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In many industrial applications imbalance is a major cause for unwanted vibrations. One way
to compensate for an unknown imbalance is the implementation of an automatic ball balancer.
Oil-lubricated automatic ball balancers are applied in hand-held tools and washers. However, in
applications such as optical drives fluid lubrication is highly undesirable since it may destroy the
optical system upon leakage. Therefore, in this paper, the balancing performance of an auto-
matic ball balancer without fluid lubrication is investigated. The absence of fluid lubrication
gives rise to dry friction phenomena which cause the existence of equilibrium sets of the balls in
the automatic ball balancer. A model of the system with dry friction, modeled by a set-valued
force law, is built based on dedicated experiments. The resulting equilibrium sets and their
dependency on system parameters are studied and the consequences for the balancing perfor-
mance is assessed. Based on these results, it can be concluded that in parts of such equilibrium
sets the balancing performance deteriorates when compared to the system without automatic
ball balancer; in other words, the balancing performance is endangered by the presence of dry
friction. This conclusion is supported by both numerical and experimental results.

Keywords : Optical storage drives; discontinuous dynamics; equilibrium sets; Coulomb friction.

1. Introduction

In machines with rotating components, imbalance is
one of the main engineering problems since it causes
unwanted vibrations. One solution to this problem
is the application of an automatic ball balancer
(ABB). In principle, an ABB is capable of coun-
teracting the imbalance, even when the imbalance
is a priori unknown. An example of an industrial
application in which an ABB is implemented is
a DVD-drive, see Fig. 1. In this figure, part of a
DVD-drive is shown, with the optical lens and the
ABB. In such a system, unwanted vibrations due
to imbalances will seriously deteriorate the tracking
performance of the optical system. The imbalance is

present on the DVD disc due to production imper-
fections. Both the size and location of this imbal-
ance are unknown and can vary per disc. The ABB
consists of a rim with a number of balls, which
will — in a certain range of rotating frequencies
of the motor — be positioned such that the imbal-
ance is counteracted. In this way, the ABB can, to
a certain extent, adapt automatically to counteract
the unknown imbalance. The study of the dynamic
behavior of automatic ball balancers was initialized
by Thearle [1950]. Other systems in which auto-
matic ball balancers are used are washing machines
and hand-held tools [Rajalingham & Rakheja, 1998;
Lindell, 1996]. In the latter applications, often a
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Fig. 1. Example of an Automatic Ball Balancer, mounted
on a DVD-ROM drive.

viscous fluid is present in the ABB, ensuring that
only viscous friction forces between the balls and
the rim are present. The resulting dissipative forces
acting on the balls are necessary to ensure the sta-
bility of the balancing positions of the balls. These
balancing positions of the balls are equilibria in
which the balls stand still with respect to the rim
of the ABB. In literature, the vast majority of the
research on ABBs has focussed on fluid-lubricated
ABBs, see for example [Lee, 1995; Lee & Moorhem,
1996; Chung & Ro, 1999; Chung & Jang, 2003;
Gorbenko, 2003]. However, in a DVD-drive the use
of fluids is highly undesirable, since leakage would
destroy the optical system. Without fluid, the dry
friction between rim and balls induces the dissipa-
tive forces necessary to stabilize the balancing posi-
tions of the balls. In [Huang et al., 2002a, 2002b],
an ABB for optic disc drives without damping fluid
and one ball is studied. Herein, the negative effect of
a rolling friction force on the balancing performance
was indicated. As will be shown in this paper, the
balancing performance of the ABB can be seri-
ously affected by the stiction behavior related to
the dry friction present between the rim and the
balls, because this stiction phenomenon leads to
the existence of equilibrium sets. In other words,
the balls can come to a standstill in a range of
positions, some of which do not necessarily lead to
balancing.

So, the main research question of this paper is
the assessment of the performance of an automatic
ball balancer with dry friction. More specifically, we

aim to assess the influence of the dry friction on the
balancing performance.

In Sec. 2, the experimental setup is introduced.
A model of this setup will be presented in Sec. 3,
where a set-valued force law is used to model the
friction in order to account for the stiction phe-
nomenon mentioned above. Section 4 is devoted to
the working principle of the ABB and explains how
this is endangered by the presence of dry friction. In
Sec. 5, the equilibrium sets of the model are deter-
mined and their dependency on system parameters,
such as the friction coefficient and the rotational
speed of the ABB, is investigated. The consequences
regarding the balancing performance of the ABB
are discussed and a confrontation with experimen-
tal results is presented. In Sec. 6, the static fric-
tion parameter of the friction model is identified by
means of dedicated experiments for a specific choice
of the material types of the rim of the ABB and the
balls. Moreover, the consequences in terms of the
equilibrium sets and the resulting balancing perfor-
mance of the ABB for this specific friction situation
are investigated. Finally, conclusions are presented
in Sec. 7.

2. The Experimental Setup

The experimental setup incorporating an ABB in a
CDROM system is depicted in Fig. 2. In this exper-
imental system only two balls are present, see also
Fig. 3. The ABB is mounted on a table that is sus-
pended by four wits. These supporting wits rep-
resent the suspension of the motor and ABB in a
real CDROM player. Moreover, at the bottom of
the table a rod is attached, which is submerged
into a vessel with oil. The extent to which the rod
is submerged and the type of fluid will determine
the viscous damping forces invoked at the suspen-
sion of the table. The motor that drives the ABB is
attached to the table. The ABB is rigidly attached
to the rotor part of the motor via the motor shaft,
which drives the CD with a known angular veloc-
ity. Moreover, a CD disc is attached rigidly to
the motor. At discrete locations on the disc, small
screws can be mounted to the disc. In this way,
imbalances of different magnitude and location can
be added in a well-defined and reproducible way.
The ABB contains only two balls, since this sig-
nificantly simplifies the modeling and analysis of
this system, but still allows for the illustration of
the effect of dry friction on the performance of the
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Fig. 2. Picture of the experimental setup.

Fig. 3. ABB with two balls.

system. For an analysis of the dynamic behavior of
an oil-filled automatic balancer with more than two
balls see [Lee & Moorhem, 1996].

The measurement equipment used in this setup
consists of two accelerometers used to measure the
accelerations of the table in the horizontal plane
and a rotational encoder in the motor, which mea-
sures the angular displacement of the motor (disc
and ABB). Moreover, the angular positions of the
two balls (and the imbalance) are measured using
an optical sensor and a high-speed camera, see
Sec. 6.

3. Model of the ABB

A schematic representation of the experimental
setup is depicted in Fig. 4. Herein, it is assumed
that all movements are in the horizontal plane
and that the table does not rotate (see [Bövik &
Högfors, 1986] for a study on an ABB in a nonpla-
nar rotor). The four wits supporting the table and
the rod submerged in oil can be modeled by two lin-
ear springs and dampers, positioned perpendicular
to each other (stiffness parameters k1 and k2 and
damping parameters b1 and b2), attached on one
end to the table and on the other end to inertial
space. In this paper, we will only consider the case
of an isotropic suspension of the table: k := k1 = k2

and b := b1 = b2. See [Wettergren, 2001] for a
study of the dynamic behavior of an ABB with
an anisotropic suspension. In Fig. 4, point A is a
fixed point in space, which coincides with point B
when the system is at rest. Recall that the motor
drives the ABB and the disc with a known angular
velocity Ω(t). From now on we will consider only
constant driving velocities Ω, since we are mainly
interested in the steady-state behavior (the equilib-
rium set) of the system. The total mass of the table,
motor and ABB (without the balls) and the CD
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Fig. 4. Schematic representation of the experimental setup with the Automatic Ball Balancer.

(without the imbalance) is called MT . The imbal-
ance is modeled as a point-mass in point C with
mass mI . The distance between the geometrical cen-
ter of the ABB (point B) to the imbalance (point
C) is called e. The ABB contains two identical balls,
each having mass mi, i = 1, 2. These balls are free to
move along the rim of the ABB. It is assumed that,
under the influence of centrifugal forces, the balls
are always in contact with the rim. The distance
between the geometrical center of the ABB to the
center of ball i is called li. Between the balls and the
rim, friction (rolling friction) is present, resulting in
friction forces in tangential direction. It should be
noted that in the current model contact between
the balls is not modeled.

A model of the experimental system is derived
and can be formulated in terms of the generalized
coordinates q = [x y β1 β2 l1 l2]T , see Fig. 4.
Herein, x and y are defined by rB/A = [x y]e1,

where rB/A is the position vector of point B with
respect to point A and e1 = [e1

1 e1
2]

T . Moreover,
the rotating body-fixed frame e1 is related to the
inertial frame e0 by:

e1 =

[
cos(θ(t)) sin(θ(t))

−sin(θ(t)) cos(θ(t))

]
e0, (1)

in which θ(t) = Ω t+θ(0) expresses the angular dis-
placement of the motor. The coordinates li, i = 1, 2,
define the distance between the center of ball i and
point B and βi, i = 1, 2, define the angular position
of ball i relative to the imbalance at point C. Using
a Lagrangian approach, the equations of motion are
derived:

M(q)q̈ − h
(
q, q̇

)
= W T λT + WNλN , (2)

g
N

(q) = 0, (3)

where

M(q) =




M 0 −m1l1 sin β1 −m2l2 sin β2 m1 cos β1 m2 cos β2

0 M m1l1 cos β1 m2l2 cos β2 m1 sinβ1 m2 sin β2

−m1l1 sin β1 m1l1 cos β1 m1l
2
1 + J1

(
2l1
d1

)2

0 0 0

−m2l2 sin β2 m2l2 cos β2 0 m2l
2
2 + J2

(
2l2
d2

)2

0 0

m1 cos β1 m1 sin β1 0 0 m1 0

m2 cos β2 m2 sin β2 0 0 0 m2




,
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W T =




0 0
0 0
1 0
0 1
0 0
0 0



, WN =




0 0
0 0
0 0
0 0

−1 0
0 −1



, g

N
(q) =

[−l1 + L

−l2 + L

]
,

h(q, q̇) = [hx hy hβ1 hβ2 hl1 hl2 ]
T , with:

hx = −
{
− 2Mωẏ − Mω2x − mIeω

2

−
(
m1l1 cos β1(β̇1 + ω)2 + m2l2 cos β2(β̇2 + ω)2

)
+ kx + b(ẋ − ωy)

}
,

hy = −
{

2Mωẋ − Mω2y

−
(
m1l1 sin β1(β̇1 + ω)2 + m2l2 sin β2(β̇2 + ω)2

)
+ ky + b(ẏ + ωx)

}
,

hβ1 = −
{

2m1l1ωẋ cos β1 + 2m1l1ωẏ sin β1 + m1l1ω
2x sin β1 − m1l1ω

2y cos β1

}
,

hβ2 = −
{

2m2l2ωẋ cos β2 + 2m2l2ωẏ sin β2 + m2l2ω
2x sin β2 − m2l2ω

2y cos β2

}
,

hl1 = −
{

2m1ω sin β1ẋ − 2m1ω cos β1ẏ − m1ω
2 cos β1x − m1ω

2 sin β1y

−m1l1(β̇1 + ω)2 − 2J1

d1

(
2l1
d1

β̇1 − ω

)
β̇1

}
,

hl2 = −
{

2m2ω sin β2ẋ − 2m2ω cos β2ẏ − m2ω
2 cos β2x − m2ω

2 sin β2y

−m2l2(β̇2 + ω)2 − 2J2

d2

(
2l2
d2

β̇2 − ω

)
β̇2

}
.

Herein, M = MT + mI + m1 + m2, di is the diame-
ter of ball i and Ji is the moment of inertia of ball i
about an axis perpendicular to the plane of the ABB
and through the center of mass of ball i. Moreover,
λN = [FN1 FN2 ]

T is a column of Lagrange multi-
pliers related to the normal forces between the balls
and the rim of the automatic ball balancer (FNi is
the normal force between ball i and the rim) and
λT = [FT1 FT2 ]

T is a column of Lagrange multipli-
ers related to the friction forces between the balls
and the rim of the auto-balancing unit (FTi is the
friction force between ball i and the rim). It should
be noted that the constraint forces in λN ensure the
satisfaction of the holonomic, bilateral constraints
expressed by (3): li = L, i = 1, 2, where L is a

constant. These constraints express that the balls
stay in touch with the rim at all times.

Moreover, the friction forces are modeled using
a set-valued force law in order to account for
the stiction behavior which is observed in the
experiments:

FTi ∈ −µi|FNi | Sign(β̇i ), i = 1, 2. (4)

Herein, Sign(x) is the set-valued sign-function

Sign(x) =




{−1} x < 0

[−1, 1] x = 0

{1} x > 0

(5)

and µi is the friction coefficient related to the
contact between ball i and the rim. It should
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Table 1. Estimated parameter values.

Parameter Value Parameter Value

MT 3.24 · 10−1 [kg] b 1.28 [N s/m]

k 1.07 · 104 [N/m] L 1.15 · 10−2 [m]

m1 1.4 · 10−4 [kg] m2 1.4 · 10−4 [kg]

d1 3.0 · 10−3 [m] d2 3.0 · 10−3 [m]

mI 5.6 · 10−4 [kg] e 3.7 · 10−3 [m]

be noted that now the model, described by (2)
and (4) is formulated as a differential inclusion.
Note that (4) expresses a Coulomb friction model.
At this point, more complex friction modeling for
nonzero velocities is not pursued since the main
focus of this paper is on the analysis of the equi-
librium sets of the system. Namely, one should
realize that these equilibrium sets are only (as far as
the friction model is concerned) determined by the
static friction level and not by the friction model
for nonzero velocities.

Dedicated experiments were performed to esti-
mate all the parameters in the model, except the
friction coefficients; the estimation of the friction
coefficients will be discussed in Sec. 6. Table 1 shows
the estimated parameter values.

The masses mi of balls and mI of the imbal-
ances, the diameters of the balls di and the unbal-
ance location (characterized by e) are measured
directly. Moreover, the parameters MT , k and b are
estimated based on a measured frequency response
function between a force acting on the table (includ-
ing CD, imbalance and ABB) and the acceleration
of the table. It should be noted that in spite of
the fact that it is possible to change the imbal-
ance present on the disc by replacing the screws
in the CD, the values of mI and e are kept constant
throughout the work presented in this paper.

4. Working Principle of the ABB

Before the dynamics of the system with dry friction
is investigated in the next sections, in this section
the working principle of the ABB is illuminated.
The working principle of an ABB can be explained
using Fig. 5. Herein, the total imbalance, which is
the resultant of the imbalances due to mI in C and
the balls, is located in point Γ. Note that, when the
movements of the balls are neglected, this model is
identical to the Jeffcott rotor model [Childs, 1993].
It is known from the Jeffcott model that, when the

Fig. 5. Working principle of the ABB.

rotor has a constant speed Ω, it experiences a syn-
chronous — at the same rotational velocity as the
rotational velocity Ω — motion called whirl in a
circular orbit due to the imbalance in Γ. The ABB
exhibits the same type of behavior: in Fig. 5, the
center of the circular orbit is point A, which is fixed
to inertial space. Points A and B coincide when the
ABB is at rest (Ω = 0) or when the system is com-
pletely balanced.

The behavior of the balls can now be explained
by investigation of the interplay of forces acting on
the balls. Firstly, the centrifugal “force” is directed
along the line from A to mi. The word “force” is
put between quotation marks, because it is of course
only an apparent force, experienced by a mass when
it moves along a curved line, due to inertia effects.
Secondly, a normal force (constraint force due to
constraints (3)) acts on the ball, exerted by the rim
of the ABB. The normal force is directed locally
perpendicular to the contact surface, so towards
point B. The resultant of these two forces is a tan-
gential force, which excites the balls. Therefore, this
resultant force will be called the driving force.

Now, let us explain when the balls are driven
to such positions that result in balancing of the sys-
tem. The Jeffcott model provides the clue. Namely,
when the rotational speed of the system is below
the so-called critical speed of the system, the rotor
is in phase with the imbalance vector rΓ/B , point-
ing from B to Γ, while above the critical speed, the
rotor is 180◦ out of phase with rΓ/B , see Figs. 6
and 7, respectively. Therefore, below the critical



Performance of an Automatic Ball Balancer with Dry Friction 71

Fig. 6. Interplay of forces; below critical speed.

Fig. 7. Interplay of forces; above critical speed.

speed rB/A · rΓ/B > 0, indicating that the angle
between both vectors is smaller than π/2, whereas
above the critical speed rB/A · rΓ/B < 0, indicat-
ing that the angle between these vectors is larger
than π/2. It should be noted that, when the ABB
is isotropically suspended by linear springs and
dampers, the critical speed equals the value of both
(equal) damped eigenfrequencies ωd = ωn

√
1 − ζ2

with ωn =
√

k/M and ζ = b/2
√

kM ; given the
parameters in Table 1, ωd = 181.5 rad/s.

The investigation of the interplay of forces act-
ing on the balls, both below and above the critical

speed reveals a remarkable effect. Namely, Fig. 6
shows that the driving force is directed towards
the imbalance in Γ, thus pushing the balls towards
the imbalance and thus enlarging the imbalance.
In Fig. 7, however, the driving force points away
from the imbalance Γ, which results in the balls
rolling in such a direction that the resulting imbal-
ance decreases. When the system is completely bal-
anced, points A, B and Γ coincide, the centrifugal
and normal forces point in exact opposite direction,
cancelling each other. Consequently, the driving
force is zero in the balanced situation. This reflects
the steady-state solution (equilibrium), for which
the system is balanced.

For reasons of simplicity, dissipative effects in
the ABB were omitted in the previous analysis of
the working principle of the ABB. Nevertheless,
these dissipative effects are crucial for the function-
ality of the ABB, as it is needed that the kinetic
energy of the balls is absorbed. This energy dis-
sipation is necessary to obtain asymptotic stabil-
ity of the ball positions that balance the system
[Lee, 1995; Lee & Moorhem, 1996]. In the ABBs dis-
cussed in [Lee, 1995] and [Lee & Moorhem, 1996],
viscous damping is responsible for the energy dissi-
pation. Such damping can be introduced by filling
the ABB with oil or some other viscous fluid. These
viscous damping forces are zero in the equilibrium
positions and thus the system has (multiple) iso-
lated equilibria, corresponding to a balancing con-
figuration and configurations where the imbalance
is not balanced or even increased. Below the critical
speed, the balancing equilibrium point is unstable,
whereas a nonbalancing equilibrium point is locally
asymptotically stable; above the critical speed, the
balancing equilibrium point is locally asymptoti-
cally stable, whereas the nonbalancing equilibria are
unstable. Due to the continuous and differentiable
nature of the vectorfield around these equilibria, lin-
earization can provide such (local) stability results.

In the case of the ABB studied in this paper,
the dry friction forces between the rim and the balls
represent the necessary dissipative forces. However,
the essential property of dry friction, which distin-
guishes it from viscous friction (due to oil), is that it
can produce nonzero forces at zero relative velocity
between the balls and the ABB. Consequently, the
dry friction force can counteract and (exactly) can-
cel a nonzero driving force, at zero relative velocity.
This situation is schematically depicted in Fig. 8,
where the shaded areas express possible equilibrium
positions of the two balls, which now constitute
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Fig. 8. Interplay of forces with dry friction.

equilibrium sets. In these sets, the friction force
exactly cancels the driving force thus ensuring equi-
librium. This adaptation of the friction force to
the external forces (driving force) is allowed by

the set-valued friction law (4); however, the friction
force can only cancel forces with an absolute value
smaller than |µiFNi |, i = 1, 2. This fact defines
the boundary of the equilibrium set. It should be
noted that FNi , i = 1, 2, depends on the general-
ized displacements and the generalized velocities.
In the next section, the equilibrium sets are studied
in more detail.

5. Equilibrium Sets

In this section, the equilibrium sets of the model (2),
(3) will be computed and the dependency of these
equilibrium sets on the friction parameter µ and the
rotational speed Ω will be investigated. More infor-
mation on the (isolated) equilibria for the system
with viscous friction instead of dry friction and the
related (local) stability properties can be found in
[Van den Heuvel, 2002].

The equilibrium set E can be found by setting
q̈ = 0 and q̇ = 0 in (2), (3). This yields

E =
{
(q, q̇) ∈ R

12 | q̇ = 0 ∧ q ∈ S}
, (6)

where

S =

{
q ∈ R

6 | l1 = L ∧ l2 = L ∧

x =

bΩ
Mω2

n

(m1 sin(β1) + m2 sin(β2)) −
((

Ω
ωn

)2

− 1
) (mIe

L
+ m1 cos(β1) + m2 cos(β2)

)
M

L

((
Ω
ωn

− ωn

Ω

)2

+
(

b

Mωn

)2 ) ∧

y =
− bΩ

Mω2
n

(mIe

L
+ m1 cos(β1) + m2 cos(β2)

)
−

((
Ω
ωn

)2

− 1
)

(m1 sin(β1) + m2 sin(β2))

M

L

((
Ω
ωn

− ωn

Ω

)2

+
(

b

Mωn

)2 ) ∧

|x sin(βi) − y cos(βi) | ≤ µi (x cos(βi) + y sin(βi) + L) , i = 1, 2

}
. (7)

In the sequel, the dependency of the equilib-
rium set, and the consequences in terms of the
balancing performance, on two system parameters
will be investigated: namely, the friction param-
eter µ and the rotational speed Ω of the ABB.
The friction coefficient is varied to investigate the
influence of friction on the magnitude of the equi-
librium set. It should be noted that, on the experi-
mental setup, different types of material for both
the rim of the ABB and the balls are available:

polycarbonate or steel rims and steel, tungsten or
brass balls. Each combination of materials will give
rise to a different contact situation and thus to dif-
ferent frictional behavior. Previous experiments, see
[Van den Heuvel, 2002], showed that the dynamic
friction coefficient (quotient between friction force
and normal force for nonzero relative velocities) lies
in the range [0.001, 0.01] for these different material
types. Obviously, the dynamic friction may differ



Performance of an Automatic Ball Balancer with Dry Friction 73

from the static friction level, but here we merely
aim to indicate that the use of different materials
gives rise to different friction situations, which jus-
tifies the study of the dependency of the behavior of
the ABB on the friction coefficient. The rotational
velocity is varied to study the effect of this param-
eter on the equilibrium set and thus on the bal-
ancing performance. The resulting knowledge may
prove useful when designing startup-profiles for the
optical disc drive incorporating the ABB.

Before we discuss these dependencies, let us
first show, in Fig. 9, the equilibrium set for a specific
parameter setting: µ1 = µ2 = 2.75 × 10−3 and
Ω = 216.4 rad/s; this angular velocity is higher
than the damped eigenfrequency ωd = 181.8 rad/s,
which ensures that the balancing equilibrium is
locally asymptotically stable for a system with vis-
cous friction instead of dry friction. The results
in this figure are obtained numerically by defin-
ing a grid on the (β1, β2)-space, computing on
this grid the corresponding equilibrium values for
x and y using (7) and finally checking whether
the inequalities in (7) are satisfied. This figure
illustrates what the effect of dry friction (as opposed
to viscous friction) is on the possible equilibrium
positions of the balls. Herein, the colored area

represents the equilibrium set, which is clearly a
large portion of the (β1, β2)-space despite the fact
that the friction coefficient is very small. The white
region corresponds to positions of the balls which
are not equilibria. Moreover, the (isolated) equilib-
rium points of the system without dry friction (but
with viscous friction) are depicted, where the circles
(◦) represent unstable equilibria and the stars (∗)
represent locally asymptotically stable equilibria,
which correspond to the balancing equilibrium since
Ω > ωd. As was expected, these isolated equilib-
ria are contained in the equilibrium set for the sys-
tem with dry friction (see also schematic Fig. 8).
It should be noted that the figure has a symmetry
axis at β1 = β2 since balls 1 and 2 are identi-
cal. The figure is a contour-plot where the colors
indicate the magnitude of a =

√
x2 + y2, which

is the amplitude of the whirling motion which the
ABB will perform when the balls are in a spe-
cific equilibrium position. The yellow contour line
in the figure is a contour line for a = 2.15 ×
10−5 m which is the amplitude of the whirling
motion when no balls would be present in the
ABB; in other words without ABB. Clearly, in
the balancing equilibrium points of the system
without dry friction (the white stars) a = 0m.

Fig. 9. Equilibrium set for Ω = 216.4 rad/s, µ1 = µ2 = 0.00275.
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Fig. 10. Vibration amplitudes on the equilibrium set for Ω = 216.4 rad/s, µ1 = µ2 = 0.00275.

In Fig. 10, the relation between the equilibrium
position and the resulting amplitude a of the vibra-
tion is depicted in a three-dimensional picture for
the same parameter values. Herein, the green lines
span the plane a = 2.15 × 10−5 m, which again
indicates the resulting vibration level without the
ABB. The two minima of this plot exactly coin-
cide with the balancing equilibria of the system
without dry friction (a = 0m). Figures 9 and 10
clearly show that there exists a large part of the
equilibrium set where the application of the ABB
leads to a deterioration of the balancing perfor-
mance when compared to a situation without ABB
(a = 2.15 × 10−5 m).

Figure 11 shows the dependency of the equi-
librium set with respect to the friction coeffi-
cient µ. All equilibrium sets are determined for
an angular velocity of Ω = 216.4 rad/s. For
a small friction coefficient, the equilibrium set
consists of small sets around the equilibrium
points of the system without dry friction, see also
Fig. 8. As the friction coefficient is increased the
equilibrium set grows until it covers the entire
(β1, β2)-space for still a small value for the
friction coefficient: µ =3.5 × 10−3. Clearly, only
for very small friction coefficients (µ = O(10−4))
the equilibrium set shrinks towards the isolated

equilibria of the system without friction. So, even
for reasonable small friction coefficients the equilib-
rium set will be so large that a deterioration of the
balancing behavior when compared to the system
without ABB can occur (a > 2.15 × 10−5 m). How-
ever, it still remains an open question which parts
of the equilibrium set are (asymptotically) stable
or unstable or which parts are attractive or not. In
other words, at this point we do not know a priori
to which parts (of the equilibrium set) the balls are
likely to converge. The answer to that question is
ultimately needed to draw final conclusions on the
effect of dry friction on the balancing performance
of the ABB. In Sec. 6, the static friction coefficient
for an ABB with a polycarbonate rim and brass
balls is determined experimentally, the correspond-
ing equilibrium set is computed and the implica-
tions for the balancing performance are discussed.

Yet another interesting perspective is obtained
by varying the angular velocity Ω of the ABB for
fixed friction coefficient µ = 2.75×10−3, see Fig. 12.
This figure shows that the equilibrium set strongly
depends on the angular velocity.1 More specifi-
cally, for low Ω the equilibrium set is large and
the stable equilibrium point for the system with-
out dry friction is an equilibrium in which both
balls lie close to the imbalance thus enhancing it

1It should be noted that the scales of the colorbars in the pictures in Fig. 12 differ from each other.
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Fig. 11. Equilibrium set for different values of the friction coefficient µ (Ω = 216.4 rad/s).
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Fig. 12. Equilibrium set for different angular velocities Ω (µ = 2.75 × 10−3 and ωd = 181.8 rad/s).
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(the latter holds for both Ω = 150 rad/s and
Ω = 170 rad/s). When Ω is near the damped eigen-
frequency ωd the equilibrium set shrinks because
near resonance relatively high vibrations are caused
by the remaining imbalance. Consequently, in
Fig. 8, the distance between the points A and B will
become large. As a consequence, the angle between
a line connecting point A and mi and a line con-
necting point B and mi, i = 1, 2, will become larger.
This results in a larger tangential component of the
centrifugal force (and thus in a larger driving force).
The normal force (equal to radial component of cen-
trifugal force) will decrease, resulting in a smaller
friction force. As a result of this fact, at more posi-
tions of the balls the driving force will exceed the
static friction level, thus decreasing the equilibrium
set, see Fig. 12 for Ω = 179 rad/s and Ω = 185 rad/s.
It should be noted that, for the system without dry
friction, for Ω = 179 rad/s no stable equilibrium
point exists and that for Ω > ωd the balancing equi-
libria are stable. As Ω increases above ωd the equi-
librium set grows again since we are moving away
from resonance. This can be understood by the fol-
lowing reasoning. For angular velocities higher than
the resonance frequency, vibration amplitudes will
quickly drop and the driving force will diminish due
to the fact that the distance between the points
A and B will become smaller (see explanation
above). Furthermore, for higher angular velocities
the normal force will increase. Consequently, the
maximum friction force at zero relative velocity
increases, which enables equilibrium at higher
driving forces, see friction model (4). Therefore,

for such angular velocities the equilibrium set
becomes large (see Fig. 12 for Ω = 200 rad/s and
Ω = 220 rad/s) and the system is likely to attain an
equilibrium.

It should be noted that the operating speed of
the CDROM players in which the ABB is used can
be as high as 750− 1100 rad/s. At such angular
velocities the entire (β1, β2)-space is an equilibrium
set. So, once more we are forced to conclude that
an improvement of the balancing performance can-
not be guaranteed even for low friction levels. How-
ever, in practice (more than two balls are generally
involved) the balancing, i.e. the balls finding their
balancing equilibrium, occurs during startup rela-
tively close to (and just above) the resonance fre-
quency; thus at much lower angular velocities than
the operating speed. Therefore, the angular velocity
range studied here is of special interest.

To conclude this section, we will investigate
through numerical simulation whether the system
is more likely to settle in certain parts of the equi-
librium set than in other parts. The purpose of this
analysis is to assess the extent to which the balanc-
ing performance will indeed improve or deteriorate.
Moreover, we will assess the predictive quality of
the model by comparison of these numerical results
to experimental results. Furthermore, this compar-
ison will support the conclusions on the balancing
performance based on the model.

In Fig. 13 the equilibrium set, for Ω = 216.4
rad/s and µ = 2.75×10−4, is compared to numerical
simulation results. In order to obtain these results,
initial conditions in the set defined by

x(0) ∈ [−5.75 · 10−4, 5.75 · 10−4] [m], y(0) ∈ [−5.75 · 10−4, 5.75 · 10−4] [m]

β1(0) ∈ [0, 2π] [rad], β2(0) ∈ [0, 2π] [rad]

dx

dt
(0) ∈ [−0.0209, 0.0209] [m/s],

dy

dt
(0) ∈ [−0.0209, 0.0209] [m/s]

dβ1

dt
(0) ∈ [−182, 182] [rad/s],

dβ2

dt
(0) ∈ [−182, 182] [rad/s]

are used. These initial conditions are taken from a
uniform random distribution from this set in order
to ensure an even representation of all parts of
this set. Subsequently, the differential inclusion (2)
was solved numerically for every initial condition.
The resulting equilibrium points are depicted in
Fig. 13. The numerical procedure is based on an
event-driven integration method. The event-driven

integration method uses a standard ODE solver
for the integration of smooth phases of the system
dynamics (neither of the ball’s relative velocities β̇1

or β̇2 are zero). Moreover, once β̇1 or β̇2 equals zero,
the next hybrid mode of the system (stick or slip
for each of the balls) is determined. In this case,
there are only two discontinuities which allows for
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Fig. 13. Numerically obtained equilibrium positions (circles) compared to the modeled equilibrium set (Ω = 216.4 rad/s,
µ = 2.75 × 10−4).

an explicit solution of the combinatorial problem on
the discontinuities. However, in general such prob-
lems can be formulated as a LCP (Linear Comple-
mentarity Problem) and solved numerically in that
framework, see [Glocker, 2001]. Figure 13 shows
that the numerically obtained equilibria almost
completely cover the equilibrium set, which indi-
cates that at least part of the equilibrium set is
(locally) attractive. Moreover, it is important to
observe that indeed equilibrium points occur in
which the balancing is worse than without ABB,
which confirms that balancing performance deteri-
oration is not only a possibility but is also likely
to occur. Conclusive statements on the attractivity
or (Lyapunov) stability of the equilibrium set can-
not be made based on these numerical results. In
this respect, it should be noted that the stability
of equilibrium sets of discontinuous nonlinear sys-
tems is a relatively open field of research. In [Van de
Wouw & Leine, 2004], sufficient conditions for the
attractivity of equilibrium sets for linear mechan-
ical systems with Coulomb friction are presented.
However, the extension towards nonlinear systems
such as the automatic ball balancer is not trivial.

In Fig. 14, comparable experimental results are
shown. Experiments were performed, at Ω = 216.4,
for many different initial conditions. The resulting

equilibrium positions at which the balls came to rest
are depicted in this figure; again with the modeled
equilibrium set as a backdrop. This figure shows
that also in the experiments equilibrium positions of
the balls occur at which the balancing performance
is deteriorated compared to a situation without bal-
ancing. The resemblance of these experimental and
numerical results of Fig. 13 and the fact that the
experimental result seems to match well with the
equilibrium set of the model may tempt one to con-
clude that the value of the friction coefficient used in
the model matches the real friction coefficient very
well. However, careful inspection of these results
can only lead to the conclusion that the real fric-
tion coefficient is probably larger than 2.75× 10−4.
Namely, if the real friction coefficient would be
smaller, some of the experimentally obtained equi-
libria would lie outside the (modeled) equilibrium
set for this lower µ-value. This would induce a mis-
match between model and experiment.

In the next section, an experimental identi-
fication of the (static) friction coefficient is dis-
cussed and the corresponding modeled equilibrium
set is presented. Moreover, a comparison with the
experimental results is made and consequences
with respect to the balancing performance are
discussed.
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Fig. 14. Experimentally obtained equilibrium positions (squares) compared to the modeled equilibrium set (Ω = 216.4 rad/s).

6. Friction Identification and
Resulting Equilibrium Sets

In Sec. 6.1, we will identify the static friction level
by means of experiments for a specific combination
of material types of the ABB rim and the balls;
namely, a polycarbonate rim and brass balls. Sub-
sequently, the equilibrium set of the model with
the identified static friction level will be assessed in
Sec. 6.2. Moreover, the modeled equilibrium set will
be compared to experimentally obtained equilibria
and consequences for the balancing performance of
the system will be discussed in this section.

6.1. Friction identification
experiments

In the experiments, in which the static friction
level is identified, the table of the ABB is attached
rigidly to inertial space and only one ball is used.
Consequently, the only degree of freedom of the sys-
tem is represented by the rotation of the ball with
respect to the rim. The experiment follows the fol-
lowing protocol:

• first, the ABB is speeded up to a certain angu-
lar velocity. The angular velocity is kept constant

until the ball attains a fixed angular position rela-
tive to the ABB (the balls are sticking to the rim);

• secondly, an acceleration (or deceleration) profile
is prescribed to the ABB, such that after some
time the ball starts slipping (attains a nonzero
relative velocity with respect to the rim);

• the moment that the ball starts slipping is
detected and the angular acceleration (Ω̇slip) and
the angular velocity (Ωslip) are measured.

The moment that the ball starts slipping is detected
by measuring both the angular displacement of the
ABB and the ball using a high-speed camera, see
Fig. 15. Using these measurements, and a dynamic
model of the ABB with one ball, the friction force
FT and the normal force FN at the moment that
ball starts slipping can be computed by:

FT = −
(

mL − 2J
d

)
Ω̇slip, FN = mLΩ2

slip, (8)

where m is the mass of the ball, d the diameter of
the ball, J the moment of inertia of the ball about
its center of mass. Using (8), the friction coeffi-
cient µ can be estimated by µ = |FT |/FN , since
at the moment the ball starts slipping (stick-slip
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Fig. 15. Picture of the experimental setup with high-speed
camera.

transition) the friction force attains its maximum
value (for zero velocity). This experiment was
performed twelve times and a 95% confidence

interval for the friction coefficient was obtained:
0.024 < µ < 0.035 with a mean value of 0.03.
Clearly, this value for the friction is much higher
than the value used in the previous section based
on measurements of the dynamic friction level (for
nonzero relative velocities). This will result, as will
be shown, in an even larger equilibrium set.

6.2. Resulting equilibrium set

In Fig. 16, the equilibrium set for the estimated
friction coefficient µ = 0.03 and Ω = 216.4 rad/s is
shown. The equilibrium set now covers the entire
(β1, β2)-space; in other words the balls can come
to rest at any combination of angular positions
in the ABB. It should be noted that this holds
for any value of the friction coefficient taken from
the 95% confidence interval for the friction coef-
ficient. Clearly, in a large part of the equilibrium
set this balancing performance is worse than in
the case without ABB. Moreover, in this figure
the experimentally obtained equilibrium positions
at Ω = 216.4 rad/s are depicted. The compari-
son of these experimental results with the mod-
eled equilibrium set (see also Fig. 14) leads to
the conclusion that the equilibria obtained will not

Fig. 16. Equilibrium set for Ω = 216.4 rad/s and µ = 0.03 compared to experimentally obtained equilibrium positions
(squares).
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necessarily be distributed (evenly) over the equilib-
rium set. More specifically, there are regions of the
equilibrium set in which the system is more likely
to settle than in other regions. This raises questions
related to the stability and attractivity of equilib-
rium sets. Firstly, one can doubt whether it is sen-
sible to only argue about the stability/attractivity
of the set as a whole. Namely, the cause for the fact
that the equilibria (experimental) seem to cluster in
a specific part of the equilibrium set: can be firstly,
the fact that some regions of the equilibrium set
are more attractive than others (and the entire set
is attractive as a whole) or, secondly, only part of
the equilibrium is attractive and another part is not.
Consequently, based on these experimental results
and the numerical results of the previous section no
conclusive statements on the stability/attractivity
properties of the equilibrium set of the ABB sys-
tem can be made. Therefore, further research is
needed in this field, because knowledge on these
stability/attractivity properties is needed to inves-
tigate the exact consequences of the dry friction on
the balancing performance in more detail. In this
respect, it is important to note that the attrac-
tivity and stability properties of the equilibrium
set will be influenced by the friction behavior for
nonzero velocities, which may very well differ from
the Coulomb friction model.

7. Conclusions

The balancing performance of an automatic ball
balancer (ABB) with dry friction is investigated.
Hereto, a dynamic model of the experimental setup
is built and a set-valued Coulomb friction model is
used to model the rolling friction between the two
balls and the rim of the ABB to account for the
stiction phenomenon observed in the experimental
setup.

The working principle of the ABB, which leads
to balancing, is explained and the way in which the
balancing performance is compromised by the pres-
ence of dry friction is illuminated. The incorpora-
tion of the Coulomb friction model results in the
existence of an equilibrium set of ball positions in
the ABB. Within part of this equilibrium set the
balancing of the vibrations of the system deterio-
rates when compared to the system without ABB.
Consequently, due to the presence of dry friction the
balancing performance is seriously compromised.

Furthermore, the dependency of the equilib-
rium set with respect to the friction coefficient and
the angular velocity of the ABB is investigated. It
can be concluded that even for very low friction
coefficients the balancing behavior can deteriorate.
Moreover, only for rotational speeds near resonance
the equilibrium set is very small (comprising small
sets around the equilibrium points of the system
without friction). For rotational velocities outside
resonance the equilibrium set grows rapidly. The
fact that a wide range of ball positions correspond
to equilibria, including combinations of ball posi-
tions which induce performance decrease, is con-
firmed by experimental results.

Dedicated experiments were performed to iden-
tify the static friction coefficient for a specific com-
bination of the materials of the balls and the rim of
the ABB. The resulting equilibrium set is such that
all possible combinations of ball positions are pos-
sible equilibria. Consequently, for the experimental
setup an improvement of the balancing performance
compared to a situation without ABB cannot be
guaranteed.

In the simulations (and experiments), the ini-
tial conditions were chosen uniformly distributed
over a portion of state-space (of which the equi-
librium set is a subset), which leads to equilib-
ria which are spread out over the equilibrium set.
However, in practice an optical drive is speeded up
to its operating speed in a prescribed way. This so-
called startup-profile can certainly affect the ulti-
mately obtained equilibria (and thus the balancing
performance). A hint towards the design of such a
startup-profile can be recognized in Fig. 12. Since
the equilibrium set is small for rotational velocities
close to resonance, it may very well be desirable
to speed up to a rotational velocity just above the
resonance frequency (note that the balancing equi-
librium point of the system without dry friction is
stable for such a rotational velocity). Next, the sys-
tem can be allowed to settle close to the optimal
balancing equilibrium configuration and, finally, it
can be speeded up slowly to the operating speed,
ensuring that the balls remain (due to dry friction)
at the positions attained before.

Finally, the experimental results indicate that
some equilibrium points within the equilibrium set
seem to be “preferred” over other equilibrium
points. This fact raises questions regarding the
attractivity/stability properties of (parts of) the
equilibrium set. In [Van de Wouw & Leine, 2004],
this question is addressed for linear mechanical
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systems with Coulomb friction. The extension
towards nonlinear systems such as the ABB is an
important subject for further research, since knowl-
edge on these attractivity/stability properties will
allow us to judge the impact of dry friction on the
balancing performance in more detail.
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Bövik, P. & Högfors, C. [1986] “Autobalancing of
rotors,” J. Sound Vibr. 111, 429–440.

Childs, D. [1993] Turbomachinery Rotordynamics: Phe-
nomena, Modeling and Analysis (Wiley-Interscience,
Chichester).

Chung, J. & Ro, D. [1999] “Dynamics analysis of
an automatic dynamic balancer for rotating mecha-
nisms,” J. Sound Vibr. 228, 1035–1056.

Chung, J. & Jang, I. [2003] “Dynamic response and sta-
bility analysis of an automatic ball balancer for a felx-
ible rotor,” J. Sound Vibr. 259, 31–43.

Glocker, Ch. [2001] Set-Valued Force Laws, Dynamics
of Non-Smooth Systems, Lecture Notes in Applied
Mechanics, Vol. 1 (Springer-Verlag, Berlin).

Gorbenko, A. [2003] “On the stability of self-balancing of
a rotor with the help of balls,” Strength of Materials
35, 305–312.

Huang, W.-Y., Chao, C.-P., Kang, J.-R. & Sung, C.-K.
[2002a] “The application of ball-type balancers for
radial vibration reduction of high-speed optic drives,”
J. Sound Vibr. 250, 415–430.

Huang, W.-Y., Chao, C.-P. & Sung, C.-K. [2002b]
“An intelligent control scheme for enhancing perfor-
mance of the automatic ball-type balancer installed
on high-speed optical disc drives,” in Proc. IEEE
Int. Symp. Intelligent Control, Vancouver, Canada,
pp. 19–24.

Lee, J. [1995] “An analytical study of self compensating
dynamic balancer with damping fluid and ball,” Shock
Vibr. 2, 59–69.

Lee, J. & Moorhem, W. V. [1996] “Analytical and exper-
imental analysis of a self-compensating dynamic bal-
ancer in a rotating mechanism,” ASME J. Dyn. Syst.
Measur. Cont. 118, 468–475.

Lindell, H. [1996] “Vibration reduction on hand-held
grinders by automatic balancing,” Central European
J. Public Health 4, 43–45.

Rajalingham, C. & Rakheja, S. [1998] “Whirl suppres-
sion in hand-held power tool rotors using guided
rolling balancers,” J. Sound Vibr. 217, 453–466.

Thearle, E. [1950] “Automatic dynamic balancers,”
Mach. Des. 22, 119–124.

van de Wouw, N. & Leine, R. [2004] “Attractivity of
equlibrium sets of systems with dry friction,” Int. J.
Nonlin. Dyn. Chaos Engin. Syst. 35, 19–39.

van den Heuvel, M. [2002] “Modeling and analysis of an
automatic balancing unit with dry friction,” Master’s
thesis, Eindhoven University of Technology, Depart-
ment of Mechanical Engineering, The Netherlands.

Wettergren, H. [2001] “Auto-balance anisotropic
mounted rotors,” in Proc. ASME DETC Pittsburgh,
PA, USA.




