we have assumed a series interconnection
between g and Ypq. because we are interested in inter-
connections that are more suitable for controller synthesis
and system analyses, such as stability analysis.
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Fig. 3. A block diagram of the proposed cascaded structure for s,

Remark 7. For the series interconnection in Fig. 3, we
regard z(t) as an approximation of the output w(t), which
will be refined by X,qe. Therefore, the dimension of z(¢) is
chosen to equal that of w(¢).

The next section discusses the construction of ¥,4q. and
Yctde tO Obtain an accurate approximation for Y.

6. DATA-BASED MODEL ORDER REDUCTION

In this section, we introduce a method that is able to
construct a general class of systems based on an input-
output description of the system in the Laplace domain.
This method is mainly based on (Schulze et al., 2018) and
(Schulze and Unger, 2016) and it can be applied to a class
of systems that can be represented by a transfer function
of the form .

T(s) = CK *(s)B, (13)
where C € R™" B € R"*P and K(s) has a gen-

eral structure of the form K(s) = Zszl hi(s)Ag. Here,
{h1(8), ..., hn(s)} is a linearly independent set of functions
such that hy(s) : C — C is meromorphic for k = 1,..., N
(Schulze et al., 2018). The structured transfer function
(13) represents a large class of systems. For example, the
transfer function of a CTDE system (as for (11)) can be
written in this form by taking hi(s) = 1 and ha(s) =
exp(—7s), and a first-order ODE structure (as for 12) by
hi(s) = s and ha(s) = —1, both for N = 2. The data-
driven method proposed in (Schulze et al., 2018) supports
constructing (approximate) system models with a transfer
function of the form (13) that satisfy certain interpolation
conditions. To use this method, we first define which data
of the to-be-approximated transfer function T'(s) by 7'(s)
is available. This data is obtained by evaluating T'(s) at
certain (interpolation) points in the complex plane. We
assume that the data sets {\;,r;,wq, pi, i, v}, that
satisfy

T)ri =wi, 1 T(w) =vf, i=1,2,. (14)
are given. Here, n is the number of the 1nterp01at10n points,
Ai, u; € C are the interpolation points, r; € C?, [, € C™
are the right and left tangential direction vectors and
w; € C™, v; € CP are the corresponding system responses.
The data A; and p; and directions r; and I; can be chosen
arbitrarily provided T'(s) exists at these points.

The approach by Schulze et al. (2018) enables us to
construct a realization (13), such that its transfer function
satisfies the interpolation conditions
T()\i)’l“i = T(/\Z')TZ' = w;, (15)
T () = 1T (i) = o], (16)
for all ¢ = 1,2,...,n. For convenience, we collect the
interpolation data in a matrix form as follows:

A= diag(Ay, .., Ap), M = diag(u1, ...y fin),
R:= [Tl,---yrn]7 L= [l17...7ln}7 (17)
W = [wl,...,wn}, V.= [U1,~-~7vn]'
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Next, we present theorems which allow for the construction
of realizations for Y tqe and ¥,4e from the interpolation
data. The CTDE X 4. part of the reduced cascaded
realization 3 can be constructed using following result.
Theorem 8. Let {\;}7_; N {u;}7_; = 0, and suppose that
T(s) exists for every s € {\;}’; U{p;}?, . Moreover, let
(E1, Ay, By, Ch) be given by

e*T’“viTrj — liije*”J'
[EAr]iy =

’ e—THi — 67T)‘J'
T T
v, 75 — 1 w;
[Al]ij — 1 "] 7 J ;
7 e—‘rkj — e THi
B, =VT C =W
Then the realization Y tqe given by (11) with the corre-
sponding transfer function

s g \—1
Tctde(s) =Cy (El +e Al) By,
satisfies the interpolation conditions in (15) and (16).

,j=1,...,n,

Proof. This theorem presents a special case of results in
(Schulze et al., 2018), where a detailed proof can be found.

Similarly, the result in the next theorem allows for the
construction of the ODE part of the cascaded system.

Theorem 9. Let \; # p; for all ¢,j =1, ...,n, and suppose

that T'(s) exists for every s € {A\;}7; U{p;}_;. Moreover,

let (Ea, Aa, B, Cs) be given by

Fw; —vlr,

By = i
Bi = Aj

T T

0T — LT wi .

[Ags; = B ,\], —ZL' L 41 Dyry,y iy =1, .0m,
] (3

By =VT —DyR, Co =W — LT D,,

for a given Dy € R™*P. Then, the realization of ¥,q. given
by (12) with corresponding transfer function

Todae(s) = Ca (sEa — Ay) ™' By + Dy,
satisfies the interpolation conditions in (15) and (16).

y L) = 17"777';

(19)

Proof. This theorem presents a specific case of results in
(Schulze et al., 2018), where a detailed proof can be found.

Remark 10. The data matrices M, A, V, W, L, R and
the order n in Theorem 8 are not the same as those in
Theorem 9, although this may seem to be the case due to
abuse of notation here. We use two distinct data sets. In
particular, M*, A, V1, Wl L', R' and n; will denote the
interpolation data that are used for the CTDE part, and
M?, A2, V2 W2 L? R? and n, contain the interpolation
data used for the construction of ¥,4, using Theorem 9.

The procedure of constructing the reduced model depicted
in Fig. 3 is detailed in Algorithm 1. In this algorithm,
we first construct a realization for Y.iq from transfer
function data of the original PDE model, while choosing
the interpolation points in the high-frequency range as the
PDE dynamics is well approximated by the CTDE in that
range, see Section 5. Next, we construct ¥4, in such a way
that it compensates for the approximation error between
T(s) and Terde(s) in the low-frequency range.

Remark 11. The feedthrough matrix Dy in Theorem 9
is set to I, in Algorithm 1. This enables to achieve the
objective of T(jw) — Tetde(jw) for w — oo following
Tode(jw) = D4 for w — co.

T.C.PF. Leenen et al. / I[FAC PapersOnLine 53-2 (2020) 7698—-7703

Algorithm 1: Construction of Y.iqe and Yoqe
Input: M, A, VI W' L', R', M2, A% L? R? and
T(s) in (7)
Output: Realizations (E1, A1, By, C1) and
(E27 AZa B27 027 D2) for 2ctdc and Eodc
Construct (Ey, A1, By, C1) and Teiqe(s) from M1, AL,
VY Wt L' and R' using Theorem 8.
For T'(s) as in (7), compute the error transfer function

T(s) = T()Tgels) (Torae () Tihe())
Compute W2 and V2 based on T,(s) from M?, A2,
R? and L2
Set D2 = IT.
Construct(FEs, Aa, Ba, C3) and Toqe(s) using
Theorem 9 by interpolating T, (s) for M2, A2, V2,
W2, L?, R?.

Table 1. Parameters of the drilling system.

Parameter Value Parameter Value
da 0.0953 [m] A, 0.02613[m?]
dq 0.1088[m]  Agq 0.0093 [m?]
l 2320 [m] 6 1.4455 [rad]
c 980 [m/s] g 9.81 [m/s?]
Anz 5.77x 1074[m?] ¢4 0.8 []
00 1260 [kg/m3] u 0.035 [Pa- s
ke 0.002 [m?]

7. NUMERICAL ILLUSTRATIONS

In this section, we apply the presented model reduction
technique to an MPD hydraulics model with its nonlin-
ear boundary conditions as discussed in Section 3. The
parameter values of the model are reported in Table 1.

We obtain the matrices II; and Il in (2) by linearizing the
boundary conditions around an operating equilibrium. In
this example w7 (£) = [5a(t, 1), pa(t, 0), fa(t, 1)), as in (5),
contains the perturbed mud density at the bottom of the
well in both drillstring and annulus and at the choke. We
also take y = w, i.e., H = I. The input u? = [J,, Z]
contains the perturbed pump flow rate and the perturbed
choke opening. The interpolation points for ny,ns = 6 are
taken as Ay = A], A4 = A5, X¢ = Af and po = pf, pa =
13, pe = pi, and the interpolation directions are taken as
unit vectors of appropriate dimensions.

We first compare the approximate and original models in
frequency domain, while ignoring the nonlinear boundary
conditions, by comparing the transfer function T'(s) of
Y to that T(s) of the approximate cascaded system 3.
Results of this comparison are shown in Fig. 4, where we
can observe the high accuracy of T'(jw) in approximating
T(jw). Next, we compare the total nonlinear model of
the MPD process with its (nonlinear) approximate version
in time domain. To numerically implement the nonlinear
PDE model, we have used the Kurganov-Tadmor (KT)
scheme (Kurganov and Tadmor, 2000) with 1000 cells.
Fig. 5 shows the response of the downhole pressure in the
annulus to a step signal in the choke and pump for the
original PDE model and the approximate model. As can
be observed, the nonlinear cascaded approximation yields
an accurate approximation of the original system response.
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. 4. Element-wise comparison between the magnitude of fre-
quency response function of ¥ (PDE) and that of ¥ (approxi-
mate cascaded system) in the MIMO example.

&2
&=

355

350

345

340 ¢

335

330 1

origianl nonlinear model (from KT discretization)

3251  f [ approximate nonlinear model (with )

pressure in annulus at £ = 0 [bar]

time |[s| 100 150

. 5. Comparison between the time-domain response of the
reduced nonlinear model and the original model obtained using
a KT-discretization. The input is a step of —0.1 in the choke
opening Z¢(t) at t = 20 s and a step of 10 kg/(m3s) in the pump
flow Jp(t) at t = 80 s. The output is the downhole pressure.

8. CONCLUSIONS

=
=

In this paper, a new model structure is introduced to
approximate a class of hyperbolic partial differential equa-
tions with nonlinear boundary conditions. This structure
is composed of a cascaded interconnection of a continuous
time delay equation and a system of ordinary differential
equations. The aim of this approximation is to obtain low-
order input-output models which facilitate control design
and enable fast model-based simulations. The cascaded
interconnection introduced in this paper is able to accu-
rately capture the infinite-dimensional behaviour of the
considered PDE models. In particular, numerical examples
show that the approximation method introduced here is
able to accurately model managed pressure drilling sce-
narios. Prospective directions for future work are 1) to
use the reduced model for the design of pressure control
systems for managed pressure drilling and 2) to generalize
the proposed model reduction approach to other classes of
PDE systems.
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