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In this article, the formation control problem for unicycle mobile robots is studied. A distributed virtual structure
control strategy with mutual coupling between the robots is proposed. The rationale behind the introduction of
the coupling terms is the fact that these introduce additional robustness of the formation with respect to
perturbations as compared to typical leader–follower approaches. The applicability of the proposed approach is
shown in simulations and experiments with a group of wirelessly controlled mobile robots.
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1. Introduction

In this article, the formation control problem for
unicycle mobile robots is considered. Formation
control problems arise when groups of mobile robots
are employed to jointly perform certain tasks. The
benefits of exploiting groups of robots, as opposed to a
single robot or a human, become apparent when
considering spatially distributed tasks, dangerous
tasks, tasks which require redundancy, tasks that
scale up or down in time or tasks that require
flexibility. Various areas of application of cooperative
mobile robots are e.g. simultaneous localisation and
mapping (Durrant-Whyte and Bailey 2006), automated
highway systems (Bishop 2005), payload transporta-
tion (Wang, Takano, Hirata, and Kosuge 2007),
RoboCup (Kitano et al. 1997), enclosing an invader
(Yamaguchi 1999) and the exploration of an unknown
environment (Burgard, Moors, Stachniss, and
Schneider 2005). More examples as well as some
background information concerning formation control
of mobile robots can be found in Arai, Pagello, and
Parker (2002), Chen and Wang (2005) and Parker
(2008). Furthermore, in Kolmanovsky and
McClamroch (1995) and Morin and Samson (2008)
an overview regarding the control of nonholonomic
unicycle mobile robots is presented.

Before a wide application of cooperative mobile
robotics will become feasible, many technical and
scientific challenges must be faced such as the
development of cooperative and formation control

strategies, control schemes robust to communication
constraints and imperfections, the localisation of the
robot position and sensing and environment mapping.
In this article, the focus is on the aspect of cooperative
control. In the recent literature, see e.g. Beard, Lawton,
and Hadaegh (2000), Carelli, de la Cruz, and Roberti
(2006), Consolini, Morbidi, Prattichizzo, and Tosques
(2006), Do and Pan (2007) and Takahashi, Nishi, and
Ohnishi (2004), three different approaches towards the
cooperative control of mobile robots are described:
the behaviour-based approach, the leader–follower
approach and the virtual structure approach. In the
behaviour-based approach, a so-called behaviour (e.g.
obstacle avoidance, target seeking) is assigned to each
individual robot (Arkin 1998). This approach can be
naturally used to design control strategies for robots
with multiple competing objectives. Moreover, it is
suitable for large groups of robots, since it is typically a
decentralised strategy. A disadvantage is that the
complexity of the dynamics of the group of robots
does not lend itself to straightforward mathematical
stability analysis. Therefore, to simplify the analysis,
the dynamics of individual robots are commonly
assumed to be described by a single integrator.
Clearly, even kinematic models of nonholonomic
mobile robots are more complex, limiting the applic-
ability of this approach in practice.

In the leader–follower approach some robots will
take the role of leaders and aim to track predefined
trajectories, while the follower robots will follow the

*Corresponding author. Email: a.d.sadowska@qmul.ac.uk

ISSN 0020–7179 print/ISSN 1366–5820 online

� 2011 Taylor & Francis

http://dx.doi.org/10.1080/00207179.2011.627686

http://www.tandfonline.com

D
ow

nl
oa

de
d 

by
 [

E
in

dh
ov

en
 T

ec
hn

ic
al

 U
ni

ve
rs

ity
] 

at
 1

2:
44

 2
8 

D
ec

em
be

r 
20

11
 



leaders according to a relative posture (Yanakiev and
Kanellakopoulos 1996; Desai, Ostrowski, and Kumar
2001; Leonard and Fiorelli 2001; Bicho and Monteiro
2003; Vidal, Shakernia, and Sastry 2003; Tanner,
Pappas, and Kumar 2004; Carelli et al. 2006;
Consolini et al. 2006; Ikeda, Jongusuk, Ikeda, and
Mita 2006). An advantage of this approach is the fact
that it is relatively easy to understand and implement.
A disadvantage, however, is the fact that there is no
feedback from the followers to the leaders.
Consequently, if a follower is being perturbed, the
formation cannot be maintained and thus such a
formation control strategy lacks robustness in the face
of such perturbations.

A third approach in cooperative control is the
virtual structure approach, in which the robots’
formation no longer consists of leaders and followers,
i.e. no hierarchy exists in the formation. This approach
was studied in e.g. Lewis and Tan (1997), where a
general controller strategy is developed for the virtual
structure approach. However, using this strategy, it is
not possible to consider formations which are time-
varying. Moreover, the priority of the mobile robots,
either to follow their individual trajectories or to
maintain the groups formation, cannot be changed.
In Do and Pan (2007), a virtual structure controller is
designed for a group of unicycle mobile robots using
models involving the dynamics of the robots.
Consequently, the controller design tends to be rather
complex, which is unfavourable from an implementa-
tion perspective, especially when kinematic models
suffice. A virtual structure approach towards solving
the consensus problem with time-invariant formations
for unicycle mobile robots has been proposed in
Yoshioka and Namerikawa (2008). As we will show
in this article and was also advocated in Young, Beard,
and Kelsey (2001), an advantage of the virtual
structure approach is that it allows to attain a certain
robustness of the formation to perturbations on the
robots.

In this article, we consider a formation control
problem in which the robots are required to form a
desired, possibly time-varying, formation shape and
follow a given desired trajectory, as a whole. In this
scope, our contributions can be summarised as follows.
Firstly, a virtual structure controller is designed for the
formation control of a group of nonholonomic
unicycle mobile robots, which is based on the
kinematics of unicycle mobile robots. This controller
contains so-called mutual coupling terms between the
robots to ensure robustness of the formation with
respect to perturbations. In the face of perturbations,
these mutual coupling terms allow the controller
to mediate between ensuring tracking of the
individual desired trajectories of the robots and

keeping formation. Secondly, the strength of the

controller that we propose is the fact that it is

distributed; that is, each robot only exchanges infor-

mation with their neighbours in lieu of a whole

formation. Thirdly, we prove the global exponential

stability of the formation error dynamics, which is

particularly favourable since it provides a certain level

of robustness. Fourthly, we extend our main result to a

dynamic control algorithm that uses robots0 dynamic

model as opposed to merely kinematic model con-

sidered before. Hence, in this control algorithm robots0

dynamic properties such as mass or moment of inertia

are taken into consideration. Finally, the control

design is validated in simulations and experiments.
This article is organised as follows. In Section 2,

preliminary technical results needed in the remainder

of this article are presented. The virtual structure

control design and a stability proof for the formation

error dynamics are given in Section 3. Further, in

Section 4 we present simulation results to validate the

proposed approach and in Section 5, experimental

results are given. Section 6 presents our concluding

remarks.

2. Preliminaries

In this section we present some mathematical tools that

are employed in further parts of this article.

Definition 2.1 (Lefeber 2000), (cf. Ioannou and Sun

1995; Khalil 1996; Narendra and Annaswamy

1989): A continuous function ! :Rþ!R is said to

be persistently exciting (PE) if !(t) is bounded,

Lipschitz, and constants �c4 0 and �4 0 exist such that

8t � 0, 9s : t� �c � s � t such that j!ðsÞj � �: ð1Þ

The definition above is the standard PE definition

as in e.g. Narendra and Annaswamy (1989), Ioannou

and Sun (1995) and Khalil (1996), albeit in a slightly

different form as presented in Lefeber (2000).

In contrast, the modified definition below is

necessary to study stability in a multi-robot case as

shown later.

Definition 2.2 (cf. Alvarez Aguirre 2011): A contin-

uous vector function �(t)¼ col(!1(t), . . . ,!n(t)) such

that !i :R
þ
!R, i¼ 1, . . . , n, is said to be PE if for all

i¼ 1, . . . , n, !i(t) is bounded, Lipschitz, and constants

�c4 0 and �4 0 exist such that

8t � 0, 9s : t� �c � s � t such that
Yn
i¼1

j!iðsÞj � �:

ð2Þ
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In the following theorem we study stability of an

equilibrium point of a linear time-varying system

_x ¼ AðtÞx ð3Þ

in which x2R
n and A(t) is continuous. For this system,

we define the observability Gramian of the pair (A(t),

C ), where C is such that y¼C(t)x, as Wðt, tþ �Þ ¼R tþ�
t �Tð�, tÞCTð�ÞCð�Þ�ð�, tÞd�, in which �(�, t) is the

state transition matrix (Rugh 1993).

Theorem 2.3 (Khalil 1996): Consider a linear time

varying system (3). Let V(t, x) be a continuously

differentiable Lyapunov function candidate and further-

more, let _Vðt, xÞ denote its derivative along solutions of

(3), i.e. _Vðt, xÞ ¼ @V
@t ðt, xðtÞÞ þ

@V
@x AðtÞx. Assume that

k1kxk
2 � Vðt, xÞ � k2kxk

2, ð4Þ

_Vðt, xÞ ¼ �xTCTCx � 0, ð5Þ

Wðt, tþ �Þ � k3I, ð6Þ

where k1, k2 and k3 are positive constants, I is the

identity matrix of appropriate dimensions and W(t, tþ �)
is the observability Gramian of the pair (A(t), C). Then

the origin of (3) is a globally exponentially stable

equilibrium point.

Remark 1: Condition (6) is satisfied if the pair (A(t),

C) is completely uniformly observable, see (Khalil

1996).

Theorem 2.4 (Panteley and Lorı́a 1998; Panteley,

Lefeber, Lorı́a, and Nijmeijer 1998; Aneke

2003): Consider the cascaded system

_x1 ¼ f1ðt, x1Þ þ gðt, x1, x2Þx2,

_x2 ¼ f2ðt, x2Þ,

�
ð7Þ

where x12R
p, x22R

r, x¼ col(x1, x2), f1(t, x1) is con-

tinuously differentiable in (t, x1) and both f2(t, x2) and

g(t, x1, x2) are continuous in t and locally Lipschitz in x.

Assume that f1(t, 0)¼ 0, f2(t, 0)¼ 0 and

(1) the equilibrium point xe1¼ 0 of the subsystem
_x1 ¼ f1ðt, x1Þ is globally exponentially stable,

(2) the equilibrium point xe2¼ 0 of the subsystem
_x2 ¼ f2ðt, x2Þ is globally exponentially stable and

(3) g(t, x1, x2) satisfies kg(t, x1, x2k� k1(kx2k)þ

k2(kx2k)kx1k, in which k1, k2: R
þ
0 ! R

þ
0 .

Then, the origin of the cascaded system (7) is globally

K-exponentially stable.

We refer to Sørdalen and Egeland (1995) for a

definition of global K-exponential stability of an

equilibrium point.

Definition 2.5 (Godsil and Royle 2001): A graph G is
a triple G¼ (V, E,A) where V is an index set represent-
ing vertices, E �V �V denotes edges such that an
ordered pair (i, j)2E iff there is an edge from vertex
i2V to vertex j2V, and A is the adjacency matrix
which has entries aij such that

aij ¼
1 if eij 2 E,

0 otherwise:

(
ð8Þ

Hence, 8i, j2V we have eij2E iff aij¼ 1.

Definition 2.6: Ni�V is the set of neighbours of
vertex i2V defined by

Ni ¼ j 2 V
�� j 6¼ i and aij 6¼ 0

� �
: ð9Þ

Definition 2.7 (Godsil and Royle 2001): A graph G is
called undirected if (i, j)2E whenever ( j, i)2E. It is
said to be connected if any two vertices may be
connected by a path regardless of the sequence of the
vertices involved en route. Otherwise the graph is said
to be disconnected.

3. Virtual structure formation control with mutual

coupling

In this section we define the formation control problem
under consideration and propose a formation control
algorithm to solve this problem. In particular, in
Section 3.1, the formation control problem is for-
mulated and the kinematic model of a unicycle mobile
robot is presented. Further, in Section 3.2, we give our
main result that is a virtual structure formation
controller, with mutual coupling between the robots.
We also propose an extension of this algorithm in
Section 3.3, designed to solve the formation control
problem for dynamic models of the unicycle mobile
robots.

3.1 Problem formulation

In this section we formulate the formation control
problem that is studied in this article. We consider a
formation of N identical nonholonomic unicycle
mobile robots. The kinematics of the ith robot is
described by the following differential equation:

_xi ¼ vi cosð�iÞ,

_yi ¼ vi sinð�iÞ,

_�i ¼ !i,

ð10Þ

with i¼ 1, . . . ,N and where the coordinates xi and yi
describe the position of the centre of mass of the ith

1888 A. Sadowska et al.
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mobile robot with respect to the fixed coordinate frame
~e 0 :¼ ½~e 01 ~e

0
2 �

T and the orientation �i is the angle

between the heading of the ith robot and the x-axis

of the fixed orthonormal coordinate frame ~e 0, see

Figure 1. The forward velocity and rotational velocity

are given by vi and !i, respectively, and are, in this

kinematic model, the control inputs of the ith mobile

robot.
Following the virtual structure approach, an

additional virtual robot with identical kinematics (10)

as for all ordinary robots in the group is introduced.

This virtual robot is placed in the so-called virtual

centre of the formation. Note that the virtual centre

does not need to be an actual geometric centroid of the

formation but may be any point considered as central

for a particular application. Based upon the position

and orientation of the virtual centre, desired positions

of robots in the formation are given with the aid

of possibly time-varying bounded coordinates pi(t)¼

( pxi(t), pyi(t))
T given with respect to the local coordi-

nate system ~e vc associated with the virtual robot that is

in accordance to its orientation, see Figure 2. Assume

that _piðtÞ is bounded.
For the formation control problem to be solved,

we require that the virtual structure follows a

predefined trajectory ðxdvcðtÞ, y
d
vcðtÞ,�

d
vcðtÞÞ, where

ðxdvcðtÞ, y
d
vcðtÞÞ denotes desired Cartesian positions and

�dvcðtÞ denotes a desired orientation of the virtual

structure, and all robots in the formation maintain a

given spatial pattern defined by the desired formation

shape pi(t), i¼ 1, . . . ,N. In terms of the behaviours of

individual robots, this requirement is tantamount to

the condition that the following set of equalities holds

asymptotically

xiðtÞ

yiðtÞ

� �
�

xdi ðtÞ

ydi ðtÞ

 !
¼

0

0

� �
, i ¼ 1, . . . ,N: ð11Þ

Here, xdi ðtÞ and ydi ðtÞ are calculated according to

xdi ¼x
d
vc þ pxi cos�

d
vc � pyi sin�

d
vc,

ydi ¼y
d
vc þ pxi sin�

d
vc þ pyi cos�

d
vc,

ð12Þ

and represent the desired trajectories of individual

robots in the fixed coordinate frame ~e 0 that are

determined specifically for a particular desired trajec-

tory of the virtual structure and a particular desired

formation shape. Moreover, the functions �dvc and �di
above follow from the nonholonomic, no-side-slip

constraint _x sin�� _y cos� ¼ 0 and xdvc, y
d
vc

� 	
or

xdi , y
d
i

� 	
, respectively.

Remark 2: In the literature, control algorithms have

been proposed that implement obstacle avoidance

strategies on the level of desired trajectories, see e.g.

Kostić, Adinandra, Caarls, and Nijmeijer (2010). Such

algorithms for obstacle avoidance can also be integrated

with the formation control strategy proposed in this

article by feeding such adapted reference trajectories to

the formation controller. Having said that, in this article

we refrain from such a technical extension and

concentrate on the formation control design as such.

Let vdvc and !d
vc be desired forward and angular

velocities, respectively, associated with the desired

trajectory ðxdvc ðtÞ, y
d
vc ðtÞÞ of the virtual structure.

Figure 1. The unicycle coordinates, desired coordinates and
error coordinates of the ith mobile robot.

Figure 2. Desired positions of robots in the formation with
respect to the virtual structure’s position and a given
formation shape.
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Assume that vdvc and !
d
vc are bounded. By differentiat-

ing (12) and comparing the result with the desired
kinematics of robot i in (10), one obtains desired
velocities for each individual robot as follows:

vdi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð _xdi Þ

2
þ ð _ydi Þ

2
q

,

!d
i ¼

€ydi _xdi � €xdi _ydi
ð _xdi Þ

2
þ ð _ydi Þ

2
: ð13Þ

The existence of these expressions is well-known in the
robotics literature (Laumond 1998; Morin and Samson
2008) and is a consequence of the differential flatness
of (9) (Fliess, Lévine, Martin, and Rouchon 1995).

Following Kanayama, Kimura, Miyazaki, and
Noguchi (1990), the error variables of robot i are
defined by

xei
yei
�ei

0@ 1A ¼ cos�i sin�i 0
�sin�i cos�i 0

0 0 1

24 35 xdi � xi
ydi � yi
�di � �i

0@ 1A, ð14Þ

and correspond to the error coordinates in frame ~e i,
see Figure 1. Consequently, the error dynamics are
given by

_xei ¼ !iy
e
i � vi þ vdi cos�

e
i ,

_yei ¼ �!ix
e
i þ vdi sin�

e
i ,

_�ei ¼ !
d
i � !i, i ¼ 1, . . . ,N:

ð15Þ

Therefore, the formation control problem may be
stated as follows: design controllers for vi and !i that
render the error dynamics (15) globally asymptotically
stable.

3.2 Virtual structure control design

In this section, we design a virtual structure controller
with mutual coupling between neighbouring individual
robots that solves the formation control problem. The
main goals of the virtual structure controller are
twofold. Firstly, as mentioned earlier, the formation
as a whole should follow a predefined trajectory, i.e.
the virtual centre should follow a predefined trajectory
and the ith unicycle robot, i2 {1, . . . ,N}, should follow
its desired individual trajectory dependent upon the
desired trajectory of the virtual centre and the desired
and possibly time-varying formation shape, deter-
mined by the coordinates ( pxi, pyi) relative to the
virtual centre. Secondly, if the individual robots suffer
from perturbations, the controller should mediate
between keeping formation and ensuring the tracking
of the individual robots0 desired trajectories, which is
facilitated by introducing mutual coupling between the
robots. To meet this double objective, we employ a

modified version of the control algorithm proposed
originally for a single nonholonomic system by
Panteley et al. (1998) and revisited afterwards by
Jakubiak, Lefeber, Tchoń, and Nijmeijer (2002). The
augmentation that is crucial for a formation control
algorithm involves the inclusion of a mutual coupling
between the robots. Therefore, for the ith robot we
introduce additional mutual coupling terms xei � xej ,
yei � yej and �ei � �

e
j for each robot j2Ni. Note

that in Rodriguez-Angeles and Nijmeijer (2003, 2004)
the concept of mutual coupling was employed in
the synchronisation of industrial robots. However,
in that work, the mutual coupling terms were
introduced at the level of the desired trajectories.
Here, we propose to introduce the coupling directly to
each robot’s control which results in the following
controller:

vi ¼ vdi þ cxi x
e
i � c

y
i !

d
i y

e
i þ

X
j2Ni

ecxij�xei � xej
	

�
X
j2Ni

ecyij!d
i

�
yei � yej

	
,

!i ¼ !
d
i þ c�i �

e
i þ

X
j2Ni

ec�ijð�ei � �ej Þ, i ¼ 1, . . . ,N,

ð16Þ

where cxi , c
y
i , c�i for i¼ 1, . . . ,N represent tracking

control gains and ecxij, ecyij, ec�ij for i¼ 1, . . . ,N, j2Ni

represent mutual coupling gains. Note that the original
tracking algorithm for a single mobile robot proposed
by Panteley et al. (1998) can be retrieved by setting all
coupling gains to zero, i.e.ecxij ¼ 0,ecyij ¼ 0,ec�ij ¼ 0. In the
case of formation control, these mutual coupling gains
are crucial for robots in the formation to be aware of
their neighbours0 states. The importance of the mutual
coupling terms can be particularly viewed if some of
the robots in the formation are subject to a perturba-
tion. Then the mutual coupling terms act in such a way
that the remaining robots counteract the perturbation
so that the desired formation shape may be preserved
to some extent depending on the magnitude of the
coupling gains, which is not the case when robots are
unaware of their neighbours0 behaviour. In other
words, when the additional mutual coupling gains are
combined with the tracking gains, the robots mediate
between individual trajectory tracking and keeping a
desired formation.

In the following theorem, we examine when the
formation control problem as defined in this article is
solved using the control law given in (16).

Theorem 3.1: Consider a group of N nonholonomic
mobile robots (10), a desired trajectory of the virtual
centre of the formation ðxdvc ðtÞ, y

d
vc ðtÞÞ, a desired

1890 A. Sadowska et al.

D
ow

nl
oa

de
d 

by
 [

E
in

dh
ov

en
 T

ec
hn

ic
al

 U
ni

ve
rs

ity
] 

at
 1

2:
44

 2
8 

D
ec

em
be

r 
20

11
 



formation shape given by coordinates pi(t) that are

bounded and such that _piðtÞ are also bounded, and

associated desired trajectories of robots in the formation

(12) together with desired forward and angular velocities

(13). Let the control law be defined in (16) in which cxi ,

c
y
i , c

�
i ,ecxij,ecyij,ec�ij are positive parameters such thatecxij ¼ecxji

and ecyij ¼ecyji and ec�ij 6¼ 0 iff j2Ni for all �2 {x, y, �}.
Assume that for i¼ 1, . . . ,N, !d

i ðtÞ are such that
��d ðtÞ ¼ colð!d

1 ðtÞ, . . . ,!d
N ðtÞÞ satisfies the persistence

of excitation condition in Definition 2.2, and vdi ðtÞ is

non-zero and bounded from above, for all t. Then the

origin is a globally K-exponentially stable equilibrium

point of the closed-loop error dynamics (15)–(16) and

hence the control law (16) solves the formation control

problem.

Proof: Application of the control law (16) yields the

following closed-loop error dynamics of the overall

formation

_Xe

_Ye

 !
¼
�Cx :d

�
Cy
þ I

�
�:d 0

24 35 Xe

Ye

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

_z1¼f1ðt, z1Þ

þ
�Y
e
C� þ Vd(cos

� �X
e
C� þ Vd(sin

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

gðt,z1,z2Þ

�e, _�e ¼ �C��e|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
_z2¼f2ðz2Þ

, ð17Þ

where Xe ¼ colðxe1, . . . , xeNÞ, Y
e ¼ colð ye1, . . . , yeNÞ, �e ¼

colð�e1, . . . ,�eNÞ,
�X
e
¼ diagðxe1, . . . , xeNÞ,

�Y
e
¼ diag

ð ye1, . . . , yeNÞ, I is the identity matrix of appropriate
dimensions, 0 is a matrix with all entries equal zero of
appropriate dimensions, :d

¼ diagð!d
1, . . . ,!d

N Þ, V
d ¼

diagðvd1, . . . , vdN Þ,

(cos ¼ diag
cos�e1 � 1

�e1
, . . . ,

cos�eN � 1

�eN

� �
and

(sin ¼ diag
sin�e1
�e1

, . . . ,
sin�eN
�eN

� �
:

Note that the functions
sin�ei
�e
i

and
cos�ei�1

�e
i

are smooth

if their definition is extended to �ei ¼ 0 in the standard

way. The remaining matrices Cx, Cy and C
� in (17) are

given by:

where for i 6¼ j, we have Cx
ij 6¼ 0, C

y
ij 6¼ 0 and C

�
ij 6¼ 0 iff

j2Ni. With the aid of the Geršgorin disc theorem

(Horn and Johnson 1990), we can show that all

eigenvalues of matrix Cx lie in the region defined by

GðCx
Þ ¼

[n
i¼1

�
z 2 C

��� ����z��cxi þX
j2Ni

ecxijÞ�����X
j2Ni

ecxij�� Cþ,

ð21Þ

where C
þ denotes the open right-half plane of the

complex plane. Due the fact that Cx is symmetric, it is

apparent that Cx is positive definite. Similarly, it may

be shown that Cy also is positive definite.

Cx
¼

cx1 þ
P

j2N1
ecx1j �ecx12 . . . �ecx1N

..

. . .
. . .

. ..
.

�ecxN�11 . .
.

cxN�1 þ
P

j2NN�1
ecxN�1j �ecxN�1N

�ecxN1 �ecxN2 . . . cxN þ
P

j2NN
ecxNj

2666664

3777775, ð18Þ

Cy
¼

c
y
1 þ

P
j2N1

ecy1j �ecy12 . . . �ecy1N
..
. . .

. . .
. ..

.

�ecyN�11 . .
.

c
y
N�1 þ

P
j2NN�1

ecyN�1j �ecyN�1N
�ecyN1 �ecyN2 . . . c

y
N þ

P
j2NN

ecyNj

26666664

37777775, ð19Þ

C� ¼

c�1 þ
P

j2N1
ec�1j �ec�12 . . . �ec�1N

..

. . .
. . .

. ..
.

�ec�N�11 . .
.

c�N�1 þ
P

j2NN�1
ec�N�1j �ec�N�1N

�ec�N1 �ec�N2 . . . c�N þ
P

j2NN
ec�Nj

26666664

37777775, ð20Þ
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Clearly, the formation error dynamics (17) has the

cascade form of (7). Thus, if the assumptions in

Theorem 2.4 hold, the origin of (17) is globally

K-exponentially stable.
To show this, let us first consider the first stage of

the cascade, i.e. _z1¼ f1(t, z1):

_z11 ¼ �C
xz11 þ:

d
ðIþ Cy

Þz12,

_z12 ¼ �:
dz11,

(
ð22Þ

in which z1¼ col(z11, z12) :¼ col(Xe,Ye). Consider a

Lyapunov function candidate for (22) of the form

Vðz11, z12Þ ¼
1

2

�
zT11z11 þ zT12ðIþ Cy

Þz12

�
: ð23Þ

Then, the time derivative of (23) along trajectories of

(22) yields

_Vðz11, z12Þ ¼ �z
T
11C

xz11 þ zT11:
d
ðIþ Cy

Þz12

� zT12ðIþ Cy
Þ:dz11 ¼ �z

T
11C

xz11 � 0, ð24Þ

where the second equality holds because Cy is

symmetric and the inequality follows from the fact

that Cx is positive definite. Additionally, from

Theorem 2.3 we know that z1¼ 0 is a globally

exponentially stable equilibrium point of (22) if,

besides (24), the observability Gramian of the pair

(A(t), C) satisfies (6) where

AðtÞ ¼
�Cx :d

�
Cy
þ I

�
�:d 0

" #
, C ¼

ffiffiffiffiffiffiffiffiffi
1
2C

x
q

0ffiffiffiffiffiffiffiffiffi
1
2C

x
q

0

24 35:
ð25Þ

Following the developments in Khalil (1996) and

Alvarez Aguirre (2011) it can indeed be shown that

given the fact that ��d ðtÞ is PE according to

Definition 2.2, the pair (A(t),C) is completely

uniformly observable and hence Condition (6) is

satisfied. Thus, Theorem 2.3 can be used to show

that z1¼ 0 is a globally exponentially stable

equilibrium of (22) which proves the validity of

Assumption 1 in Theorem 2.4.
The second assumption from Theorem 2.4 can be

proven to be true immediately since _z2¼ f2(z2) repre-

sents the following linear time-invariant system:

_�e ¼ �C��e: ð26Þ

Once again using the Geršgorin disc theorem (Horn

and Johnson 1990), it may be shown that all

eigenvalues of C� lie in C
þ. Hence, �e

¼ 0 is a globally

exponentially stable equilibrium point of (26). This

proves Assumption 2 in Theorem 2.4.

Next, let us show that g(t, z1, z2) from (17) satisfies
Assumption 3 from Theorem 2.4. After some
manipulations, we obtain

k gðt, z1, z2ÞkF � 2Nv� þ kC�kkz1k, ð27Þ

where

v�i ¼ supfjvdi ðtÞj j t � 0g,

v� ¼ maxfv�i j i ¼ 1, . . . ,Ng,
ð28Þ

and k	kF denotes the Frobenius norm, see Khalil
(1996). Note that boundedness of vdi is implied by
boundedness of vdvc, !

d
vc, pi and _pi as assumed. Hence,

Assumption 3 in Theorem 2.4 is satisfied with
k1(	)¼ 2Nv* and k2(	)¼kC

�
k. Therefore it follows

from Theorem 2.4 that the origin (z1, z2)¼ (0, 0) of
the cascade system (17) is globally K-exponentially
stable. Therefore, the control law (16) solves the
formation control problem studied in this article.

This completes the proof. œ

Remark 3: Theorem 3.1 only poses rather weak
constraints on the control parameters. Therefore,
there is a considerable freedom to design the control
parameters in a way which is desirable for a specific
application. In particular, to focus on tracking of
individual robots’ trajectories, the tracking gains cxi , c

y
i ,

c�i should dominate the mutual coupling gains ecxij, ecyij,ec�ij. On the other hand, when keeping formation is the
major objective, the mutual coupling gains ecxij, ecyij
andec�ij ought to dominate the tracking gains cxi , c

y
i , c

�
i .

Remark 4: The condition c
y
i 4 0 may be weakened to

c
y
i 4�1. This is because we only require matrix
(IþCy) in (23) to be a positive-definite matrix, as
opposed to matrix C

y being positive definite. However,
it was noted in van den Broek, van de Wouw, and
Nijmeijer (2009) that the choice of a negative control
parameter c

y
i may cause some undesirable transient

behaviour of robots in the formation.

3.3 Dynamic control law

In this section we consider a distributed dynamic
formation control algorithm based on a simple
dynamic model of a mobile robot (Jiang and
Nijmeijer 1997; Panteley et al. 1998):

_xi ¼ vi cos�i,

_yi ¼ vi sin�i,

_�i ¼ !i,

_vi ¼
Fi

mi
,

_!i ¼
�i
Ji
,

ð29Þ
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in which mi denotes the mass of the ith robot, Ji is its
moment of inertia around the vertical axis passing
through its centre of mass and the control inputs Fi and
�i denote force and torque respectively.

The dynamic formation control algorithm is an
extension of the kinematic control law presented in the
previous section and is motivated by the developments
in Panteley et al. (1998). Based on the control law
defined in Theorem 3.1, we define nominal forward
and angular velocities as

�vi ¼ vdi þ cxi x
e
i � c

y
i !

d
i y

e
i þ

X
j2Ni

ecxijðxei � xej Þ

�
X
j2Ni

ecyij!d
i ð y

e
i � yej Þ,

�!i ¼ !
d
i þ c�i �

e
i þ

X
j2Ni

ec�ijð�ei � �ej Þ: ð30Þ

Also, we define additional velocity error variables by

vei ¼ vi � �vi

!e
i ¼ !i � �!i: ð31Þ

Differentiating (31), we obtain time derivatives of the
new error variables defined along solutions of (29) for
each robot i¼ 1, . . . ,N in the formation:

_vei ¼
Fi

mi
� _�vi,

_!e
i ¼

�i
Ji
� _�!i: ð32Þ

Combining (15) and (32) yields the following error
dynamics:

_xei ¼ �!iy
e
i � �vi þ vdi cos�

e
i þ !

e
i y

e
i � vei ,

_yei ¼ � �!ix
e
i þ vdi sin�

e
i � !

e
i x

e
i ,

_�ei ¼ !
d
i � �!i � !

e
i ,

_vei ¼
Fi

mi
� _�vi,

_!e
i ¼

�i
Ji
� _�!i, ð33Þ

for which we should design control laws for Fi and �i,
such that it exhibits a globally asymptotically stable
equilibrium point at the origin. Using the expressions
of �vi and �!i in (30), we obtain the following error
dynamics for the overall formation

_Xe

_Ye

_Ve

0B@
1CA ¼ �Cx :d

�
Cy
þ I

�
�I

�:d 0 0

0 0 0

2664
3775

Xe

Ye

Ve

0B@
1CA

þ

0

0

I

0B@
1CA�M�1F� _�V

�

þ

�Y
e
C� þ Vd(cos

�Y
e

� �X
e
C� þ Vd(sin � �X

e

0 0

2664
3775 �e

�e

 !
,

_�e

_�e

 !
¼
�C� �I

0 0

" #
�e

�e

 !
þ

0

I

 !�
J�1T� _��

�
,

ð34Þ

where Ve ¼ colðve1, . . . , veNÞ, �e ¼ colð!e
1, . . . ,!e

NÞ,

M¼ diag(m1, . . . ,mN), J¼ diag(J1, . . . , JN), F¼ col

(F1, . . . ,FN), T¼ col(�1, . . . , �N),
_�V ¼ colð_�v1, . . . , _�vNÞ

and _�� ¼ colð _�!1, . . . , _�!NÞ. Moreover, the constant

matrices Cx, Cy and C� are defined in (18)–(20). The

control design, as motivated by Panteley et al. (1998),

now relies on defining the control inputs F and T for

the whole formation in such a way that the resultant

closed-loop error dynamics have a cascade structure as

in (7) and are globally K-exponentially stable.
To this end, we propose the following control

input:

F ¼M
�

_�Vþ CvxXe � CvvVe
�
,

T ¼ J
�

_��� C!�e
�
, ð35Þ

where Cvx
¼ diagðcvx1 , . . . , cvxn Þ, Cvv

¼ diagðcvv1 , . . . , cvvn Þ

and C! ¼ diagðc!1 , . . . , c!n Þ are positive-definite matrices

or, equivalently,

Fi ¼ mið_�vi þ cvxi xei � cvvi v
e
i Þ,

�i ¼ Jið _�!i � c!i !
e
i Þ: ð36Þ

It will be shown in the following theorem that indeed

application of the control law (35) to the formation of

mobile robots with the open–loop error dynamics (34)

globally exponentially stabilises the formation error

dynamics (34).

Theorem 3.2: Consider N unicycle mobile robots

satisfying (29), a desired trajectory of the virtual

centre of the formation ðxdvc, y
d
vc Þ and a desired formation

shape pi(t), i¼ 1, . . . ,N, such that both pi(t) and _piðtÞ are

bounded. Consider the control law defined in (36), where

cvxi , cvvi , c
!
i are positive parameters, both �vi and �!i are

defined in (30) and additional kinematic control

parameters in (30) satisfy the conditions given in

Theorem 3.1. Assume that for all i¼ 1, . . . ,N, !d
i ðtÞ in

(13) is such that ��d ðtÞ ¼ colð!d
1 ðtÞ, . . . ,!d

N ðtÞÞ satisfies

the persistence of excitation condition in Definition 2.2,

and vdi ðtÞ in (13) is non-zero and bounded. Then, the

origin of the closed-loop error dynamics (29, 36) is

globally K-exponentially stable and hence, the formation

control problem is solved.
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Proof: The error dynamics of the whole formation

controlled by (35) are

_Xe

_Ye

_Ve

0B@
1CA ¼ �Cx :d

�
Cy
þ I

�
�I

�:d 0 0

Cvx 0 �Cvv

2664
3775

Xe

Ye

Ve

0B@
1CA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
_z1¼f1ðt, z1Þ

þ

�Y
e
C� þ Vd(cos

�Y
e

� �X
e
C� þ Vd(sin � �X

e

0 0

264
375

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
gðz1,z2Þ

�e

�e

� �
,

_�e

_�e

 !
¼ �

C� I

0 C!

" #
�e

�e

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

_z2¼f2ðz2Þ

, ð37Þ

which clearly has the cascade structure as in (7). Thus,

if the three assumptions of Theorem 2.4 are satisfied,

then the origin of (37) is a globally K-exponentially

stable equilibrium. To prove that this is indeed the

case, consider the first stage of the cascade system,

_z1¼ f1(t, z1), which is a linear time-varying system of

the form

_z11 ¼ �C
xz11 þ:

d
ðIþ Cy

Þz12 � z13,

_z12 ¼ �:
dz11,

_z13 ¼ Cvxz11 � Cvvz13,

8><>: ð38Þ

where z1¼ col(z11, z12, z13) :¼ col(Xe,Ye,Ve). Let us

define a positive-definite Lyapunov function candidate

for this system by

Vðz1Þ ¼
1

2

�
zT11z11 þ zT12

�
Cy
þ I

	
z12 þ zT13ðC

vx
Þ
�1z13

�
:

ð39Þ

By differentiating (39) with respect to time along

trajectories of (38), one arrives at

_Vðz11, z12, z13Þ ¼ �z
T
11C

xz11 þ zT11:
d
ðIþ Cy

Þz12 � zT11z13

� zT11:
d
ðIþ Cy

Þz12 þ zT13ðC
vx
Þ
�1Cvxz11

� zT13ðC
vx
Þ
�1Cvvz13

¼ �zT11C
xz11 � zT13ðC

vx
Þ
�1Cvvz13 � 0:

ð40Þ

Consequently, using similar arguments as in the proof

of Theorem 3.1, we can prove by Theorem 2.3 that the

origin z1¼ 0 is a globally exponentially stable

equilibrium. Thus, Assumption 1 of Theorem 2.4

holds.

As for Assumption 2 in Theorem 2.4, let us rewrite

subsystem _z2¼ f2(z2) as

_z2 ¼ �
C� I

0 C!

" #
z2 ¼:�Hz2, ð41Þ

which is a time-invariant linear system. BecauseH is an

upper block triangular matrix, the set of its eigenvalues
is created by merging the sets of eigenvalues of C� and
C!. As shown before, all eigenvalues of C� have
positive real parts. Moreover, C! is a positive-definite
diagonal matrix. Therefore, all eigenvalues of both C�

and C! lie in the open right half of the complex plane
and so do all eigenvalues of H. Thus, (41) is globally
exponentially stable which proves Assumption 2 of
Theorem 2.4.

As for Assumption 3 in Theorem 2.4, it may be
easily shown that

k gðt, z1, z2ÞkF � 2Nv� þ kC� þ Ikkz1k, ð42Þ

in which v* is defined in (28) and k 	 kF denotes the

Frobenius norm (Khalil 1996). Hence Assumption 3
in Theorem 2.4 is satisfied with k1(	)¼ 2Nv* and
k2(	)¼kC

�
þ Ik. Therefore, by Theorem 2.4, the

origin of the cascaded system (37) is globally
K-exponentially stable. Hence, the dynamic formation

control problem studied in this article is solved.
This completes the proof. œ

Remark 5: As in the kinematic control algorithm, see
Remark 3, also in the dynamic formation control
algorithm, there is a trade-off between two control
objectives: tracking of individual robot trajectories and

keeping formation. Regarding pure trajectory tracking,
this objective may be influenced by setting appropriate
kinematic tracking gains cxi , c

y
i , c

�
i or dynamic tracking

parameters cvxi , cvvi , c
!
i . In turn, the formation geometry

maintenance can be affected by mutual coupling termsecxij, ecyij and ec�ij.
4. Simulation study

In this section, we illustrate the behaviour of robots in
a formation when the two control algorithms proposed
in Section 3 are applied. We consider the case of three
robots with two different communication structures: a
connected one, as illustrated in Figure 3(a), and a

disconnected one, as illustrated in Figure 3(b).
For both connected and disconnected communica-

tion networks, we allow for perturbations to occur. In
particular, we consider the perturbation of Robot 1
due to a displacement of this robot at time t¼ 200 from
its current position along (�x, �y)¼ (15, �26) in the ~e 0

frame. This perturbation, although unrealistic in

1894 A. Sadowska et al.
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practice, serves well to present behaviour of robots in
the formation in the presence of perturbations.

In all simulations in this section we consider a
formation geometry maintenance index defined as
follows. Let ri(t)¼ col(xi(t), yi(t)) denote a robot’s
actual position with respect to the inertial coordinate
frame ~e 0 and pi(t) a robot’s desired position in the
formation relative to the virtual centre. Then the
formation geometry maintenance index is defined
according to

IðtÞ ¼
X3
i¼1

X3
j¼1
j 6¼i

kriðtÞ � rj ðtÞk � k piðtÞ � pj ðtÞk
� 	2

, ð43Þ

which shows discrepancy between actual formation
shape and the desired one. In particular, it measures
the difference between actual and desired distances
between all pairs of robots in the formation. Note that
I(t)¼ 0 occurs if and only if the formation shape is
maintained, modulo a rotation or a reflection (a mirror
image). We still consider a formation shape to be
maintained despite a possible rotation or a reflection
because we are purely interested here in verifying the
geometric shape of the formation.

We choose the desired trajectory of the formation’s
virtual structure as

_xdvc ¼ 5 cos�dvc,

_ydvc ¼ 5 sin�dvc,

_�dvc ¼ 0:2 sin t,

ð44Þ

in which xdvc ð0Þ ¼ 0, ydvc ð0Þ ¼ 0 and �dvc ð0Þ ¼ 0.
Moreover, initial conditions of robots in the formation
are given by x1ð0Þ, y1ð0Þ,�1ð0Þð Þ ¼ �23:56, 4:01,� �

3

� 	
,

(x2(0), y2(0),�2(0))¼ (5, 1.23,��) and x3ð0Þ, y3ð0Þ,ð

�3ð0ÞÞ ¼ 12, 15:55, �2
� 	

. Furthermore, the desired for-
mation shape is defined via p1 ¼

�
�10, � 10

ffiffi
3
p

3

	T
,

p2 ¼
�
10, � 10

ffiffi
3
p

3

	T
and p3 ¼

�
0, 20

ffiffi
3
p

3

	T
and forms an

equilateral triangle as illustrated in Figure 4 in which

the length of the sides equals 20. All simulations in this

section are performed for the period of time t2 [0,300].

4.1 Kinematic formation control algorithm

In this section we present simulation results regarding
the kinematic formation control law given in
Section 3.2. Besides the simulation settings introduced
in the introduction of this section, the additional
control parameters are summarised in Table 1.

With such a choice of simulation settings, all
conditions in Theorem 3.1 are now met and hence
global exponential stability of the formation error
dynamics is guaranteed. The simulations presented
next will, firstly, illustrate that the robots (asymptoti-
cally) form the desired formation. Secondly, they will
illustrate the benefit of mutual coupling between the

Figure 4. Desired formation geometry used in the simula-
tions and experiments.

Table 1. List of control parameters used in simulations in
Section 4.1. Note that in the case of a disconnected
communication graph, coupling gains ec�23 and ec�32 for
�2 {x, y, �} are set to 0.

Robot 1 cx1 ¼ 6 cy1 ¼ 4 c�1 ¼ 0:1ecx12 ¼ 19 ecy12 ¼ 15 ec�12 ¼ 3ecx13 ¼ 0 ecy13 ¼ 0 ec�13 ¼ 0

Robot 2 cx2 ¼ 6 c
y
2 ¼ 1:5 c�2 ¼ 0:3ecx21 ¼ 19 ecy21 ¼ 15 ec�21 ¼ 3ecx23 ¼ 27 ecy23 ¼ 15 ec�23 ¼ 3

Robot 3 cx3 ¼ 2 c
y
3 ¼ 3 c�3 ¼ 0:5ecx31 ¼ 0 ecy31 ¼ 0 ec�31 ¼ 0ecx32 ¼ 27 ecy32 ¼ 15 ec�32 ¼ 3

R1 R2 R3

(a)

R1 R2 R3

(b)

Figure 3. Communication graph structures used in simula-
tions: (a) connected graph and (b) disconnected graph.
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robots in terms of the robustness of the formation
keeping properties in the face of perturbations and the
convergence speed with which the robots form the
desired formation. The simulation results are shown in
Figures 5–7. In Figure 5, we depict robots’ paths in the
case of the connected communication graph of the
formation in Figure 3(a). For the sake of convenience,
in Figure 5(b), we zoom in on the part of the plot when
the perturbation occurs to show in more detail the
robots’ paths. Evidently, robots in the formation
converge to the desired formation geometry which is
the equilateral triangle. Then, when Robot 1 is
perturbed, the unperturbed robots abandon tempora-
rily their desired trajectories in favour of keeping
formation geometry. This is due to the particular

choice of mutual coupling terms ecxij, ecyij, ec�ij which
dominate chosen tracking control gains cxi , c

y
i and c�i .

The results are different when the communication
graph is disconnected, see Figure 6. Although the
formation shape seems to be restored, when the
perturbation takes place, only Robot 1 and Robot 2
try to counteract its effect and keep the formation
shape while Robot 3 is unaware of the perturbation
and thus it does not divert from its desired trajectory in
order for the formation shape to be maintained. This
affects the value of the formation geometry main-
tenance index, see Figure 7. After the perturbation, the
formation geometry maintenance index is larger in the
case of the disconnected communication graph than in
the case of the connected communication graph.

0 500 1000 1500
−50

0

50

100

150

200

250

300

x

y
Robot 1
Robot 2
Robot 3

(a)

900 950 1000 1050 1100

120

140

160

180

200

220

240

260

280

300

x

y

Robot 1
Robot 2
Robot 3

Perturbation

(b)

Figure 5. Robot paths on the plane in the case of a connected communication graph and the kinematic control algorithm (16):
(a) whole paths and (b) zoomed-in part of the paths during the perturbation.

0 500 1000 1500

0

50

100

150

200

250

300

x

y

Robot 1
Robot 2
Robot 3

(a)

900 950 1000 1050 1100 1150

120

140

160

180

200

220

240

260

280

300

320

x

y
Robot 1
Robot 2
Robot 3

Perturbation

(b)

Figure 6. Robot paths on the plane in the case of a disconnected communication graph and the kinematic control algorithm (16):
(a) whole paths and (b) zoomed-in part of the paths during the perturbation.
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Something similar may also be observed at the
beginning of the simulations. As a result of nonzero
initial conditions, the formation geometry maintenance
index is also non-zero and converges to zero faster
when the connectivity condition of the communication
graph holds.

We summarise our findings in the following
remark.

Remark 6: Formation behaviour under the forma-
tion control law in (16) can be improved if the
communication graph G of the formation is connected.
This requirement stems from the fact that each robot
needs to be able to exchange information with the rest
of the group so that every member of the formation is
aware of the actual performance of the whole group.
Only if the communication graph is connected, we can
be sure that the actual performance is known to each
robot through their neighbours. This guarantees that
the two objectives of trajectory tracking and formation
keeping are achieved individually. On the other hand,
when the communication graph of the formation is
disconnected, one obtains pure trajectory tracking by
some of the robots. By implication this also solves the
formation control problem, but as illustrated by the
simulation results, a better performance in terms of
the robustness of the formation with respect to
perturbations may be obtained when the communica-
tion graph is indeed connected.

4.2 Dynamic formation control algorithm

In this section we present the simulation results
for the dynamic formation control law given in

Section 3.3. We provide all control parameters used

in the simulations appearing in this section in Tables 1

and 2.
In Figure 8, robot paths in the case of a connected

communication graph are shown. It can be concluded

that initially all robots converge to their desired

position in the formation and form the shape of the

equilateral triangle. This situation changes entirely

when a perturbation is applied to Robot 1.

Interestingly, even though only Robot 1 is perturbed,

both remaining robots also adjust their positions to

keep the desired geometry. This comes about on

account of the mutual coupling terms that cause the

robots to again face a trade-off between trajectory

tracking and formation shape preservation, as in the

case of the kinematic control law in the previous

subsection. It may be seen in Figure 8(b) that when

Robot 1 is perturbed, both Robot 2 and Robot 3 react

to this perturbation so that the perturbation is

counteracted and the formation shape remains close

to the desired formation geometry in the transient after

the perturbation. On the other hand, in the case of a

disconnected communication graph Robot 3 does not

react when the perturbation occurs, as illustrated in

Figure 9(b) which presents the part of paths of the

robots during the perturbations.
As in the previous set of simulations, we can even

more clearly observe the advantage of having a

connected communication graph by presenting the

formation geometry maintenance index, see Figure 10.

In particular, we can observe two positive aspects of

such a communication structure. First of all, the index

has a larger magnitude in the case of the communica-

tion graph being disconnected both at the beginning of

the simulations and when the perturbation occurs.

Moreover, it approaches zero at a faster rate when the

communication graph is connected.

5. Experiments

In this section, experimental results are presented to

validate practical applicability of the controller design

proposed in Section 3. In Section 5.1, the experimental

setup is presented and experimental results are

discussed in Section 5.2.

0 50 100 150 200 250 300
0

1000

2000

3000

4000

5000

6000

7000

8000

t

I

disconnected
connected

Perturbation

Figure 7. Comparison between formation geometry main-
tenance index I using the kinematic control algorithm for a
connected and a disconnected communication graph.

Table 2. List of control parameters used in simulations in
Section 4.2.

Robot 1 cvv1 ¼ 15 cvx1 ¼ 15 c!2 ¼ 15
Robot 2 cvv2 ¼ 15 cvx2 ¼ 15 c!2 ¼ 15

Robot 3 cvv3 ¼ 9 cvx3 ¼ 9 c!3 ¼ 15

International Journal of Control 1897
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5.1 Experimental setup

The experimental setup is shown in Figure 11.

The experiments are performed with three E-Puck

mobile robots (Mondada and Bonani 2007). The

E-Puck robot has two driven wheels, which are

individually actuated by means of stepper motors.

Moreover, we use a camera as a localisation device for

getting the position and orientation of all robots, and a

PC. The PC generates robot trajectories, processes

camera images to get the actual pose of the robots,

and runs the control laws for all the robots.

The control velocities are sent from the PC to the

robots via a BlueTooth protocol. This way of

implementation is chosen due to the limiting

processing power of the onboard robot processors

and due to the limited bandwidth of the BlueTooth

communication.
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Figure 8. Robot paths on the plane in the case of a connected communication graph and the dynamic control algorithm (36):
(a) whole paths and (b) zoomed-in part of the paths during the perturbation.
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Figure 9. Robot paths on the plane in the case of a disconnected communication graph and the dynamic control algorithm (36):
(a) whole paths and (b) zoomed-in part of the paths during the perturbation.
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Figure 10. Comparison between formation geometry main-
tenance index I using the dynamic control algorithm for a
connected and a disconnected communication graph.
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5.2 Experimental results

In this section, we illustrate the behaviour of a mobile

robot formation under the influence of the kinematic

control law given in Theorem 3.1 based on

experiments.
The control parameters employed in the experi-

ments are summarised in Table 3. Moreover, the

desired virtual structure’s trajectory is given by

xdvc ðtÞ ¼ 0:05t� 1:2, ð45Þ

ydvc ðtÞ ¼ 0:1 cosð0:3tÞ þ 0:025t� 0:7, ð46Þ

where xdvc and ydvc are in meters and t is in seconds.
As in the simulations, the desired formation

shape is an equilateral triangle as shown in Figure 4

where p1 ¼
�
�0:15m, �0:15ffiffi

3
p m

	T
, p2 ¼

�
0:15m,

�0:15ffiffi
3
p m

	T
and p3 ¼

�
0m, 0:3ffiffi

3
p m

	T
. Thus the sides of

the triangle have a length of 0.3m. The perturbation is
a manual displacement of one of the robots in the
formation executed after around 30 s.

The experimental results are presented in

Figures 12 and 13. In particular, in Figure 12(a) we

present the robots’ paths in the case of completely

height

width

length

The arena: length= 2.2 (m), width= 3.2 (m), height= 2.3 (m).

Two-camera systems PC E-Pucks

Figure 11. The experimental setup.

Table 3. List of control parameters used in experiments in
Section 5.2.

cxi ¼ 11s c
y
i ¼ 30 c�i ¼ 0:51secxij ¼ 2:51s ecyij ¼ 30 ec �ij ¼ 0:11s
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uncoupled robots, where ecxij ¼ 0, ecyij ¼ 0 and ec�ij ¼ 0.
This is equivalent to a completely disconnected
communication graph of the formation. In turn, in
Figure 12(b), robots’ paths in the plane are presented
when the communication graph is connected according
to the communication network shown in Figure 3(a). It
can be seen in the plots that in both cases robots in the
formation converge to the desired formation shape.
Moreover, after the perturbation has occurred, the
neighbours of the perturbed robot in Figure 12(b)
diverge from their desired trajectories to recover the
formation shape. This formation keeping behaviour is
induced by the coupling terms added to the formation
control algorithm and is absent in Figure 12(a) for a

disconnected communication graph. We can therefore
again confirm that these additional coupling terms
in (16) enhance actual formation behaviour of robots
in the formation.

The beneficial influence of allowing robots in the
formation to exchange information with each other is
also confirmed by examining Figure 13 which com-
pares the formation geometry maintenance index (43)
for a connected and a disconnected communication
graph. Clearly, when the communication graph is
connected, the index is smaller except for the perturba-
tion peak. This is purely due to the fact that in
experiments the displacement is done manually and
therefore is not equal in the case of a connected and a
disconnected communication graph. In fact, it is larger
in the experiment with the connected communication
graph which may be seen explicitly by comparing
Figure 12(a) and (b). Apart from the very moment of
the perturbation, the formation geometry maintenance
index is smaller for the case of a connected commu-
nication graph. Moreover, despite the larger perturba-
tion magnitude, the formation geometry maintenance
index decreases faster in the case of a connected
communication graph.

6. Conclusions

In this article, a virtual structure controller is designed
for the formation control of unicycle mobile robots.
We have proposed two controllers depending on the
kind of the unicycle robot: one based on a kinematic
model of a mobile robot and the other based on a
dynamic model of a mobile robot. They both introduce
mutual coupling between the individual robots,
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Figure 12. Robot paths obtained in experiments: (a) disconnected communication graph and (b) connected communication
graph.
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Figure 13. Comparison between formation geometry main-
tenance index in the case of a connected and a disconnected
communication graph.
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thereby providing more robustness to the formation in
the face of perturbations as compared to leader–
follower (i.e. master–slave) type approaches.
Moreover, we give a stability proof of the proposed
approach for a formation of an arbitrary number of
robots. In doing so, we are able to claim an exponential
convergence rate of the formation error variables to
zero, which is associated with a certain amount of
robustness. Simulations and experiments performed
for three-robot systems demonstrate the practical
applicability of the approach. These results also show
that the tuning of the mutual coupling parameters
provides a means to weigh the importance of main-
taining formation versus the importance of the
individual robots tracking their individual desired
trajectories. Moreover, we have observed that if the
communication graph of the formation is connected
and mutual coupling is effected, the performance of the
formation and more specifically sensitivity to pertur-
bations is improved.

Our future work will include a more extensive
theoretical analysis of the influence of the connectivity
condition of the communication graph on the forma-
tion behaviour. Moreover, we want to also examine the
case when the persistence of excitation condition does
not to hold and possibly there are temporary failures in
the inter–robot communication.
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