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Abstract: Adequate tuning of control laws is essential for high positioning accuracy, large
system throughput, and reliability in high-end mechatronic and robotic systems. However, a
population of such systems generally shows slight variations in dynamic responses due to,
e.g., manufacturing tolerances, different disturbance situations, or position-dependent dynamics.
Given the time-consuming nature of controller design, even by experienced control engineers,
typically just one control law is designed for the whole system population based on worst-case
bounds on variations in dynamic responses, resulting in a loss of individual system performance.
The main contribution of this paper is the development of an automated controller tuning
approach, based on extremum-seeking control, for settling time optimization via individual
controller tuning. While other automated controller tuning methods exist, the developed
approach allows inclusion of closed-loop stability and robustness constraints based solely on
non-parametric frequency-response measurements of open-loop plant dynamics, and therewith
directly optimizes transient system performance in a purely data-based manner. The proposed
approach has been applied in simulation in an industrial case study for settling time optimization
in point-to-point motions of a wire bonder system. In this case study, the effectiveness of the
approach has been shown by achieving significant performance increases of 39.4% and 40.6%
compared to controllers designed by experienced control engineers using manual loop-shaping
techniques and a frequency-based auto-tuner, respectively, without needing manual tuning effort.

Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license
(https://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. INTRODUCTION

Motion systems used in high-end mechatronic and robotic
systems, such as, e.g., semiconductor manufacturing equip-
ment, require well-tuned control laws to achieve high posi-
tioning accuracy, large system throughput, and reliability.
In production facilities, often a large population of the
same type of motion system is used for the manufacturing
process; in this paper, we consider wire bonder equipment
for the back-end semiconductor industry as a use case.
These systems generally show slight variations in their dy-
namic responses due to manufacturing tolerances, different
disturbance situations, or position-dependent dynamics.
The performance of these systems is typically character-
ized by their ability to accurately execute quick point-
to-point motions, and to achieve fast settling times while
adhering to maximal error bounds after settling; both to
ensure high system throughput. However, the variation in
the dynamic responses of these systems results in differ-
ences in closed-loop system performance using the same
controller. To complicate the matter, the relation between
controller parameters and the system performance is often

1 This publication is part of the project Digital Twin with project
number P18-03 of the research program TTW Perspective which is
(partly) financed by the Dutch Research Council (NWO).

not directly clear due to, e.g., unknown disturbance sit-
uations. Due to the time-consuming and costly nature of
controller design, even by experienced control engineers,
typically only one control law is designed for the whole
population of systems, based on worst-case bounds on dif-
ferences in responses. Such conservative design approach
results in a loss of individual system performance.

Automated, data-driven methods for controller tuning ex-
ist and allow for faster design of individually tuned con-
trollers, without the need for human intervention. More-
over, such dedicated controller tuning could outperform
the conservative controller designed based on worst-case
bounds on differences in system responses. Examples of
data-driven controller tuning techniques include iterative-
learning control (ILC) (Bristow et al., 2006; Ahn et al.,
2007), iterative feedback tuning (IFT) (Hjalmarsson et al.,
1998; Hjalmarsson, 2002), and extremum-seeking control
(ESC) (Krsti¢ and Wang, 2000; Teel and Popovié¢, 2001;
Tan et al., 2010). These data-driven methods are sim-
ilar in the sense that they iteratively update controller
parameters to minimize a cost function. In ILC, a given
motion task is repeated to iteratively update feedforward
controller parameters via feedback in the iteration domain.
In IFT, feedback controller parameters are updated iter-
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atively using gradient-based methods, and the required
gradient is estimated by three offline experiments per
iteration. Similarly, in ESC, feedback or feedforward con-
troller parameters are (typically) updated iteratively using
gradient-based methods as well (although non-gradient-
based methods exist too, see, e.g., Khong et al. (2013b)).
However, in ESC, the required gradient is estimated online
via small controller parameter perturbations for each cost
function evaluation. In Khong et al. (2016), it is shown
that ILC can also be reformulated in an ESC framework.

In this paper, we will focus on automated tuning of
feedback controllers, as typically seen in IFT and ESC.
Although these methods have been successfully applied
for controller tuning in several applications (see e.g.
(Hamamoto et al., 2003; McDaid et al., 2012) for IFT, and
(Killingsworth and Krstié¢, 2006; Killingsworth et al., 2007;
Chen et al., 2018; Hazeleger et al., 2021) for ESC), the
performance in these applications is typically measured in
terms of an error norm. Here, we are instead interested in
settling time optimization, which is not guaranteed by the
minimization of an error norm. In fact, the settling time is
a discontinuous function of feedback controller parameters,
and thus standard gradient-based IFT and ESC techniques
cannot be employed for controller tuning in this context.
Furthermore, closed-loop stability and its robustness to
perturbations of open-loop system dynamics are important
requirements in feedback controller design, which cannot
be guaranteed during the iterative steps of standard IFT
and ESC methods. In this paper, we therefore develop an
approach for automated tuning of parameters of a given
feedback controller structure, that optimizes the settling
time and guarantees closed-loop stability and its robust-
ness.

The main contribution of this paper is the development of
such approach based on global ESC (Khong et al., 2013b).
In contrast to the steady-state performance optimization
problems typically encountered in ESC (Tan et al., 2010),
we thus optimize transient system performance. To deal
with the discontinuous dependence of the settling time
on controller parameters, the proposed method is based
on the DIRECT algorithm (Jones et al., 1993; Jones
and Martins, 2021), a global, non-gradient-based opti-
mization algorithm previously employed in the context of
ESC in Khong et al. (2013a,b). The approach guarantees
closed-loop stability, and allows introduction of robustness
constraints, based solely on non-parametric frequency-
response measurements of open-loop plant dynamics. It
therefore automatically tunes controller parameters in a
purely data-based manner. A second contribution involves
application of the proposed approach to transient perfor-
mance optimization of point-to-point motions in a wire
bonder system, and a comparison of the performance to
that obtained by dedicated controllers designed by experi-
enced control engineers using manual loop shaping, as well
as by a frequency-based tuning method used in industry.

The remainder of this paper is organized as follows.
In Section 2, the problem formulation is presented. In
Section 3, the ESC-based approach for automated tuning
of feedback controllers is described. Numerical simulations
are presented in Section 4. In Section 5, we present
concluding remarks.
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Fig. 1. Closed-loop system 3, consisting of the feedback
interconnection of a plant P and a controller C'¢;(0).

2. PROBLEM DESCRIPTION

In this section, we provide a system description and, subse-
quently, formulate the performance optimization problem
to be solved.

2.1 System description

For sake of ease of presentation, we consider a linear,
single-input-single-output plant P, see Figure 1, reflecting
the dynamics of a motion system. It is described by
x(t) = Ax(t) + bu(t), (1a)
y(t) = cTx(t) + du(t), (1b)

where x(t) € R™= is the plant state, t € R is time, u(t) € R
is the system input, y(t) € R is the plant output, and
A € R™=*"™ b € R™, ¢ € R™, and d € R are the
system matrices. The system input u(t) is generated by the
linear feedback controller C;(6) with tunable parameters
0 € R™ i.e., the plant input is generated by

z(t) = E(0)z(t) + £(0)e(t), (2a)

u(t) = g7 (0)z(t) + h(0)e(t), (2b)
where z(t) € R" is the controller state, and E(0) €
R"=*"= f(0) € R"=, g(0) € R"=, and h(0) € R are the
controller system matrices, that are continuous in 6. In
(2), e = r—y is the servo error during tracking of the time-
varying reference signal r(t). The feedback interconnection
of (1) and (2) results in the multi-input-single-output
closed-loop system 3, with inputs € and r, and output
e, as illustrated in Figure 1. In the context of ESC, 6
denotes the to-be-optimized parameters, and the output e
is related to the performance measure of interest. We pose
the following assumption on the closed-loop system 3.

Assumption 1. For a given frequency-dependent robust-
ness weight W, there exists a nonempty, compact set
® C R such that for all 8 € O, the closed-loop system
(1)-(2) is asymptotically stable (AS) and satisfies

W (jw)S(jw)| <1, Vw (3)
with S := (14 PCy,(0))~! the sensitivity function.

This is a natural assumption for feedback controller de-
sign, where closed-loop stability and its robustness (as
determined by satisfaction of (3), since choosing, e.g.,
W, (jw) = % for all w implies gain and phase margins of at
least 2 and 30°, respectively) are standard requirements
(Skogestad and Postlethwaite, 2005, Section 2.4.3).

2.2 Performance optimization problem description

We consider point-to-point motion tasks defined on the
time interval [0, 7], see Figure 2, each consisting of
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2. Motion profile r, from an initial position pg to a final
position py, with motion time window 7j, settling
time window 75, and process time window 7s.

Fig.

e a motion time window 77 of length ¢,,, during which
the system is supposed to track a time-varying ref-
erence signal from an initial position py to a final
position py or vice versa;
an idle time window 73 of length ¢,, during which the
system output e converges, satisfying a desired error
bound e, at the end of the interval, i.e.

e(tm + £, )] < v, (4)
where e(t, ) denotes the time evolution of the system
output e for a given 6;

e a process time window 73 of length ¢, = T — ¢, —
tm, during which accurate positioning is crucial to
perform the machine operation and e should respect
the bound |e| < ep.

Combining these motion tasks results in a 27 -repetitive
motion profile r. Note that t,, and ¢, are typically deter-
mined by the used setpoint profile and the time needed
for the machine operation, respectively. Consequently, the
production throughput is maximized by minimizing the
settling time

ts(0) :==max{s € [0, T — t,] : |e(tm, + 5,0)] > ep}, (5)

as this in turn would enable to decrease T and hence would
increase the throughput. This leads to the constrained
optimization problem:

(6)

mingee ts(0)

s.t. |e(t, 0)] < ep, VE € Ts. (7)
The constraint @ € © in (6) comes from the fact that 6
are parameters of a feedback controller, and thus a wrong
choice of parameters could result in an unstable and/or
non-robust controller setting. Solving the optimization
problem (6)-(7) numerically, however, is difficult since ¢4 is
not a continuous function of @: an arbitrarily small change
in @ could cause ts to jump discontinuously, as illustrated
in Figure 3. Since optimizing a discontinuous function is
generally difficult, we reformulate the optimization prob-
lem (6)-(7) in the next section to minimize t;.

3. A CASCADED EXTREMUM-SEEKING
APPROACH

In this section, we describe our proposed approach to solve
the optimization problem (6)-(7) in an online, and purely
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Fig. 3. Small changes in the output e as a result of small
changes in parameters 8 from 6, to 8, can result in
changes in the violation of the error bound e, causing
a discontinuous jump in ¢s; from ¢, ¢, to tsg,.

data-based fashion. To this end, first, we reformulate
this discontinuous optimization problem as two cascaded
optimization problems with continuous cost functions.
Next, we describe the global ESC approach that we use
to solve them.

3.1 Optimization problem reformulation

Let us introduce an extra optimization variable 7, and
reformulate optimization of (6)-(7) as follows:
(8)

min;epo, r—t,,] T
st J*(7) < ey, (9)

where
J*(1) :==mingeco J(7,0) (10)
with J(7,8) := sup,>q |w(t, 7)e(t,0)|, and

_J1lifte [tm+7', TL
w(t, 7) = {O, otherwise. (11)

The reformulated optimization problem (8)-(10) forms a
new, cascaded optimization problem. This problem solves
the discontinuous optimization problem (6)-(7) by solving
the continuous upper-level optimization problem (8)-(9),
for which the continuous lower-level optimization problem
(10) is repeatedly solved to be able to evaluate the con-
straint (9). The problem reformulation allows minimiza-
tion of t5 as follows. The combination of the indicator
function w in (11) and the supremum in the definition
of the cost J ensures the optimal parameters * minimize
the peak servo error over the time-interval ¢ € [t,, + 7, T).
Furthermore, (9) ensures that for the optimal parameter
7* this peak error is within the required bounds, meaning
the servo error has settled within the required bounds
at time t,, + 7*. Finally, the constraint 8 € ® in (10)
guarantees that optimal parameters 8" result in a robustly
stable closed-loop system.

8.2 The cascaded optimization algorithm
Standard gradient-based ESC methods cannot be applied

to solve the lower-level optimization problem (10), since
it is 1) non-smooth, due to the supremum and absolute
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value in the definition of the cost J, and 2) likely not
even convex, thus potentially has multiple local minima.
However, despite its non-smooth and non-convex nature,
optimization of (10) is less challenging than optimization
of the discontinuous function (6), due to its continuity. To
deal with the non-smooth and non-convex nature of (10),
we employ the DIRECT algorithm, a global optimization
algorithm, with some adaptations aimed at 1) reducing
the number of costly cost function evaluations the original
algorithm needs, and 2) the inclusion of the feasibility
constraint @ € ©. The DIRECT algorithm is a deter-
ministic, non-smooth, non-convex optimization algorithm,
that minimizes a given cost function by repeated sampling
from the parameter space Q := {0 = [01,...,0,,]"
0; €1[9;,0:],i=1,...,ne}, and subdividing it into hyper-
rectangles. Here, 0, and ; denote lower and upper bounds
on parameter 6;, respectively. The DIRECT algorithm has
previously been used in the context of ESC and ILC in
Khong et al. (2013a,b) and Khong et al. (2016).

We describe our modified version of the DIRECT algo-
rithm in Algorithm 1. For a detailed description of the
original algorithm, and visualizations thereof, we refer to
Jones et al. (1993); Jones and Martins (2021). The follow-
ing three modifications to the original DIRECT algorithm
can be recognized in Algorithm 1:

1) line 7: the algorithm is terminated before utilizing the
full function-evaluation budget IV or iteration budget
M when J* < e,. This modification prevents unnec-
essary function evaluations in case (9) is satisfied and
T can be decreased.

2) line 8: the size of the mth hyper-rectangle is mea-
sured by its longest side length, instead of its center-
to-vertex distance. This modification results in a
stronger bias for local search (Gablonsky, 2001), re-
sulting in less function evaluations necessary to find
parameters @ such that (9) is satisfied.

3) lines 9-17: the mth hyper-rectangle is sampled and
trisected along a single side, instead of along all
sides of length d,,. This modification accelerates
convergence according to (Jones, 2001).

Besides these modifications, a feasibility check for pa-
rameters 0 is performed before implementing C';(6) and
conducting a motion experiment to evaluate the cost J
(indicated by J(-) in Algorithm 1). Since we presume
that a parametric model of the plant is not available,
we perform a data-based analysis of closed-loop stability
based on frequency response function (FRF) data of the
open-loop plant P (u — y, cf. Figure 1). Given the
controller parameters 8, we evaluate Cy;(6) for the same
frequency range as P, and combine the FRF data of the
two to draw the Nyquist plot of the open-loop system using
linear interpolation between data points. The net amount
of encirclements of the critical point is determined auto-
matically by evaluating the number of up- and downward
negative real axis crossings to the left of the critical point.
Similarly, the magnitude of the sensitivity function S is
computed on the basis of FRF data of C,(6) and P, and
linearly interpolated to check if (3) is satisfied. The new,
to-be-evaluated, parameters 6 are only marked as feasible
in case the closed-loop system with controller Cyy(0) is
concluded to be asymptotically stable (AS), and (3) is
satisfied, i.e., if @ € O. In case of infeasible 8, the controller
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Algorithm 1 Modified DIRECT algorithm

1: Input: Q = {0 = [91, .. .,Gne}T 10, €100,,0:;),i=1,...,n9},
cost function J, maximum number of function evalua-
tions N, maximum number of iterations M, error bound
ep, and € > 0

2: Output: optimal parameters 8* and corresponding value J*

3: procedure DIRECT(2, J, N, M, ey, €)

4: Let 61 be the center point of 2

5: Ji < J(61). Perform a motion experiment if 8; € O,

otherwise assign a penalty value J.

6: 1+ 0,k+1,J«+ J1

7 while J* > e, and k < N and | < M do

8: Identify set S of all indices m € [1, ..., k| for which
3L > 0 such that

JIm — Ldpy, < J; — Ld;, Vi=1,...,k

Im — Ldp, < J* —e|J*|.
Here d,;, denotes the longest side length of the mth hyper-
rectangle, and £ > 0 is small.

9: for every m € S do

10: Let g be the direction along which the mth hyper-
rectangle has side length d,,. In case the mth hyper-
rectangle has multiple sides of length d;,, ¢ is the
direction with the least number of total subdivisions.

11: Let 0., be the center point of the mth hyper-
rectangle, and o4 the unit vector along q.

12: 6« dm/3

13: Jit1 < J(Om — doq) > See line 5

14: Jkt2  J(Om + 604) > See line 5

15: Trisect the mth hyper-rectangle along q.

16: k<« k+2

17: end for

18: L 1+1, J* < min;—y . J;

19: Set 6* to be the parameters associated with J*.

20: end while
21: end procedure

Cfu(0) is not implemented, and no motion experiment is
performed for this (unstable and /or non-robust) controller
setting. Instead, a (high) surrogate penalty function value
J is assigned to .J according to the constraint handling ap-
proach proposed by Gablonsky (2001, Section 3.4.3). This
modification essentially turns the constrained optimization
problem (10) into the unconstrained problem

J*(1) =min Ie(0)J(1,0) + (1 — Ie(0))J (12)
with indicator function Ig(@) equal to one if 8 € O,

and zero otherwise, ensuring closed-loop stability and its
robustness during iterations of the DIRECT algorithm.

Given J*(7) for a fixed value of 7, and a desired tolerance
rtol we update T with a bisection search aimed at solving
the upper-level optimization problem (8)-(9). This bisec-
tion search repeatedly updates the lower and upper bound
of the search interval, denoted by 7 and 7 respectively,
based on satisfaction of (9), as illustrated in Algorithm 2.
The (initial) values of 7, 7, and e, follow from the appli-
cation context. The combination of the closed-loop system
(1)-(2) and the modified DIRECT algorithm (Algorithm 1)
forms a sampled-data ESC loop in the spirit of Khong et al.
(2013a,b). Addition of the bisection search (Algorithm 2)
to this sampled-data ESC loop results in the cascaded ESC
loop illustrated in Figure 4. This cascaded ESC loop only
requires specification of lower and upper bounds on each
of the optimization parameters 7 and 60;,7 = 1,...,ng,
and the tuning of a single parameter ¢ of the DIRECT
algorithm (whose value does not have a large influence
on algorithm performance (Jones et al., 1993)). By only
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Algorithm 2 Bisection search

1: Inputs: initial lower bound 7, initial upper bound 7,
tolerance 7t°!, and error bound e

2: Output: found optimum 7*
3: procedure BISECT(7T, 7, 74, ep)
4 while |7 — 7| > 7t°! do
5: T (14+7)/2
6: Solve (10) > See Algorithm 1
7 if J*(7) < ep then
8 T+ T
9: else
10: T4 T
11: end if
12: end while
13: T* = (14 7)/2
14: end procedure
| T dete Pand On0),
‘ e ’ J*
Closed-loop system | " Modified DIRECT Bisection search
(1)-(2) 0 (Algorithm 1) r (Algorithm 2)

777777 |

Fig. 4. The cascaded ESC loop. Arrows indicate data ex-
change at function evaluations (dash dotted), motion
experiments (dashed), or bisection updates (dotted).

requiring lower and upper bounds, the algorithm is easier
to tune than standard gradient-based ESC methods, which
typically require tuning of multiple parameters (e.g, the
dither amplitude, waiting time, optimizer gain, and initial
parameter values). Furthermore, the DIRECT algorithm
allows global optimization, whereas gradient-based ESC
methods are local optimizers (Tan et al., 2010).

4. INDUSTRIAL CASE STUDY

In this section, we validate the effectiveness of the pro-
posed cascaded ESC approach in a simulation study. As a
use case we consider the plant P to be the z-stage of a wire
bonder system. A wire bonder typically consists of a mo-
tion stage (Figure 5) that moves along its -, y-, and z-axes
to make wired interconnections between a semiconductor
die and its packaging. To ensure satisfactory quality of
the finished integrated circuit, the servo error should not
violate a given bound e, at the moment a bond is made.
Furthermore, to ensure high system throughput, the servo
error should converge to within this bound as quickly as
possible, i.e., the settling time ¢ should be minimized. The
bound ey, is typically in the (sub-)micrometer range, while
the settling time ¢4 should typically be in the order of mil-
liseconds. Our goal is to minimize ¢; by appropriate tuning
of the parameters of a fixed feedback controller structure
designed based on engineering insight. Here, we opt for a
proportional-integral-derivative (PID) controller structure
combined with an additional low-pass filter, whose transfer
function is given by C(s;0) = 27 f (kas®+kps+k;)/(s(s+
27 f)). The proportional gain k,, integral gain k;, deriva-
tive gain kg, and low-pass filter cut-off frequency f serve
as the optimization variables which we aim optimize using
the proposed ESC approach, i.e., @ := [k, k; kq f]". The
reference motion for the wire bonder is given by seventh-
order polynomial trajectories with idle periods of several
milliseconds in-between to allow for the servo error to
converge, as shown in Figure 2. The trajectories consist of
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Fig. 5. Isolated wire bonder motion stage.

displacements of several millimeters along the z-axis and
back. To ensure sufficient robustness margin, we choose
W, (jw) = 1/(201og,((6)), Yw. We use the MATLAB im-
plementation of the DIRECT algorithm from Finkel (2004)
containing the constraint handling approach described by
Gablonsky (2001, Section 3.4.3) as a basis, and adapt it to
include the modifications described in Section 3.

We perform numerical validation of the cascaded ESC
approach using a (confidential) multibody model of the
motion stage shown in Figure 5 used by the manufac-
turer for initial validation of novel control techniques. In
this model, interconnections between the motion axes are
modeled using springs and dampers, and nonlinear effects
of rotations, and time delays in the control loop of the
real system are included. We perform the feasibility check
described in Section 3 for numerous random parameter
combinations, to get a rough a priori estimate of ®, and
choose 0, and 6;, i = 1,...,ng, such that this estimate
is contained in ). Furthermore, we choose the lower and
upper bounds on 7 based on engineering insight, and set
the desired tolerance 7t equal to the sample time of the
real motion stage. We compare the performance of the
optimized controller to controllers designed by experienced
control engineers using standard loop-shaping (LS) tech-
niques, and a frequency-based auto-tuner (FBA) that aims
to achieve the largest amount of low-frequency error sup-
pression given an upper bound on the sensitivity function
designed by the engineer. Both controllers are tuned based
on the same FRF data as those used in the feasibility
check described in Section 3. Simulation parameter values
and results? are summarized in Table 1. Comparing the
servo error obtained with the controller tuned using the
ESC approach to those obtained with the LS and FBA
controllers shows significant reductions in ¢, of 39.4%
and 40.6%, respectively, as illustrated by Figure 6. With
the number of simulated motion experiments reported in
Table 1, and each reference motion lasting in the order of
tens of milliseconds, the total optimization time is only in
the order of 15 minutes, showing feasibility of the proposed
approach in practice.

5. CONCLUSION

We developed an approach for data-driven optimization
of transient system performance based on constrained
global extremum-seeking control. The approach minimizes

2 Results are normalized for confidentiality reasons.
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6. Simulated servo error e(t) for the controllers ob-
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and t,, +ts (colored) are indicated by vertical dashed
lines. For ESC, t; is significantly reduced compared
to LS (39.4%) and FBA (40.6%).

Fig.

Table 1. Simulation parameters and results.

ESC LS FBA
Normalized settling time | 0.366 0.604 0.616
Max. number of function evaluations per iteration N 5,000
Max. number of iterations M 5,000
Number of bisection search iterations used 8
Total number of function evaluations used 28,220
of which required simulation of motion experiments 3,549

the settling time in point-to-point motions by automated
tuning of feedback controller parameters using bisection
search and the DIRECT optimization algorithm. Closed-
loop stability and its robustness are guaranteed using
constraints based solely on non-parametric frequency-
response function measurements. In an industrial case
study, the effectiveness of the approach is validated in
simulation by applying it to settling time optimization
in an industrial wire bonder system. The controller op-
timized using the proposed approach achieves significant
performance increases of 39.4% and 40.6%, respectively,
compared to time-consuming dedicated controller tun-
ing by experienced control engineers using manual loop-
shaping techniques and a frequency-based auto-tuner used
in industry. Future research will focus on experimental
validation of the approach on a real wire bonder, and
extending it to minimize position-dependent performance
differences to ensure uniform performance.
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