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Abstract: This paper proposes a balancing-based model reduction approach for an intercon-
nection of passive dynamic subsystems. This approach preserves the passivity and stability of
both the subsystems and the interconnected system. Hereto, one Linear Matrix Inequality (LMI)
per subsystem and a single Lyapunov equation for the entire interconnected system needs to
be solved, the latter of which warrants the relevance of the reduction of the subsystems for
the accurate reduction of the interconnected system, while preserving the modularity of the
reduction approach. In a numerical example from structural dynamics, the presented approach
displays superior accuracy with respect to an approach in which the individual subsystems are
reduced independently.
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1. INTRODUCTION

Highly complex models, e.g., RLC networks, integrated
circuits or structural dynamics systems, can often be
regarded as an interconnection of several subsystems. To
meet accuracy requirements, each subsystem is typically
described by a high-order model. The large order of
the resulting interconnected system prevents the use of
computationally costly techniques for controller synthesis
or observer design. Therefore, it is often required to first
approximate the high-order model with a surrogate model
of lower order.

The search for proper approximate models is the main
goal of the Model Reduction (MR) field. One of the most
popular MR methods is Balanced Truncation (BT), as
originally presented by Moore (1981). It has gained this
popularity due to its simplicity, accuracy, stability guaran-
tee and availability of an a priori error bound (Antoulas,
2005). Unfortunately, other important properties of the
original system, in particular passivity and the internal
structure of a system, are not necessarily preserved.

The topic of preserving passivity of a system with BT
has received considerable attention since the first works
of Jonckheere and Silverman (1983) and Desai and Pal
(1984). In subsequent research, Unneland et al. (2007) pre-
sented sufficient conditions to preserve passivity, making
the reduction more efficient and flexible. Further exten-
sions by Zulfiqar et al. (2017) and Imran and Ghafoor
(2018) also allow the user to shape the approximate model
by frequency weighting.

⋆ This project was supported by ASML and the TKI program of the
Dutch Government.

To preserve the internal interconnection structure of in-
terconnected systems, model reduction is usually per-
formed on the individual subsystems. This approach does
not take the dynamics of the interconnected system into
account when approximation subsystems, such that the
interconnected system might actually be approximated
poorly (Sandberg and Murray, 2009). Although frequency-
weighted reduction of the subsystems can improve the
approximation of the interconnected system, this presents
the issue of designing appropriate weighting. Vandendorpe
and Van Dooren (2008) propose a more elegant solu-
tion based on BT, reducing the subsystems based on the
dynamics of the interconnected system. This effectively
reduces the interconnected system, while retaining its in-
ternal structure.

Although both preservation of passivity and preservation
of internal structure with BT are adequately researched
seperately, their combination has received limited atten-
tion. While Cheng et al. (2019) present a BT method for an
interconnection of identical systems to retain structure and
passivity, there is no BT method to retain this structure
and passivity for general interconnected subsystems.

In this paper, we combine the passivity preservation of Un-
neland et al. (2007) with the preservation of internal struc-
ture, as done by Vandendorpe and Van Dooren (2008),
into a new BT method for interconnected systems. More
explicitly, the proposed method solves one Linear Matrix
Inequality (LMI) per subsystem and a single Lyapunov
equation for the interconnected system to retain accuracy
of the reduced interconnected system, while guaranteeing
the passivity of both the reduced subsystems and the
interconnected system.
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1. INTRODUCTION

Highly complex models, e.g., RLC networks, integrated
circuits or structural dynamics systems, can often be
regarded as an interconnection of several subsystems. To
meet accuracy requirements, each subsystem is typically
described by a high-order model. The large order of
the resulting interconnected system prevents the use of
computationally costly techniques for controller synthesis
or observer design. Therefore, it is often required to first
approximate the high-order model with a surrogate model
of lower order.

The search for proper approximate models is the main
goal of the Model Reduction (MR) field. One of the most
popular MR methods is Balanced Truncation (BT), as
originally presented by Moore (1981). It has gained this
popularity due to its simplicity, accuracy, stability guaran-
tee and availability of an a priori error bound (Antoulas,
2005). Unfortunately, other important properties of the
original system, in particular passivity and the internal
structure of a system, are not necessarily preserved.

The topic of preserving passivity of a system with BT
has received considerable attention since the first works
of Jonckheere and Silverman (1983) and Desai and Pal
(1984). In subsequent research, Unneland et al. (2007) pre-
sented sufficient conditions to preserve passivity, making
the reduction more efficient and flexible. Further exten-
sions by Zulfiqar et al. (2017) and Imran and Ghafoor
(2018) also allow the user to shape the approximate model
by frequency weighting.

⋆ This project was supported by ASML and the TKI program of the
Dutch Government.

To preserve the internal interconnection structure of in-
terconnected systems, model reduction is usually per-
formed on the individual subsystems. This approach does
not take the dynamics of the interconnected system into
account when approximation subsystems, such that the
interconnected system might actually be approximated
poorly (Sandberg and Murray, 2009). Although frequency-
weighted reduction of the subsystems can improve the
approximation of the interconnected system, this presents
the issue of designing appropriate weighting. Vandendorpe
and Van Dooren (2008) propose a more elegant solu-
tion based on BT, reducing the subsystems based on the
dynamics of the interconnected system. This effectively
reduces the interconnected system, while retaining its in-
ternal structure.

Although both preservation of passivity and preservation
of internal structure with BT are adequately researched
seperately, their combination has received limited atten-
tion. While Cheng et al. (2019) present a BT method for an
interconnection of identical systems to retain structure and
passivity, there is no BT method to retain this structure
and passivity for general interconnected subsystems.

In this paper, we combine the passivity preservation of Un-
neland et al. (2007) with the preservation of internal struc-
ture, as done by Vandendorpe and Van Dooren (2008),
into a new BT method for interconnected systems. More
explicitly, the proposed method solves one Linear Matrix
Inequality (LMI) per subsystem and a single Lyapunov
equation for the interconnected system to retain accuracy
of the reduced interconnected system, while guaranteeing
the passivity of both the reduced subsystems and the
interconnected system.
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sented sufficient conditions to preserve passivity, making
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sions by Zulfiqar et al. (2017) and Imran and Ghafoor
(2018) also allow the user to shape the approximate model
by frequency weighting.

⋆ This project was supported by ASML and the TKI program of the
Dutch Government.

To preserve the internal interconnection structure of in-
terconnected systems, model reduction is usually per-
formed on the individual subsystems. This approach does
not take the dynamics of the interconnected system into
account when approximation subsystems, such that the
interconnected system might actually be approximated
poorly (Sandberg and Murray, 2009). Although frequency-
weighted reduction of the subsystems can improve the
approximation of the interconnected system, this presents
the issue of designing appropriate weighting. Vandendorpe
and Van Dooren (2008) propose a more elegant solu-
tion based on BT, reducing the subsystems based on the
dynamics of the interconnected system. This effectively
reduces the interconnected system, while retaining its in-
ternal structure.

Although both preservation of passivity and preservation
of internal structure with BT are adequately researched
seperately, their combination has received limited atten-
tion. While Cheng et al. (2019) present a BT method for an
interconnection of identical systems to retain structure and
passivity, there is no BT method to retain this structure
and passivity for general interconnected subsystems.

In this paper, we combine the passivity preservation of Un-
neland et al. (2007) with the preservation of internal struc-
ture, as done by Vandendorpe and Van Dooren (2008),
into a new BT method for interconnected systems. More
explicitly, the proposed method solves one Linear Matrix
Inequality (LMI) per subsystem and a single Lyapunov
equation for the interconnected system to retain accuracy
of the reduced interconnected system, while guaranteeing
the passivity of both the reduced subsystems and the
interconnected system.

The paper is organized as follows. In Section 2, the prob-
lem statement will be defined in detail. The general con-
cept of balanced truncation is subsequently treated in
Section 3. In Section 4, the proposed method of passive
interconnected balanced truncation is introduced. Then,
this new method is illustrated by means of a numerical
example in Section 5. Finally, conclusions on its applica-
bility are drawn in Section 6.

Notation: The field of all real numbers is denoted by R.
Rn and Rn×p indicate an n-dimensional vector and n by
p real matrix, respectively. R>0 denotes the set of positive
real numbers and O and I denote the zero and identity
matrices, respectively. If a matrix A is positive definite, we
indicate this as A ≻ 0. Similarly, negative, semi-positive
and semi-negative definiteness are indicated as A ≺ 0,
A ⪰ 0 and A ⪯ 0. A ≻ B implies A−B ≻ 0.

2. PROBLEM STATEMENT

Consider the square, minimal state-space model

Σ :


ẋ = Ax+Bu,

y = Cx+Du,
(1)

also denoted as Σ := (A,B,C,D) with state x ∈ Rn, input
u ∈ Rp and output y ∈ Rp. In this paper, we will often
consider Σ to be passive.

Definition 1. (Willems, 1972b) A minimal system Σ as in
(1) is passive if there exists a positive storage function
H(x) : Rn → R>0, such that for all t0 ≤ t1, and along all
trajectories of (1), we have

H(x(t0)) +

 t1

t0

y(τ)⊤u(τ)dτ ≥ H(x(t1)). (2)

Lemma 2. Positive Real Lemma (Antoulas, 2005; Willems,
1972a): The square, minimal system Σ of (1) is passive if
and only if there exists a matrix Ξ = Ξ⊤ ≻ 0 such that

A⊤Ξ + ΞA ΞB − C⊤

B⊤Ξ− C −(D +D⊤)


⪯ 0. (3)

Remark 3. Note that Ξ in Lemma 2 is positive definite
because Σ is observable, as shown in (Willems, 1972a,
Lemma 1). Any system that is passive according to Lemma
2 is therefore also Lyapunov stable.

Now consider k passive, minimal subsystems Σ1, . . . ,Σk,
where Σj := (Aj , Bj , Cj , Dj), with states xj ∈ Rnj , inputs
vj ∈ Rpj and outputs zj ∈ Rpj , j ∈ {1, . . . , k}.
The systemΣb := (Ab, Bb, Cb, Db) = diag(Σ1, . . . ,Σk) is a
parallel composition of subsystems Σ1, . . . ,Σk, such that

Ab = diag(A1, . . . , Ak), Bb = diag(B1, . . . , Bk),

Cb = diag(C1, . . . , Ck), Db = diag(D1, . . . , Dk),
(4)

with system states xb ∈ Rnb , inputs vb ∈ Rpb and outputs
zb ∈ Rpb as

xb =



x1

...
xk


 , vb =



v1
...
vk


 , zb =



z1
...
zk


 . (5)

Remark 4. Σb is also passive, because parallel intercon-
nections of passive subsystems are passive, as shown by,
e.g., Bao and Lee (2007), Theorem 2.33.

Observe a negative feedback interconnection of Σb with
the positive semi-definite interconnection matrix S ∈
Rpb×pb such that I + SDb and I + DbS are nonsingular,

Σ1

Σk

uc yc

SΣc

B B⊤+

−

vb zb

Fig. 1. Schematic representation of the interconnected
system

as shown in Figure 1. This interconnection is pre- and
post-multiplied with the matrices B ∈ Rpb×pc and B⊤,
respectively, such that

vb = −Szb + Buc, yc = B⊤zb, (6)

where uc, yc ∈ Rpc are the inputs and outputs of the
interconnected system Σc, with states xc ∈ Rnc , nc = nb.

Hence, the interconnected system is given as

Σc :


ẋc = Acxc +Bcuc,

yc = Ccxc +Dcuc,
(7)

with system matrices

Ac = Ab −BbD2SCb, Bc = BbD2B,
Cc = B⊤D1Cb, Dc = B⊤DbD2B,
D1 = (I +DbS)

−1, D2 = (I + SDb)
−1.

(8)

It is easy to show that the interconnected system Σc is
itself passive.

Theorem 5. Given the passive system Σb with pb inputs
and outputs, positive semi-definite matrix S ∈ Rpb×pb and
matrix B ∈ Rpb×pc , the interconnected system Σc with pc
inputs uc and outputs yc, as given in (7), is passive.

Proof. Since Σb is passive (Remark 4), the inequality of
(2) holds for the inputs vb and outputs zb. Substitution of
the coupling equations vb = −Szb + Buc and yc = B⊤zb
gives

H(xb(t0)) +

 t1

t0

yc(τ)
⊤uc(τ)dτ

−
 t1

t0

zb(τ)
⊤Szb(τ)dτ ≥ H(xb(t1)),

(9)

such that Σc is also clearly passive for S ⪰ 0 with inputs
uc, outputs yc and storage function H(xc) = H(xb). □

Note that it is also possible to treat S as a passive system of
only direct feedthrough, according to Lemma 2. The result
that a negative feedback interconnection of two passive
systems is also passive, is actually well-known in literature
(e.g., Willems (1972b) and Zhu et al. (2017)).

In this paper, we will approximate the subsystem models
Σj by reduced-order models Σ̂j for all j ∈ {1, . . . , k},
which makes for a modular reduction approach. Analogous
to the unreduced case, the parallel composition Σ̂b =
diag(Σ̂1, . . . , Σ̂k) is interconnected with S and B, using
the equations of (8), to form the reduced interconnected

model Σ̂c.

The goal of the reduction is to reduce passive subsystems
Σj to Σ̂j for all j ∈ {1, . . . , k}, such that

(1) the subsystems Σ̂j are passive and stable.

(2) the frequency response function of Σ̂c accurately
approximates the frequency response function of Σc.

(3) Σ̂c is passive and stable.
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The paper is organized as follows. In Section 2, the prob-
lem statement will be defined in detail. The general con-
cept of balanced truncation is subsequently treated in
Section 3. In Section 4, the proposed method of passive
interconnected balanced truncation is introduced. Then,
this new method is illustrated by means of a numerical
example in Section 5. Finally, conclusions on its applica-
bility are drawn in Section 6.
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ẋ = Ax+Bu,

y = Cx+Du,
(1)

also denoted as Σ := (A,B,C,D) with state x ∈ Rn, input
u ∈ Rp and output y ∈ Rp. In this paper, we will often
consider Σ to be passive.

Definition 1. (Willems, 1972b) A minimal system Σ as in
(1) is passive if there exists a positive storage function
H(x) : Rn → R>0, such that for all t0 ≤ t1, and along all
trajectories of (1), we have

H(x(t0)) +

 t1

t0

y(τ)⊤u(τ)dτ ≥ H(x(t1)). (2)

Lemma 2. Positive Real Lemma (Antoulas, 2005; Willems,
1972a): The square, minimal system Σ of (1) is passive if
and only if there exists a matrix Ξ = Ξ⊤ ≻ 0 such that

A⊤Ξ + ΞA ΞB − C⊤

B⊤Ξ− C −(D +D⊤)


⪯ 0. (3)

Remark 3. Note that Ξ in Lemma 2 is positive definite
because Σ is observable, as shown in (Willems, 1972a,
Lemma 1). Any system that is passive according to Lemma
2 is therefore also Lyapunov stable.

Now consider k passive, minimal subsystems Σ1, . . . ,Σk,
where Σj := (Aj , Bj , Cj , Dj), with states xj ∈ Rnj , inputs
vj ∈ Rpj and outputs zj ∈ Rpj , j ∈ {1, . . . , k}.
The systemΣb := (Ab, Bb, Cb, Db) = diag(Σ1, . . . ,Σk) is a
parallel composition of subsystems Σ1, . . . ,Σk, such that

Ab = diag(A1, . . . , Ak), Bb = diag(B1, . . . , Bk),

Cb = diag(C1, . . . , Ck), Db = diag(D1, . . . , Dk),
(4)

with system states xb ∈ Rnb , inputs vb ∈ Rpb and outputs
zb ∈ Rpb as

xb =



x1

...
xk


 , vb =



v1
...
vk


 , zb =



z1
...
zk


 . (5)

Remark 4. Σb is also passive, because parallel intercon-
nections of passive subsystems are passive, as shown by,
e.g., Bao and Lee (2007), Theorem 2.33.

Observe a negative feedback interconnection of Σb with
the positive semi-definite interconnection matrix S ∈
Rpb×pb such that I + SDb and I + DbS are nonsingular,

Σ1

Σk

uc yc

SΣc

B B⊤+

−

vb zb

Fig. 1. Schematic representation of the interconnected
system

as shown in Figure 1. This interconnection is pre- and
post-multiplied with the matrices B ∈ Rpb×pc and B⊤,
respectively, such that

vb = −Szb + Buc, yc = B⊤zb, (6)

where uc, yc ∈ Rpc are the inputs and outputs of the
interconnected system Σc, with states xc ∈ Rnc , nc = nb.

Hence, the interconnected system is given as

Σc :


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Note that it is also possible to treat S as a passive system of
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systems is also passive, is actually well-known in literature
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Σj by reduced-order models Σ̂j for all j ∈ {1, . . . , k},
which makes for a modular reduction approach. Analogous
to the unreduced case, the parallel composition Σ̂b =
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3. BALANCED TRUNCATION: BACKGROUND

Balanced truncation (BT) is a model reduction procedure
to generate lower-order surrogate models. In this section,
we give preliminary information about BT in its applica-
tion to a single system of type (1). Specifically, we will
introduce Lyapunov, positive real and mixed Gramian
balancing as the basis for proposal of the new method in
Section 4.

The procedure of BT methods is based on two steps: first
the coordinates are transformed to a balanced realisation,
where states are sorted by their ‘importance’, followed by a
truncation of the least important states. This ‘importance’
can be specified by the use of certain matrices charac-
terizing system properties: the controllability Gramian P ,
observability Gramian Q, required supply Π and available
storage Ξ:

• Controllability Gramian P is the unique solution to

0 = AP + PA⊤ +BB⊤, (10)

assuming A to be a Hurwitz stable matrix. P char-
acterizes the least input energy LP needed to steer
the system state from 0 to x0 as LP (x0) = x⊤

0 P
−1x0.

Eigenvectors corresponding to a large eigenvalue of P
thus require a small amount of energy to reach, i.e.,
they are greatly influenced by inputs and are in that
sense ‘important’.

• Observability Gramian Q is the unique solution to

0 = A⊤Q+QA+ C⊤C, (11)

assuming A to be a Hurwitz stable matrix. Q char-
acterizes the observed output energy LQ during the
system’s free evolution from x0 to 0, by LQ(x0) =
x⊤
0 Qx0. Eigenvectors corresponding to a large eigen-

value of Q are clearly observable in the output, i.e.,
they greatly influence outputs and are in that sense
‘important’.

• Π is a (not necessarily unique) solution to
AΠ+ΠA⊤ ΠC⊤ −B
CΠ−B⊤ −(D +D⊤)


⪯ 0. (12)

As shown by Willems (1972b), any solution Π lies
between two extremal solutions, i.e., 0 ≺ Πmin ⪯
Π ⪯ Πmax. For balancing, we require the minimal
solution Π = Πmin, which indicates the minimal
amount of energy that must be added to the system
to steer the system state from 0 to x0 by LΠ(x0) =
x⊤
0 Π

−1x0. Therefore, eigenvectors corresponding to a
large eigenvalue of Π are therefore ‘important’.

• Ξ is a solution to (3), which lies between two extremal
solutions, i.e., 0 ≺ Ξmin ⪯ Ξ ⪯ Ξmax (Willems,
1972b). For balancing, we require the minimal solu-
tion Ξ = Ξmin, which indicates the mimimal amount
of energy that can be recovered from the system
over all state trajectories from x0 to 0 as LΞ(x0) =
H(x0) = x⊤

0 Ξx0. Eigenvectors corresponding to large
eigenvalues of Ξ are thus also ‘important’.

Remark 6. Both Π and Ξ indicate the passivity of the
system Σ, such that the existence of a feasible Ξ indicate
the existence of Π and vice-versa (Gugercin and Antoulas,
2004).

For the remainder of this paper, Π and Ξ refer to the
minimal solutions Πmin and Ξmin, respectively. As P and
Π relate to the steering of the state and Q and Ξ relate to

Table 1. Balancing transformation algorithm,
(Antoulas, 2005, Section 7.3)

(1) Pick input and output Gramians Xi = X⊤
i ≻ 0, Xo = X⊤

o ≻ 0.
(2) Determine Cholesky factors as Xi = R⊤

i Ri, Xo = R⊤
o Ro.

(3) Perform the singular value decomposition RoR
⊤
i = UΓV .

(4) Set transformations as T = Γ−1/2U⊤Ro, T−1 = R⊤
i V Γ−1/2.

(5) The balanced realizations is Ã = TAT−1, B̃ = TB, C̃ = CT−1.
(6) Gramians of the balanced realization, become X̃i = X̃o = Γ,

where X̃i = TXiT
⊤ and X̃o = T−⊤XoT

−1.

the evolution of the state, P and Π are henceforth called
input Gramians and Q and Ξ output Gramians.

Whether a system is in a balanced realization is directly
related to the Gramians of the system.

Definition 7. A minimal system Σ, as in (1), is called
(Xi, Xo)-balanced if Xi is an input Gramian (P or Π)
and Xo an output Gramian (Q or Ξ) of system Σ, solving
(3),(10)-(12), where

Xi = Xo = Γ = diag(γ1, . . . , γn),

where γ1 ≥ · · · ≥ γn ≥ 0.

A minimal system that is not balanced, can be trans-
formed to a balanced realization as in Definition 7 us-
ing a similarity transformation. A similarity transfor-
mation is a transformation with a nonsingular matrix
T , such that the transformed system becomes Σ̌ =
(TAT−1, TB,CT−1, D).

Theorem 8. (Moore, 1981; Willems, 1972a) Consider a
passive system Σ, as in (1), and the realization Σ̌, deter-
mined from a similarity transformation with nonsingular
matrix T , as Σ̌ = (Ǎ, B̌, Č,D) = (TAT−1, TB,CT−1, D).
If the matrices P , Q, Π and Ξ satisfy the LMI’s and Lya-
punov equations of (3), (10)-(12) for Σ, then P̌ = TPT⊤,
Q̌ = T−⊤QT−1, Π̌ = TΠT⊤ and Ξ̌ = T−⊤ΞT−1 satisfy
the same equations for Σ̌.

The unique similarity transformation that results in the
balanced realization of the system can be found by the
algorithm of Table 1.

Since the Gramians are diagonal in a balanced system re-
alisation, the ‘importance’ of each state with respect to the
specified Gramians’ criteria is straightforward: the larger
the diagonal entry, the higher the state’s importance. The
balanced system Σ̃ is therefore partitioned as

Σ̃ =


Ã B̃

C̃ D̃


=



Ã11 Ã12 B̃1

Ã21 Ã22 B̃2

C̃1 C̃2 D


 , (13)

where the first partition corresponds to the states with
the highest values of γi, as defined in Definition 7. The
reduced system Σ̂ is obtained by selecting only the first
partition, such that Σ̂ := (Â, B̂, Ĉ, D̂) = (Ã11, B̃1, C̃1, D).

The reduced system Σ̂ is also balanced, e.g., Gugercin and
Antoulas (2004) and Unneland et al. (2007).

Standard terminology differentiates between three differ-
ent balancing types, based on which Gramians are used,
explained hereafter.

3.1 (P ,Q)-balancing

(P ,Q)-balancing, also known as Lyapunov balancing, is
the original method as presented by Moore (1981) and
is still the most frequently used type of balancing. By
using P and Q, the r < n states of the reduced-order

model Σ̂ all contribute significantly to the input-output
behaviour, and the computation of P and Q is relatively
cheap with respect to the computation of Π and Ξ. The
reduced system Σ̂ is guaranteed to be stable if γr > γr+1

and an a priori H∞ error bound is available (Antoulas,
2005).

3.2 (Π,Ξ)-balancing

(Π,Ξ)-balancing, also known as positive real (PR) balanc-
ing, selects states which contribute most to the internal
energy of the system. Therefore, it is not as strongly
related to the input-output behaviour of the system and is
usually of lower accuracy than Lyapunov balanced trun-
cation. However, positive real balancing guarantees the
preservation of passivity and thus stability. An error bound
is provided by Gugercin and Antoulas (2004).

3.3 (Π,Q)- or (P ,Ξ)-balancing

(Π,Q)- and (P ,Ξ)-balancing are both known as mixed
Gramian (MG) balancing. Whether using (Π,Q) or (P ,Ξ),
the resulting balanced system is identical, as shown by
Unneland et al. (2007). MG balancing ensures the preser-
vation of passivity through the one Gramian from PR
balancing (Unneland et al., 2007). By using also a Gramian
from Lyapunov balancing the accuracy of the frequency
response is generally improved with respect to PR bal-
ancing. In addition, MG balancing is computationally less
expensive than PR balancing as P and Q are generally
cheaper to compute than Π and Ξ.

4. PASSIVITY-PRESERVING, INTERCONNECTED
BALANCING

In Section 2, we set the aim as the reduction of the passive
interconnected system Σc by reduction of the subsystems,
while ensuring passivity of Σ̂c. This preservation of passiv-
ity can be achieved straightforwardly by the reduction of
each individual subsystem Σj using either (Π,Ξ)-, (Π,Q)-
or (P ,Ξ)-balancing, as explained in Section 3.2 and 3.3.
Even though this subsystem level reduction ensures pas-
sivity, the reduction of each Σj does not take its environ-
ment (i.e., the other subsystems to which it connects) into
account. As a consequence, the dynamics that is retained
in each Σ̂j might not contribute effectively to the accuracy

of interconnected system Σ̂c.

To ensure that the reduced interconnected system Σ̂c

approximates Σc accurately, while retaining the intercon-
nection structure, Vandendorpe and Van Dooren (2008)
present the Interconnected Systems Balanced Truncation
(ISBT) method. In ISBT, the controllability and observ-
ability Gramians of the interconnected system are parti-
tioned according to the state partition of (5). For example,
the controllability Gramian of the interconnected system
Pc is determined from

0 = AcPc + PcA
⊤
c +BcB

⊤
c , (14)

where Pc is partitioned as

Pc =



P1,1 · · · P1,k

...
. . .

...
Pk,1 . . . Pk,k


 , (15)

where Pi,j ∈ Rni×nj . The same partition is applied to Qc,
the observability Gramian of Σc. ISBT then selects input
Gramian Pj,j and output Gramian Qj,j to transform Σj

using the balancing algorithm of Table 1. The resulting
realization Σ̃j is called subsystem balanced. Note that
the subsystem itself is not (Pj ,Qj)-balanced, i.e., the
Gramians Pj and Qj of Σj are not equal and diagonal.

The subsystem-balanced subsystems Σ̃j are truncated
by selection of the first partition, as in (13). The main

drawback of ISBT is that stability and passivity of Σ̂c

are generally not preserved and there is no error bound
available.

As the main contribution of this paper, we propose a
new method which combines the advantages of previous
research on interconnected systems and passivity. Specifi-
cally, a combination of ISBT and (P ,Ξ)-balancing is pro-
posed to accurately reduce interconnected systems, guar-
anteeing passivity (and therefore stability) of both sub-

systems Σ̂j and interconnected system Σ̂c. To this end,
we solve and partition Pc as in (14) and (15), and we
determine the available storage Ξj of subsystem Σj from


A⊤

j Ξj + ΞjAj ΞjBj − C⊤
j

B⊤
j Ξj − Cj −(Dj +D⊤

j )


⪯ 0. (16)

Pj,j and Ξj are then used to transform Σj to Σ̃j , using

the algorithm of Table 1. By partitioning of Σ̃j as in (13),

and retention of only the (Ã11, B̃1, C̃1, D)-partition, the

reduced-order subsystem Σ̂j is obtained. The reduced-
order subsystems can then be interconnected using S and
B to obtain Σ̂c. We call this new reduction scheme Pas-
sive Interconnected Balanced Truncation (PIBT), which is
summarized by Algorithm 1.

Algorithm 1. PIBT
Consider k passive, minimal subystems Σj , coupling ma-
trices S and B and the asymptotically stable system Σc.

(1) Calculate the global controllability Gramian Pc from
(14) and partition it according to the state, as in (15).

(2) Calculate, for each subsystem Σj , j ∈ {1, . . . , k}, its
available storage Ξj using (16).

(3) For each subsystem Σj , employ the algorithm of
Table 1 with Xi = Pj,j and Xo = Ξj to obtain the

balanced Σ̃j .

(4) Truncate the balanced system Σ̃j to Σ̂j by selecting

only the (Ã11, B̃1, C̃1, D)-partition of the partitioned,
balanced system, as in (13).

(5) Interconnect all the reduced subsystems Σ̂j with S

and B according to (7) and (8), to find Σ̂c.

The PIBT algorithm of Algorithm 1 guarantees the passiv-
ity of both the reduced subsystems Σ̂j and reduced inter-

connected system Σ̂c, as shown in the following theorem.

Theorem 9. Consider a passive, minimal interconnected
system Σc as in (7), consisting of k passive, minimal sub-
systems Σ1, . . . ,Σk, a positive semi-definite interconnec-
tion matrix S and external input matrix B. IfΣc is reduced
to Σ̂c using PIBT of Algorithm 1, Σ̂j , j ∈ {1, . . . , k} and

Σ̂c are passive.

Proof. By the balancing algorithm of Table 1, Ξj is

transformed to Ξ̃j = Γ, i.e., Ξ̃j is diagonal and sorted.
Therefore, for the balanced subsystem the LMI in (3) can
be partitioned as
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model Σ̂ all contribute significantly to the input-output
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available.
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and retention of only the (Ã11, B̃1, C̃1, D)-partition, the

reduced-order subsystem Σ̂j is obtained. The reduced-
order subsystems can then be interconnected using S and
B to obtain Σ̂c. We call this new reduction scheme Pas-
sive Interconnected Balanced Truncation (PIBT), which is
summarized by Algorithm 1.

Algorithm 1. PIBT
Consider k passive, minimal subystems Σj , coupling ma-
trices S and B and the asymptotically stable system Σc.

(1) Calculate the global controllability Gramian Pc from
(14) and partition it according to the state, as in (15).

(2) Calculate, for each subsystem Σj , j ∈ {1, . . . , k}, its
available storage Ξj using (16).

(3) For each subsystem Σj , employ the algorithm of
Table 1 with Xi = Pj,j and Xo = Ξj to obtain the
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(5) Interconnect all the reduced subsystems Σ̂j with S

and B according to (7) and (8), to find Σ̂c.

The PIBT algorithm of Algorithm 1 guarantees the passiv-
ity of both the reduced subsystems Σ̂j and reduced inter-

connected system Σ̂c, as shown in the following theorem.

Theorem 9. Consider a passive, minimal interconnected
system Σc as in (7), consisting of k passive, minimal sub-
systems Σ1, . . . ,Σk, a positive semi-definite interconnec-
tion matrix S and external input matrix B. IfΣc is reduced
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[
L11 L12

L21 −(Dj +D⊤
j )

]
⪯ 0, (17)

where

L11 =

[
Ãj,11 Ãj,12

Ãj,21 Ãj,22

]⊤ [
Γ1 O
O Γ2

]
+

[
Γ1 O
O Γ2

] [
Ãj,11 Ãj,12

Ãj,21 Ãj,22

]

L12 =

[
Γ1 O
O Γ2

] [
B̃j,1

B̃j,2

]
−

[
C̃⊤

j,1

C̃⊤
j,2

] (18)

At the truncation step, Ξ̃j = Γ is truncated to Ξ̂j =
Γ1. The LMI for the available storage of the reduced
system Σ̂j corresponds to (17) with only the top-left and
top partitions of L11 and L12 in (18), respectively. The

truncated available storage Ξ̂av,j is a valid solution to

this LMI, such that Σ̂j retains the passivity properties

of Σj . Σ̂c is therefore an interconnection of the passive

subsystems Σ̂j and interconnection matrices S and B and
is thus also passive according to Theorem 5. □

Remark 10. Note that in Algorithm 1, the balancing algo-
rithm uses Pc and Ξj . A valid alternative would be to use
Πj and Qc, which also guarantees passivity of the reduced
systems, but generally results in a different reduced order
model. Only if all subsystems are fully symmetric, i.e.
Cj = B⊤

j , for all j ∈ {1, . . . , k}, then Pc = Qc and
Ξj = Πj , such that the choice between Pc and Ξj or Πj

and Qc is equivalent. Numerical tests on non-symmetric
systems have demonstrated comparable accuracy for either
Pj and Ξj or Πj and Qc, but further study is required to
provide guidelines on which to use.

5. NUMERICAL EXAMPLE

As an illustrative example, we compare three reduction
methods by their application to two interconnected beam
models, Σ1 and Σ2, as schematically shown in Figure 2.
Both models represent 1 m long, steel beams (Young’s
modulus is 2 × 1011 Pa, mass density is 8 × 103 kg/m3)
with a square cross-section area of 1×10−4 m2, consisting
of 5 identical 2D Euler beam elements (subsystem order
nj = 20, for j = 1, 2). The left beam, modeled by Σ1,
is clamped at its left end, i.e., it is a cantilever beam.
The right beam, modeled by Σ2, has its second and
fourth transversal translational degrees of freedom fixed,
as shown in Figure 2. Rayleigh damping is added such
that the modal damping parameters are given as ξk =
0.5(ω−1

Ok +5× 10−6ωOk), with ωOk the undamped angular
eigenfrequencies. By using solely collocated force inputs
and velocity outputs, both beam models are passive.

The two beams are interconnected by a transversal trans-
lational damper and a rotational damper with damping
constants of 50 Ns/m and 3 Nms/rad, respectively. The
interconnected system Σc has one external input force uc

and output velocity yc at the right free end of the right
beam and is therefore also passive.

The subsystems models Σj are reduced to Σ̂j , both of

order 12, such that Σ̂c is of 24th order. This reduction is
performed using three reduction methods:

• Mixed-Gramian balanced truncation (MGBT) of Un-
neland et al. (2007) to reduce the individual sub-
systems using (P,Ξ)-balancing. In other words, both

reductions Σ1 → Σ̂1 and Σ2 → Σ̂2 are performed
individually before coupling to consitute Σ̂c.

yc

uc

Σ1 Σ2

Fig. 2. Schematic drawing of two interconnected Euler
beams.
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Fig. 3. FRF of the full-order model (FOM) Σc and the
three reduced order models.

• Interconnected systems balanced truncation (ISBT)
of Vandendorpe and Van Dooren (2008) to reduce
the subsystems based on the Gramians of the inter-
connected system Σc.

• Passive interconnected balanced truncation (PIBT)
to reduce the subsystems as presented in Algorithm 1.

The three reduced-order models Σ̂c (ROMs) are com-
pared to the full-order model Σc (FOM) by means of
their frequency response functions (FRFs), norms on the
corresponding error, and their step response. The systems
Σc and Σ̂c can alternatively be characterized by their
transfer functions Gc(s) := Cc(sI − Ac)

−1Bc + Dc and

Ĝc(s) := Ĉc(sI−Âc)
−1B̂c+D̂c, respectively. The error can

then be defined as E(s) := Gc(s)− Ĝc(s). To characterize
this error, we evaluate its H2− and L∞-norm (Zhou and
Doyle, 1998) as

∥E∥22 =
1

2π

∫ ∞

−∞
trace[E∗(jω)E(jω)]dω, (19)

∥E∥∞ := ess sup
ω∈R

σ̄[E(jω)]. (20)

Note that ∥E∥2 is only defined if E is stable and is
defined to be infinity otherwise. ∥E∥∞ is only defined if
E has no purely imaginary poles and otherwise as infinity.
Therefore, the L∞-norm, as opposed to the H∞-norm, is
also defined for unstable systems.

The first comparison of the ROMs, by means of the FRFs
shown in Figure 3, indicates that PIBT approximates
the FOM most accurately. The FRF of the MGBT-ROM
follows the FRF of the FOM the least accurately, as
MGBT operates on the individual subsystems Σj instead
of Σc, like with ISBT and PIBT. Still, the FRF of the
ISBT-ROM shows arguably larger deviation than the
PIBT-ROM, e.g., near 700 Hz and 3300 Hz.

A second comparison based on norms on the errors shown
in Table 2, indicates PIBT performs best, showing both the
smallest L∞- and the smallest H2-error norm. Addition-

Table 2. H2-norm and L∞-norm of E(s) :=

Gc(s)−Ĝc(s) for the three reduction methods.

MGBT ISBT PIBT

H2-norm [m2/(N2s3)] 1.13 ∞ 0.463
L∞-norm [m/(Ns)] 0.381 1.48 0.0950
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Fig. 4. Step response of the full order model (FOM) Σc

and the three reductions.

ally, in contrast to the PIBT-ROM, the ISBT-ROM shows
an infinite H2-norm of its error, indicating its instability.
A further check shows that, whereas the ISBT-ROM is
neither passive nor stable, the MGBT- and PIBT-ROMs
retain both stability and passivity, which is in line with
the theoretical guarantee of Theorem 5.

The final comparison, based on the step responses shown
in Figure 4, confirms the superiority of PIBT as observed
in above two comparisons. Whereas the PIBT-ROM’s
step response matches the FOM’s step response more
accurately than the MGBT-ROM does, the step response
of the ISBT-ROM diverges within the first 0.05 s, again
indicating instability.

Overall, the newly presented method of PIBT demon-
strates superior performance with respect to both MGBT
and ISBT in this numerical example. Where MGBT com-
promises on accuracy and ISBT loses stability, PIBT
shows it can combine both a high accuracy and a pas-
sivity/stability guarantee.

6. CONCLUSIONS AND RECOMMENDATIONS

In order to preserve both passivity and internal structure,
interconnected systems are usually reduced by the individ-
ual reduction of its subsystems, which does not guarantee
the accuracy of the reduced interconnected system. We
have presented Passive Interconnected Balanced Trunca-
tion (PIBT) as an alternative approach for the reduction of
an interconnected system in Algorithm 1. This reduction
method works on the interconnected system’s model to
allow higher accuracy, while preserving the interconnection
structure and both the passivity of subsystem models
and the interconnected system’s model. In the presented
numerical example, PIBT shows a significantly improved
approximation of the interconnected system response com-
pared to other reduction methods. A practical limitation
of PIBT is the need for LMI solutions, which is compu-
tationally less attractive for large subsystem models. For

future research, we will work on a more computationally
efficient approach, to solve these LMI’s. In addition, we
will generalize PIBT to be more widely applicable and
study the feasibility of defining error bounds.
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