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Abstract: Complex systems often involve interconnected subsystem models developed by
multi-disciplinary teams. To simulate and control such systems, a reduced-order model of the
interconnected system is required. In the scope of this paper, we pursue this goal by subsystem
reduction to warrant modularity of the reduction approach. However, reducing subsystem
models affects not only the subsystems accuracy, but also the interconnected model accuracy,
making it difficult to predict a priori the accuracy impact of subsystem reduction. To address this
challenge, we introduce a top-down approach using mathematical tools from robust performance
analysis, enabling the translation of accuracy requirements from the interconnected model to
the subsystem level. This enables independent subsystem reduction while ensuring the desired
accuracy of the interconnected model. We demonstrate the effectiveness of our approach through

a structural dynamics case study.
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1. INTRODUCTION

Many complex dynamical systems consist of multiple in-
terconnected subsystems, which are often designed, man-
ufactured, and tested independently before they are inte-
grated into the complete interconnected system. Typically,
high-fidelity subsystem models are created that accurately
describe the dynamic behavior of each subsystem. How-
ever, to use these models for the analysis of the dynamic
behavior of the interconnected system, often, model order
reduction (MOR) is required.

In this work, we consider MOR of linear time-invariant
(LTT) systems (Antoulas, 2005; Besselink et al., 2013).
Examples of commonly used projection-based methods
used for MOR are the proper orthogonal decomposition
method (Kerschen et al., 2005), reduced basis meth-
ods (Boyaval et al., 2010), balancing methods (Gugercin
and Antoulas, 2004; Moore, 1981; Glover, 1984) and
Krylov methods (Grimme, 1997). All of these MOR, meth-
ods have in common that they aim to compute a reduced-
order model (ROM) that still provides an accurate descrip-
tion of the system dynamics but is significantly reduced in
complexity in comparison to the high-order model.

The main goal of this work is to construct a model of
the interconnected system that 1) satisfies given accuracy
requirements and 2) is of a suitable complexity such that
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it can be used for the application of the model, e.g.,
for controller design or diagnostics. The accuracy of the
ROM is determined by the difference between the input-to-
output behavior of the high-order and the interconnected
ROMs.

There are several approaches to reduce the complexity
of such interconnected models. Accurate ROMs can be
obtained with direct reduction of the entire interconnected
model as a whole. However, this completely destroys the
interconnection structure (Lutowska, 2012). To avoid this
problem, there are several structure-preserving reduction
methods available for interconnected systems (Sandberg
and Murray, 2009; Vandendorpe and Dooren, 2008) Un-
fortunately, these methods still require knowledge of the
entire interconnected system when computing subsystem
ROMs.

Since the subsystem models are developed individually
and, often, in parallel, we aim to reduce the complexity of
the subsystem modularly, i.e., on an individual basis. Such
a modular approach has the additional advantages that the
computational cost of computing the ROM is significantly
reduced (Vaz and Davison, 1990) and different reduction
methods can be applied for each subsystem individually
(Reis and Stykel, 2008). In the structural dynamics field,
component mode synthesis (CMS) methods are also mod-
ular (de Klerk et al., 2008).

However, with modular MOR of interconnected systems,
we reduce the complexity of subsystem models, which gen-
erally leads to an error of the subsystem ROM in compar-



ison to the high-order subsystem model. If the subsystem
ROMs are then interconnected, these errors will propagate
to the interconnected system ROM, potentially exceeding
the given accuracy requirements on the interconnected sys-
tem model. Therefore, the need arises for methods to relate
interconnected model accuracy requirements to accuracy
requirements on the level of individual subsystem models.

The main contribution of this work is a top-down approach
that allows us to translate frequency-dependent accuracy
requirements on the interconnected model to frequency-
dependent accuracy requirements on the input-to-output
behavior at a subsystem level. Then, if the subsystem mod-
els are reduced (individually) using any reduction method
that can satisfy these subsystem accuracy requirements,
the accuracy requirements on the interconnected model
are also guaranteed to be satisfied. We use methods from
robust performance analysis to establish this relation.

In Janssen et al. (2022b), the mathematical foundation of
this method is established, including stability guarantees
and a top-down approach that allows for the computation
of accuracy requirement on one of the subsystem models
based on requirements on the largest singular value error
of the interconnected model. In the current paper, we
extend this approach in two ways. Namely, we now allow
for the computation of accuracy requirements for

(1) all subsystems simultaneously, and for
(2) all input-output pairs for each of these subsystems,

and the subsequent modular reduction of all subsystems
by solving a single optimization problem. Furthermore, we
show on the illustrative example as used in Janssen et al.
(2022b) how these extensions can be used to significantly
reduce the system using the top-down, modular MOR
approach. Note that in Janssen et al. (2022a), it is shown
with a preliminary version of the relation established in
Janssen et al. (2022b) that this relation can be used
to determine a priori error bounds to the error of the
interconnected ROM based on error bounds of ROMs
of the subsystems (following a bottom-up approach, i.e.,
considering the inverse problem of translating the accuracy
of subsystem models to that of the interconnected system).

The paper is organized as follows. Section 2 gives the
problem statement including the modelling framework. In
Section 3, we show how the problem can be reformulated
into a robust performance problem and consequently how
it can be solved. The top-down approach is demonstrated
on an illustrative structural dynamics example system in
Section 4. Finally, the conclusions are given in Section 5.

Notation. The set of real numbers is denoted by R, of
positive real numbers by R+, and of complex numbers by
C. Given a transfer function (matrix) G(s), s denotes the
Laplace variable and |G|« its Hoo-norm. The real rational
subspace of Hs, is denoted by RHs. Given complex
matrix A, A¥ denotes its conjugate transpose, &(A) its
largest singular value, p(A) its spectral radius, A =
diag(A1, As) a block-diagonal matrix with submatrices A;
and As, and A = 0 denotes that A is positive definite. The
identity matrix of size n is denoted by I,,.

Fig. 1. Block diagram representation of the (a) high-
order and (b) reduced-order interconnected systems.
K represents a static interconnection.

2. PROBLEM STATEMENT

Consider k high-order, LTI subsystems j € k := {1,...,k}
with transfer functions G;(s), inputs u; and outputs y; of
dimensions m; and p;, respectively, and McMillan degree
n;. We collect the subsystem transfer functions in the
block-diagonal transfer function

Gy(s) := diag (G1(s), ..., Gk(s)), (1)
for which the total number of inputs and outputs are then
given by my, := Zf:l m; and py, == Zle pj, respectively.

We define inputs u;r = [ul e ,um and outputs y,;r =

[yl ...yt

In this paper, we compute the ROM of the system modu-
larly, i.e., we reduce each subsystem model independently.
Therefore, consider subsystem ROMs j € k and their
transfer functions Gj(s), each with inputs @; and outputs
; with dimensions m; and p;, respectively, and McMillan
degree r;. Let the reduced-order block-diagonal transfer
function be given as

Gy(s) := diag(G1(s), ..., Gr(s)). (2)
Then, we define inputs ﬂbT = [ﬂlT, . ,GZ] and outputs
gy = [g}lT, . ,g)kT] with dimensions m; and py, respec-
tively. Both the high-order and reduced-order subsystem
models are interconnected according to

up | _ Yp | | U | _ (I _ | K1 Ko
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Here, we have also introduced external inputs u., high-
order external outputs y. and reduced-order external out-
puts g.. The number of external inputs and outputs is
given by m,. and p., respectively. Then, the transfer func-
tion from wu. to y. is given by the upper linear fractional

transformation (LFT) of Gy(s) and K, which yields

Ge(s) = Ko1Gy(s)(I — K11Gy(s)) " K1g + Kog.  (4)
Since we only reduce the subsystem models, the inter-
connection structure is preserved. Therefore, the reduced-

order interconnected system transfer function from u. to
9 is, similar to (4), given by

Ge(s) = Ko1Gy(s)(I — K11Gy(s)) ' Kig + Kog. ()
This model framework is illustrated in Figure 1.

The approach developed in this paper is completely
frequency-dependent. Therefore, we analyze the transfer
functions for s = dw for some w € R. Furthermore, we
assume that we can define frequency-dependent require-
ments on the reduction error dynamics

E.(iw) := G (iw) — G.(iw). (6)



Specifically, we consider the requirement that E.(iw) is
contained in the set

Ec(w) == {Ec(iw) | 6 (Ve(w)Ee(iw)We(w)) <1}, (7)
where diagonal scaling matrices V.(w) € RIS and
We(w) € RUg™™e can be used to scale the 1nput output
pairs of E.(iw) to fit the requirements.

The main goal of this work is to find specifications to the
subsystem reduction error dynamics

B, (iw) := Gy (iw) — Gj(iw) (®)

for each subsystem j € k based on &.(w), i.e., using a
top-down approach. Specifically, we aim to find some sets

Ei(w) = {Ej(z'w) | c‘r(Wj*l(w)Ej(iw)Vj*l(w)) < 1}

such that E;(iw)e&;(w) for all j € k implies E,(iw)€&(iw).

In (9), Vj(w) and W;(w) are diagonal scaling matrices.

Note that for any matrix A € C™*", g(A) < 1 is only
satisfied if the magnitude of all elements in A are less
than one. Therefore, both for the interconnected system
in (7) and the subsystems in (9), the error requirements
implicitly provide a bound on each input-output pair
individually, which is a relevant extension to the scaling
matrices of Janssen et al. (2022b), where each scaling
matrix is defined as a scaled identity matrix, generally
resulting in more conservative subsystem requirements.

Once the sets £;(w) have been determined, it becomes pos-
sible to compute subsystem ROMs independently. Namely,
if each subsystem j € k is reduced such that it satisfies
E;(iw) € £;(w), it is guaranteed that the reduction error
dynamics of the interconnected system satisfy E.(iw) €

Ec(w).
3. METHODOLOGY

To find the subsystem accuracy specifications character-
ized by (£1(w), ..., Ek(w)) based on the requirement &.(w)
for w € R, we reformulate the problem as a robust per-
formance problem. First, we define weighting functions
Vj(w) € RZG™™ and W;(w) € RY,; ™ such that Fj(iw)
can be ertten as

Ej(iw) = Wj(w)A;(iw)V; (w), (10)
for some Aj(s) € RHoo satisfying |[[Aj||oc < 1. Then, we
rewrite the subsystem ROM as

G(iw) = Gj(iw) + W, (W) A, (iw)Vj (w). (11)

By replacing G (iw) with G (iw) + W;(w)A, (iw)V;(w) for
all 7 € kin Flgure 1(b) and comparing it with the high-
order system G,(iw) in Figure 1(a), we obtain the block
diagram in Figure 2. Additionally, we define the nominal
transfer function N(s), i.e., the grey block in Figure 2,
which is given by

N(s) = {]NV;E g Nla(s)] , where (12)
Ni1(s) = Ki1(I — Gy(s)K11) ™,
ng( ) (I KuGb(S))_lK127 and
Noi(s) = Ko1(I — Gp(s)K11) ™"

The interconnected system error dynamics F., as shown
in Figure 2, for w € R, can then be given by

Fig. 2. Block diagram representation of the error dynamics

of the interconnected system, F. = G. — G,, as a
function of V4, Wp, A and the nominal system V.

Ee(iw) = Nai (iw) Wy (w) Ay (iw) Vi (w) (1 (13)
(i

— Ny (i) Wi (@) Ay (i) Vi (w)) " Nia(iw),
= diag(V3,...

where Ay = diag(Aq,...,Ar), V, Vi),
and Wy, := diag (Wh,..., Wy).

To relate the requirements &£, on the accuracy of the in-
terconnected ROM to accuracy requirements (€1, ..., &)

on the subsystem ROMs, consider the following sets of
matrices.

V .= {diag (V1,..., V4, V.
Vi = dlag(vj e RYY

) | Ve = diag(ve € RY,),

)V j ek}, (14)

W := {diag (W1, ..., Wy, W) | W, = diag(w. € RZj),
W; = diag(w; € RY)) V j € k}, (15)
D :={(Dy,D,) | di,...,dg,d. € Rsg,
=diag (dilp,,. .., dilp,,dcIm,) ;s

D, = diag (dilm,,- -, diIm,.dc1p,)}-
Then, we can pose the following theorem.

Theorem 1. Let w € R, V(w) € V, and W(w) € W,
with V and W as in (14) and (15), respectively. Consider
the system (4), error dynamics (13) as in Figure 2, and
requirements £.(w) as in (7) and &;(w), j € k, as in (9). If
there exists a (Dy, D,-) € D, with D as in (16), such that
W=2(w)Dt NH (iw)

N(iw)  V~%(w)D,

with N as in (12), then, it holds that if all subsystem
ROMs satisfy their respective error requirements, i.e.,
E;(iw) € &j(w) for all j € k, then the interconnected

ROM will satisfy the interconnected system requirements,
ie., FE.(iw) € E(w).

(16)

=0, (17)

Proof. We prove the theorem with the following remarks.

(1) From Janssen et al. (2022b), Theorem 3.5 follows that

any F;(iw) satisfying F;(iw) € &;(w) for all j € k, it
holds that E.(iw) € E.(w), which is equivalent to

pa (V(w)N(iw)W (w)) < 1. (18)

Here, pa denotes the structured singular value

(Packard and Doyle, 1993, Definition 3.1) defined by

pa(M) :=min{a(A) | det(I — MA)=0,Ac A}~!



for M e Clmetpe)x(Potme) and A given by
A= {diag(Al, .. .,Ak,AC) | A, € CMeXPe,
Aj e CPiX™Mi g € k}. (19)
(2) In Janssen et al. (2022b), Theorem 3.6, it is proven
that for any M € C(metpe)xX(potme) “if there exists a
(Dy, D) € D such that M D, M" < D,, then, given
Ae€eA ,uA(M) < 1.
(3) Since V(w)N (iw)W (w) € Clmetpe)x(Potme) e have
that (18) is satisfied if
V(w)N (iw)W (w) D, WH (w)NH (iw)VH (w) < D,. (20)
(4) Since W(w)eW and (Dy, D, )€D are diagonal, real,

and positive definite, W (w) D, W (w) = W2%(w) D, 0.

(5) Since V(w)€V is diagonal, real, and positive definite,
after pre- and post-multiplying both sides of the
inequality (20) by V~!(w), we obtain

N (iw)W?(w)D, N (iw) < V=2(w)D,. (21)

(6) We obtain (17) as the equivalent Schur’s complement
of (21). O

With Theorem 1, for w € R any combination of require-
ments on E.(iw) and E;(iw), j € k, can be validated
with (17). We will now show how this can be used directly
to find subsystem specifications (&1 (w),...,E(w)) as in
(9) for which it is guaranteed that the requirement &.(w)
as in (7) is satisfied.

Consider the system (4) and error dynamics (13) as in
Figure 2. Let w € R and assume that the requirement
Ec(w) asin (7) is given. Consider the optimization problem
given V.(w), We(w) (22)
minimize tr(V"2(w)) + tr(W%(w))
W=2(w)D Y NH(iw)
N(iw)  V=3(w)Dy
V(w) e V,W(w) € W,(Dy,D,) € D.
It follows from Theorem 1, that for any feasible solution to
(22), we have that our requirement on the interconnected
system E.(iw) € E.(w) is satisfied if E;(iw) € &;(w) as in
(9) for all j € k.

subject to > 0,

With (22), an optimization problem to find a solution to
the problem as stated in Section 2 is given. Namely, we
can compute local error requirements, for all subsystems
(E1(w), ..., E(w)) simultaneously, given the global error
requirement &.(w). Note that in Janssen et al. (2022b), it
is shown how these error requirements can be computed
for a single subsystem, whereas the other subsystems
remain unreduced. Solving the optimization problem, i.e.,
minimizing tr(V=2(w)) + tr(W=2(w)), is relatively trivial
by iteratively solving for V, W, and D, similar to D-K
iteration (see Zhou and Doyle (1998)):

(1) Initially, set dj = d. =1 for all j € k.

(2) Relax V~2(w) to diagonal matrix V := V~2(w) and
W~2(w) to diagonal matrix W := W~2(w) and fix
D, and Dy; the optimization problem (22) is then
linear and tr(V) +tr(W) can be minimized with semi-
definite programming (SDP) tools.

(3) Fix V(w), W(w) at the solutions of step (2) and keep
d. = 1 fixed. Find the scaling matrices D, and D,
that maximizes v while satisfying the inequality

V72D, — N(iw)W?D, N (iw) = v (23)

with SDP tools. Note that for v = 0, the matrix
inequality (23) is equivalent to (17), as proven in
the proof of Theorem 1. By maximizing -, the cost
function tr(V=2(w)) + tr(W~2?(w)) can be minimized
further in the next iteration.

(4) Repeat step (2) and (3) until sufficient convergence in
V(w), W(w) is reached, i.e., tr(V =2 (w)) +tr(W=2(w))
is no longer decreasing (significantly).

In general, we aim to find a solution in which Vj(w)
and W;(w) are as “large” as possible, which allows for
more error in the subsystems, which in turn allows for
further reduction of the system as a whole. The choice of
cost function tr(V =2(w)) +tr(W~2(w)) allows to relax the
optimization problem (22) to be easily solved iteratively
with SDP solvers. Within (17), there is an infinite number
of possible combinations (& (w), . .., Ek(w)) that guarantee
the satisfaction of the requirement &.(w). By choosing
the cost function tr(V=2(w)) + tr(W=2(w)) in (22), given
E.(w), the solution converges to a single distribution of
subsystem accuracy requirements (£1(w), ..., Ek(w)).

Remark 2. The advantage of this cost function is that
it automatically penalizes individual elements in V(w)
and W(w) that are important for the accuracy of the
interconnected system and allows for more error on
inputs-to-outputs pairs of the subsystem transfer func-
tions that are less important for the overall accuracy
of the interconnected system. Moreover, if additional
knowledge on subsystems is available, e.g., we know that
one of the subsystems is more difficult to reduce than
the others, the cost function can be trivially extended
to Z?:l aj (tr(‘/rz(w))—&-tr(Wj*Q(w))), where a; is a
weighting variable used to provide some control over the
distribution of subsystem requirements in the solution to
the optimization problem (22).

However, specifying the exact definition of an “optimal”
distribution of (&1 (w),...,E&(w)), and, furthermore, find-
ing this distribution, are still open problems. There are
various arguments explaining why these problems are not
trivial, one of which is the fact that reducing the order of
a subsystem generally leads to discrete steps in which the
error increases. We expect that to find an optimal distribu-
tion of requirements, a heuristic approach, in which com-
munication between subsystems takes place, is required.

In the next section, we will show using an illustrative
example that minimizing the cost function tr(V=2(w)) +
tr(W=2%(w)) is sufficient to compute a distribution of
subsystem error requirements that allows for significant
reduction of each of the subsystems given a required &.(w).

4. EXAMPLE

In this section, we show on a mechanical system consisting
of three interconnected beams, as illustrated schematically
in Figure 3, that the top-down approach can be used
to determine frequency-dependent accuracy requirements
&1 (w), E2(w), E3(w) for the ROMs of the three beams
based on given requirements &.(w) for the accuracy of
the interconnected ROM, allowing for the independent
reduction of these subsystems.

Subsystems 1 and 3 are cantilever beams which are con-
nected at their free ends to free-free beam 2 with transla-
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Fig. 3. Example system: A free-free beam (Subsystem 2)
connected to cantilever beams (Subsystems 1 and 3)
with translational and rotational springs.

Table 1. Parameter values of each subsystem.

Parameter Subsys. 1~ Subsys. 2 Subsys. 3
Cross-sect. area [m?] 1x10° 1x10° 1x 107
2nd area moment [m*] | 1 x 10-° 1x10° 1x 10
Young’s modulus [Pa] | 2x 1011 2x 10!t 2 x 10!
Mass density [kg/m3] | 8 x 103 8 x 103 8 x 103
Length [m] 1 0.4 0.6

# of elements [-] 50 20 30

# of inputs m; [] 2 5 2

# of outputs p; [-] 2 4 3

# of states nj [-] 200 84 120

tional and rotational springs. The stiffness of both trans-
lational interconnecting springs is k¢ = kb = 1 x 10°> N/m.
The stiffness of both rotational interconnecting springs is
k7 = kI = 1 x 10> Nm/rad. The external input force
u. [N] is applied to the middle of subsystem 2 in the
transversal direction. The external output displacement
Yo [m] is measured at the middle of subsystem 3 in the
transversal direction.

Each beam/subsystem is discretized by linear two-node
Euler beam elements (only bending, no shear, see Craig Jr
and Kurdila (2006)) of equal length. Per node we have
one rotational and one translational degree of freedom. For
each beam, viscous damping is modelled using 1% modal
damping. Physical and geometrical parameter values of
the three beams and information about finite element
discretization, the number of states, and the number of
subsystem inputs and outputs are given in Table 1. The
Bode plot of the unreduced system G. is given by the black
line in Figure 4. For this system, the top-down approach
is applied with the following steps:

(1) All frequencies w over a grid of 1000 logarithmically
equally spaced points in the interval [10%-%,105] rad/s
are evaluated. For these frequencies, a frequency-
dependent accuracy requirement £.(w) as in (7) is
provided by the user. In this example, V" (w) is given
as some fraction 8y of |G (iw)|, which is bounded
below by B2, V. 1 (w) = max{B:1|G.(iw)], B2}, i.e.,
where 8 = 0.1 and 32 = 5x 10~ m/N and W.(w) =
1. The resulting accuracy requirement is indicated by
the grey areas in Figure 4. Any error E.(iw) satisfies
E (iw) € &E.(w) for the given frequencies w if and
only if 6(W.(w)E.(iw)V,(w)) < 1, i.e., is entirely in
the grey area in the top figure of Figure 5.

(2) The optimization problem (22) is solved, which re-
sults in subsystem requirements (&; (w), £2(w), E5(w)),
for the given frequencies w. These requirements con-
sist, for each subsystem j = 1,2,3, of diagonal
scaling matrices W;(w) and Vj(w) that describe the
scaling of individual input-output pairs in the re-
quirements. Any error Ej;(iw) satisfies Ej(iw) €
Ej(w) for the given frequencies w if and only if
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Fig. 4. The Bode plots of the high-order interconnected
model G, with n; = 200, no = 84 and n3 = 120, the
areas in which a system satisfies error requirements
E.(iw) € &.(w), and of the reduced-order intercon-

nected model G, with ry =19, no = 17 and ng = 13.
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Fig. 5. Largest singular value plots, indicating that the
subsystem ROMs satisfy the required E;(iw) € &;(w)
for 7 = 1,2,3, and, consequently, that the intercon-
nected ROM satisfies E.(iw) € E(w).

6(W{1(w)EC(iw)V{1(w)) < 1, i.e., is entirely in the

grey area in the bottom figure of Figure 5.

With the proposed approach, in principle, any MOR
method can be used for which it is possible to find a
subsystem ROM such that the computed requirements are
satisfied, i.e., E;(iw) € &j(w). It is even possible to use
different MOR methods for each subsystem. However, as
the purpose of this work is to show how subsystem error
requirements can be determined from the top down, we
apply a standard MOR method to all of the subsystems.

(3) Using the computed (&1 (w), &2 (w), E3(w)), model re-
duction techniques can be used to construct subsys-
tem ROMs satisfying E;(iw) € &j(w),j = 1,2,3, for
all frequencies w. In this example, we use frequency-
weighted balanced truncation (FWBT) (Enns, 1984)
to reduce the individual subsystems. In FWBT, we
can minimize ||[W;(G; — G;)Vj|lso, where V; and
Wj are transfer function estimates fitted with a
minimum-phase transfer function (Boyd et al., 2004,
Chapter 6.5), of the computed weighting functions V;
and W, respectively. In Figure 5, for each subsystem,
we show that E;(iw) € &;(w) with the green, blue and
red lines, respectively. With FWBT, the ROMs can
be reduced to ry = 19, ro = 17 and r3 = 13 while
satisfying the given subsystem error requirements.



(4) To validate the approach, we show that E.(iw) €
E.(w) is indeed satisfied for the interconnected sys-
tem, as indicated by the black line in Figure 5. Addi-
tionally, we show the interconnected ROM in the top
figure in Figure 4 with a dashed red line, and see that
it indeed satisfies the requirement.

With these steps, we show that, for this system, it is
possible to determine error requirements at a subsystem
level that 1) guarantee that the overall requirements on
the accuracy of the ROM for the interconnected system
are satisfied and 2) allow for enough “room” for the sig-
nificant reduction of the subsystem models. Even with the
standard MOR technique we apply on a subsystem level,
i.e., FWBT, it is already possible to reduce the number of
states of the interconnected system from ) n; = 404 to
> r; =49 within the given requirements. If more involved
MOR, methods are applied, the subsystem models can
potentially be reduced even further within the computed
accuracy specifications &;(w).

5. CONCLUSIONS

In this paper, we demonstrate how, for models of inter-
connected LTT subsystems, accuracy requirements on the
interconnected system can be translated to accuracy re-
quirements of subsystems. With these requirements, mod-
ular model reduction can be applied while guaranteeing
the required accuracy of the overall interconnected system.
The approach is based on the reformulation of subsystem
reduction errors to weighted uncertainties. This allows for
mathematical tools from the field of robust performance
analysis to be applied. We show that with this reformu-
lation, a single matrix inequality can be used to analyze
if accuracy requirements at the subsystem can guarantee
that given accuracy requirements at the interconnected
system level are satisfied. Moreover, we propose an op-
timization problem that can be used to compute these
subsystem accuracy requirements and we show how this
problem is solved. Finally, the approach is illustrated with
a structural dynamics example, for which the complexity
in terms of the number of states in the overall system can
be reduced by at least 87% for the given requirements.
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