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In this paper convergence properties of piecewise affine (PWA) systems are studied. In general,

a system is called convergent if all its solutions converge to some bounded globally

asymptotically stable steady-state solution. The notions of exponential, uniform and quadratic

convergence are introduced and studied. It is shown that for non-linear systems with

discontinuous right-hand sides, quadratic convergence, i.e., convergence with a quadratic

Lyapunov function, implies exponential convergence. For PWA systems with continuous

right-hand sides it is shown that quadratic convergence is equivalent to the existence of a

common quadratic Lyapunov function for the linear parts of the system dynamics in every

mode. For discontinuous bimodal PWA systems it is proved that quadratic convergence is

equivalent to the requirements that the system has some special structure and that certain

passivity-like condition is satisfied. For a general multimodal PWA system these conditions

become sufficient for quadratic convergence. An example illustrating the application of the

obtained results to a mechanical system with a one-sided restoring characteristic, which is

equivalent to an electric circuit with a switching capacitor, is provided. The obtained results

facilitate bifurcation analysis of PWA systems excited by periodic inputs, substantiate

numerical methods for computing the corresponding periodic responses and help in controller

design for PWA systems.

1. Introduction

In many control problems it is required that controllers

are designed in such a way that all solutions of the

corresponding closed-loop system ‘‘forget’’ their initial

conditions. Actually, one of the main tasks of feedback

is to eliminate the dependency of solutions on initial

conditions. In this case, all solutions converge to some

steady-state solution that is determined only by the

input of the closed-loop system. This input can be, for

example, a command signal or a signal generated by a

feedforward part of the controller or, as in the observer

design problem, it can be the measured signal from the

observed system. Such a ‘‘convergence’’ property of a

system plays an important role in many non-linear

control problems including tracking, synchronization,

observer design, and the output regulation problem; see,

e.g., Special Issue (1997) and Pavlov et al. (2005b) and

references therein. From a dynamics point of view,

‘‘convergence’’ is an interesting property because

it excludes the possibility of multiple coexisting

steady-state solutions: a convergent system excited by

a periodic input has a unique globally asymptotically

stable periodic solution (Demidovich 1967). Also, the

notion of ‘‘convergence’’ is a powerful tool for analysis

of time-varying systems. This tool can be used, for

example, for performance analysis of non-linear control

systems (Heertjes et al. 2006, Pavlov et al. 2006).
For asymptotically stable linear systems excited by

inputs, convergence is a natural property. Indeed, due

to linearity of the system, every solution is globally

asymptotically stable and, therefore, all solutions

of such a system ‘‘forget’’ their initial conditions and

converge to each other. After transients, the dynamics

of the system are determined only by the input.

For non-linear systems, in general, global asymptotic*Corresponding author. Email: n.v.d.wouw@tue.nl
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stability of a system with the zero input does
not guarantee that all solutions of this system with a
non-zero input ‘‘forget’’ their initial conditions and
converge to each other. There are many examples of
non-linear globally asymptotically stable systems that,
being excited by a periodic input, have coexisting
periodic solutions. Such periodic solutions do not
converge to each other. This fact indicates that for
non-linear systems the convergent dynamics property
requires additional conditions.
The property that all solutions of a system ‘‘forget’’

their initial conditions and converge to some steady-
state solution has been addressed in a number
of publications. In Pliss (1966) this property was
investigated for systems with right-hand sides that are
periodic in time. In that work systems with a unique
periodic globally asymptotically stable solution were
called convergent. Later, the definition of convergent
systems given in Pliss (1966) was extended in
Demidovich (1967) to the case of systems that are not
necessarily periodic in time. According to Demidovich
(1967), a system is called convergent if there exists a
unique solution that is bounded on the whole time axis
and this solution is globally asymptotically stable; see
also Pavlov et al. (2004). Obviously, if such a solution
does exist, all other solutions, regardless of their initial
conditions, converge to this solution, which can be
considered as a steady-state solution. In Demidovich
(1961, 1967) (see also Pavlov et al. (2004)) a sufficient
condition for such a convergence property for smooth
non-linear systems was presented. With the development
of absolute stability theory, Yakubovich (1964) showed
that for a linear system with one scalar non-linearity
satisfying some incremental sector condition, the circle
criterion guarantees the convergence property for this
system with any non-linearity satisfying this incremental
sector condition. The property of solutions converging
to each other was also addressed in LaSalle and
Lefschetz (1961), Yoshizawa (1966) and Chua and
Green (1976).
Several decades after these publications, the interest

in stability properties of solutions with respect to one
another revived. Incremental stability, incremental
input-to-state stability and contraction analysis are
some of the terms related to such properties. In the
mid-nineties, Lohmiller and Slotine (1998) introduced
the notion of contraction and independently extended
the result of Demidovich. A different approach was
pursued in Fromion et al. (1996, 1999). In this approach
a dynamical system is considered as an operator that
maps some functional space of inputs to a functional
space of outputs. If such an operator is Lipschitz
continuous (has a finite incremental gain or is incremen-
tally stable), then, under certain observability and
reachability conditions, all solutions of a state-space

realization of this system converge to each other. In

Angeli (2002) a Lyapunov approach was developed to

study both the global uniform asymptotic stability of all

solutions of a system (in Angeli (2002), this property is

called incremental stability) and the so-called incremen-

tal input-to-state stability property, which is compatible

with the input-to-state stability approach; see, e.g.,

Sontag (1995). Problems of analysis and design of

convergent systems (in the sense of Demidovich) were

studied in Pavlov et al. (2005a,b).
It is interesting to note that for a long time it was a

common belief that a non-linear system perturbed by a

periodic external signal should have a unique periodic

steady-state response. Van der Pol and van der Mark

(1927) demonstrated that this is not the case even for a

simple second order system. Nevertheless, in their mathe-

matical analysis, Cartwright and Littlewood (1945)

remarked that their ‘‘faith in results was at one time

sustained only by the experimental evidence that stable

subharmonics of two distinct orders did occur’’. With the

development of Melnikov’s method (see, e.g., Wiggins

(2003)) it is now well known that a periodically driven

system can exhibit chaotic behaviour. This situation is

impossible for convergent systems, so the convergent

systems are those that would not surprise van der Pol,

Cartwright and Littlewood. Nevertheless conditions for

convergence are important from a practical point of view.
In this paper we study the convergence properties for

the class of piecewise affine (PWA) systems. This class

of systems attracted a lot of attention over the last years,

see, e.g., Johansson and Rantzer (1998), Bemporad et al.

(2000), Heemels et al. (2002), Johansson (2002), Juloski

(2004) and references therein. It includes, for example,

mechanical systems with piecewise linear restoring

characteristics, systems with friction, electrical circuits

with diodes and other switching characteristics, and

control systems with switching controllers. In this paper

we present conditions for convergence for both

continuous (but non-smooth) and discontinuous PWA

systems. Most of the existing conditions for convergence

(or convergence-type properties like incremental

stability, contraction) are formulated in terms of the

existence of some Lyapunov-type function and for this

reason are hardly checkable (Yoshizawa 1966, Chua and

Green 1976, Angeli 2002). In this paper we present

computationally efficient conditions for convergence

of PWA systems. Existing computationally tractable

conditions for this property require continuous

differentiability of the right-hand side (see, e.g.,

Lohmiller and Slotine (1998) and Fromion et al.

(1999)) and therefore they are not directly applicable

to PWA systems, which have non-smooth, and,

in general, discontinuous right-hand sides. This fact

indicates the novelty of the presented results.

1234 A. Pavlov et al.
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Results on convergence can be used in several
ways. It is known that a convergent system excited
with a periodic input has a unique globally asympto-
tically stable periodic solution with the same period
time as the period time of the input; see, e.g.,
Demidovich (1967) and Pavlov et al. (2005a). In
bifurcation analysis such a property allows one to
significantly reduce computational efforts for con-
structing the bifurcation diagram. Namely, if the
system is convergent, only period-1 steady-state
solutions can exist, while other responses (and thus
bifurcations giving rise to such responses), such as
period-k, k¼ 2, 3, . . . , solutions or quasi-periodic beha-
viour, cannot occur. In practice these period-k
resonances often represent some unwanted dynamics
of the system and should be avoided. If a system is
designed to be convergent or it is made convergent by
means of feedback, it does not have these problematic
dynamics. Moreover, the existence and uniqueness of
a periodic response of a convergent system to a
periodic excitation substantiates many numerical
methods for computing periodic solutions
of periodically excited systems, see, e.g., Aprille and
Trick (1972), Hajj and Skelboe (1981), Parker and
Chua (1989) and van den Eijnde and Schoukens
(1990).
The paper is organized as follows. In x 2 we provide

preliminaries on systems with discontinuous right-hand
sides. In x 3 definitions of (uniformly, exponentially,
quadratically) convergent systems are provided and
some properties of convergent systems are studied.
In x 4 necessary and sufficient conditions for quadratic
convergence of PWA systems with continuous right-
hand sides are provided. In x 5 we present necessary
and sufficient conditions for quadratic convergence of
bimodal PWA systems with possibly discontinuous
right-hand sides and extend the sufficient conditions
to the case of multi-modal PWA systems. Theoretical
results presented in this paper are illustrated in x 6
with application to a perturbed mass-spring-damper
system with a one-sided spring, which is equivalent
to some RLC circuit with a diode. Conclusions
are presented in x 7.

2. Preliminaries

In this paper we consider systems of the form

_x ¼ f ðx, tÞ, ð1Þ

where x2R
n, t2R, and f (x, t) is a possibly discontin-

uous vector field. It is assumed that f (x, t) satisfies some
mild regularity assumptions that guarantee the existence
of solutions of the system in the sense of Filippov (1988).
According to Filippov (1988), one can construct a

set-valued function F(x, t) such that a solution of the
differential inclusion

_x2Fðx, tÞ

is called a solution for system (1). By definition, the
solution x(t, t0,x0) with the initial condition
x(t0, t0, x0)¼ x0 is an absolutely continuous function of
time.

Consider a scalar continuously differentiable function
V(x). Define a time derivative of this function along
solutions of system (1) as follows

_V :¼
@VðxÞ

@x
_x t, t0, x0ð Þ:

Since V(x) is continuously differentiable and the
solution x(t, t0, x0) is an absolutely continuous function
of time, the derivative of V(x(t, t0, x0)) exists for almost
all t in the interval of existence ½t0, �T Þ of the solution
x(t, t0, x0).

For the function V(x) we can also define its upper
derivative along solutions of system (1) as follows:

_V �ðx, tÞ ¼ sup
�2Fðx, tÞ

@VðxÞ

@x
�

� �
:

Then for almost all t2 ½t0, �T Þ it follows that

_V x t, t0, x0ð Þ, tð Þ � _V � x t, t0, x0ð Þ, tð Þ: ð2Þ

Remark 1: Notice that in the domains of continuity
of the function f (x, t) the derivative of V(x) along
solutions of system (1) equals _Vðx, tÞ ¼ ð@VðxÞ=@xÞf ðx, tÞ.
According to Filippov (1988, p. 155), for a continuously
differentiable function V(x) it holds that if the inequality

@VðxÞ

@x
f ðx, tÞ � 0

is satisfied in the domains of continuity of the function
f (x, t), then the inequality _V �ðx, tÞ � 0 holds for all
ðx, tÞ 2R

nþ1.
For the sake of clarity, we provide definitions of

stability of an arbitrary solution.

Definition 1: A solution �xðtÞ of system (1) that is
defined for t2 ðt�,þ1Þ is said to be

. stable if for any t0 2 ðt�,þ1Þ and ">0 there exists
�¼ � (", t0)>0 such that jxðt0Þ � �xðt0Þj < � implies
jxðtÞ � �xðtÞj < " for all t� t0;

. uniformly stable if it is stable and the number � in the
definition of stability is independent of t0;

. globally asymptotically stable if it is stable and any
solution of system (1) satisfies jxðtÞ � �xðtÞj ! 0 as
t!þ1;

. uniformly globally asymptotically stable if it is
uniformly stable and for any R>0 and any ">0
there exists T(",R)>0 such that if |x(t0)|�R,

Convergence properties of piecewise affine systems 1235
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t0 2 ðt�,þ1Þ, then jxðtÞ � �xðtÞj < " for all
t � t0 þ Tð",RÞ;

. globally exponentially stable if there exist constants
C>0 and �>0 such that any solution of system (1)
satisfies

jxðtÞ � �xðtÞj � Ce��ðt�t0Þ x t0ð Þ � �x t0ð Þ
�� ��: ð3Þ

3. Convergent systems

In this section we give definitions of convergent systems.
These definitions extend the definition given in
(Demidovich 1967).

Definition 2: System (1) is said to be

. convergent if there exists a solution �xðtÞ satisfying the
following conditions

(i) �xðtÞ is defined and bounded on R,
(ii) �xðtÞ is globally asymptotically stable;

. uniformly convergent if it is convergent and �xðtÞ is
uniformly globally asymptotically stable;

. exponentially convergent if it is convergent and x(t) is
globally exponentially stable.

The solution �xðtÞ is called a steady-state solution.
As follows from the definition of convergence, any
solution of a convergent system ‘‘forgets’’ its initial
condition and converges to some steady-state solution.
In general, the steady-state solution �xðtÞ may be
non-unique. But for any two steady-state solutions
�x1ðtÞ and �x2ðtÞ it holds that j �x1ðtÞ � �x2ðtÞj ! 0 as
t!þ1. At the same time, for uniformly convergent
systems the steady-state solution is unique, in the
sense that it is the only solution that is bounded on R

(Pavlov et al. 2005b).

Remark 2: In the original definition of convergent
systems given in Demidovich (1967), the steady-state
solution �xðtÞ is required to be unique. In Definition 2
this requirement of uniqueness is omitted, since for the
practically important case of uniform convergence,
uniqueness of the steady-state solution can be proved
as a corollary to the definition of the uniform
convergence.

The convergence property is an extension of
stability properties of asymptotically stable linear
time-invariant (LTI) systems. One can easily show
that for a piecewise continuous vector-function g(t),
which is defined and bounded on R, the system
_x ¼ Axþ gðtÞ with a Hurwitz matrix A is exponentially
convergent.
In systems and control theory, time dependency of

the right-hand side of system (1) is usually due to

some input. This input may represent, for example,

a disturbance or a feedforward control signal. Below we

will consider convergence properties for systems with

inputs. So, instead of systems of the form (1), we

consider systems

_x ¼ f ðx,wÞ, ð4Þ

with state x2R
n and input w2R

m. In the sequel we will

consider the class PCm of piecewise continuous inputs

wðtÞ: R ! R
m that are bounded on the whole time axis

R. We assume that the function f (x,w) is bounded on

any compact set of (x,w) and the set of discontinuity

points of the function f (x,w) has measure zero. Under

these assumptions on f (x,w), for any input w2PCm the

differential equation _x ¼ f ðx,wðtÞÞ has well-defined

solutions in the sense of Filippov.
Below we define the convergence property for systems

with inputs.

Definition 3: System (4) is said to be (uniformly,

exponentially) convergent if it is (uniformly, exponen-

tially) convergent for every input w2PCm. In order

to emphasize the dependency on the input w(t), the

steady-state solution is denoted by �xwðtÞ.

Note that the property of (uniform) convergence is

invariant under smooth coordinate transformations.

The property of exponential convergence is invariant

under coordinate transformations z¼ (x) with the

functions  and  �1 being globally Lipschitz.
Convergent systems enjoy various properties which

are encountered in asymptotically stable LTI systems,

but which are not usually met in general asymptotically

stable non-linear systems; see e.g., Pavlov et al. 2005b.

As an illustration, we provide a statement that

summarizes some properties of uniformly convergent

systems excited by periodic or constant inputs.

Proposition 1 (Demidovich 1967, see also Pavlov et al.

2005b): Suppose system (4) with a given input w(t) is

uniformly convergent. If the input w(t) is constant, the

corresponding steady-state solution �xwðtÞ is also constant;

if the input w(t) is periodic with period T, then the

corresponding steady-state solution �xwðtÞ is also periodic

with the same period T.

Below we give an important technical definition of

quadratic convergence.

Definition 4: System (4) is called quadratically con-

vergent if there exists a positive definite matrix

P¼PT>0 and a number �>0 such that for any

input w2PCm, the function Vðx1, x2Þ ¼ 1=2ðx1 � x2Þ
T
�

Pðx1 � x2Þ satisfies

_V � x1, x2, tð Þ � �2�V x1, x2ð Þ, ð5Þ

1236 A. Pavlov et al.
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where V*(x1, x2, t) is the upper derivative of the
function V(x1, x2) along any two solutions x1(t) and
x2(t) of the corresponding differential inclusion
_x2Fðx,wðtÞÞ, i.e.,

_V � x1, x2, tð Þ ¼ sup
�1 2Fðx1,wðtÞÞ

@V

@x1
x1, x2ð Þ�1

� �

þ sup
�2 2Fðx2wðtÞÞ

@V

@x2
x1, x2ð Þ�2

� �
:

Quadratic convergence is a useful tool for establishing
exponential convergence for systems with possibly
discontinuous right-hand sides, as follows from the
next lemma.

Lemma 1: If system (4) is quadratically convergent,
then it is exponentially convergent.

Proof: See Appendix.

Although for the case of systems with continuous
right-hand sides, statements similar to Lemma 1 have
been studied in several publications (see, e.g., Yoshizawa
(1966) Chua and Green (1976), Angeli (2002)), the case
of systems with discontinuous right-hand sides consid-
ered in Lemma 1 is not that straightforward and
involves a lot of additional technicalities.

Remark 3: As follows from Remark 1, quadratic
convergence (inequality (5)) is equivalent to the
inequality

x1 � x2ð Þ
TP f x1,wð Þ � f x2,wð Þð Þ

� �� x1 � x2ð Þ
TP x1 � x2ð Þ ð6Þ

being satisfied for all w2R
m and all x1 and x2 from the

continuity domain of the function f (x,w). This fact will
be used in the proofs of subsequent results.

For some particular classes of systems, quadratic
convergence can be equivalent to certain simple easily
verifiable conditions. In the next two sections we present
computationally tractable conditions for quadratic
convergence for PWA systems with continuous and
discontinuous right-hand sides.

4. Convergence for continuous PWA systems

Consider the state space Rn divided into polyhedral cells
�i, i¼ 1, . . . , l, by hyperplanes given by equations of the
form HT

j xþ hj ¼ 0, for some Hj 2R
n and hj 2R,

j¼ 1, . . . , k. We will consider piecewise-affine systems
of the form

_x ¼ Aixþ bi þDw, for x2�i, i ¼ 1, . . . , l: ð7Þ

Here Ai 2R
n�n, D2R

n�m and bi 2R
n, i¼ 1, . . . , l, are

constant matrices and vectors, respectively. The vector

x2R
n is the state and w2R

m is the input. The
hyperplanes HT

j xþ hj ¼ 0, j¼ 1, . . . , k, are the switching
surfaces. The following theorem establishes necessary
and sufficient conditions for the quadratic convergence
of system (7) with a continuous right-hand side.

Theorem 1: Consider system (7). Suppose the right-
hand side of system (7) is continuous. Then the following
statements are equivalent.

(i) System (7) is quadratically convergent.
(ii) There exists a positive definite matrix P¼PT>0

such that

PAi þ AT
i P < 0, i ¼ 1, . . . , l: ð8Þ

Proof: See Appendix.

Remark 4: Condition (8) is a standard condition for
exponential stability of the piecewise linear system
_x ¼ Aix, x2�i, without inputs. In Theorem 1 we deal
with the convergence property of piecewise affine
systems (7) with inputs. In general, exponential stability
of a system without inputs does not imply the
convergence property of this system excited by non-
zero inputs, even though the system can be exponentially
stable with a quadratic Lyapunov function. For general
PWA systems this statement will be illustrated in the
next section.

Remark 5: Theorem 1 can be viewed as a counterpart
of the following statement for smooth non-linear
systems of the form

_x ¼ f ðx,wÞ, x2R
n, w2R

m: ð9Þ

It is known—see, e.g., results on convergent systems in
Demidovich (1967) and Pavlov et al. (2004), results on
incremental stability in Fromion et al. (1999) and results
on contraction analysis in Lohmiller and Slotine
(1998)—that if the matrix inequality

P
@f

@x
ðx,wÞ þ

@fT

@x
ðx,wÞP � �Q ð10Þ

holds for some P¼PT>0, Q¼QT>0 and all
x2R

n, w2R
m, then system (9) is quadratically con-

vergent (contracting or quadratically incrementally
stable, as it would be called in Lohmiller and Slotine
(1998) and Fromion et al. (1999), respectively). In the
above mentioned references f (x,w) is required to be
continuously differentiable with respect to x. Although
there is a clear analogy between condition (10) for
smooth systems and condition (8) for PWA systems,
the above mentioned result is not directly applicable
to PWA systems since the right-hand side of a PWA
system is not continuously differentiable. In the proof
of Theorem 1 we overcome this technical difficulty
of non-differentiability and introduce a technique that

Convergence properties of piecewise affine systems 1237
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will be used in subsequent results on convergence of
PWA systems with discontinuous right-hand sides.

Remark 6: As follows from Remark 3, Theorem 1
shows that for a continuous piecewise-affine vector-field
f (x,w) of the form

f ðx,wÞ ¼ Aixþ bi þDw, for x2�i, i ¼ 1, . . . , l,

condition (8) is equivalent to the inequality (6) being
satisfied for some �>0 and all w2R

m, x1 and x2 2R
n.

This fact will be used in subsequent results in this paper.
The continuity requirement on the right-hand side of

system (7) can be checked with the following lemma,
whose proof can be found, for example, in Pavlov
et al. (2005b).

Lemma 2: Consider system (7). The right-hand side of
system (7) is continuous iff the following condition is
satisfied: for any two cells �i and �j having a common
boundary HT

ij xþ hij ¼ 0 the corresponding matrices Ai

and Aj and the vectors bi and bj satisfy the equalities

GijH
T
ij ¼ Ai � Aj

Gijhij ¼ bi � bj,
ð11Þ

for some vector Gij 2R
n.

5. Convergence for discontinuous PWA systems

Based on the result of the previous section one can
conjecture that an arbitrary piecewise affine system (7)
with a possibly discontinuous right-hand side is con-
vergent provided there is a common quadratic
Lyapunov function for the state matrices Ai. However
this is not the case as one can see from the following
simple example. Suppose the system dynamics is
governed by the following scalar differential equation
with a discontinuous right-hand side

_x ¼ aðxÞ, x2R
1,

where the function a(x) is depicted schematically in
figure 1. It is seen that the system belongs to the class of
piecewise affine systems and in each region the dynamics
are linear. Moreover, it is not difficult to see that the
system is globally exponentially stable with the common
quadratic Lyapunov function V¼ x2.
Now suppose that the dynamics of the system is

modified with an additive input signal

_x ¼ aðxÞ þ wðtÞ, x2R
1:

It is clear from the picture that for some input signals
(e.g., constant) the dynamics of the system can depend
on the initial conditions (one can take such a constant
input signal that the system has two asymptotically

stable equilibria), or, in other words, the system is not

convergent. This simple example illustrates that even

the existence of a common Lyapunov function for each

mode of a piecewise affine system is not sufficient to

guarantee its convergence. Moreover, this example

shows that the requirement of continuity of the

right-hand side of a PWA systems plays an important

role for the convergence property and we have to be

careful when analysing convergence for discontinuous

PWA systems. In fact, for bimodal piecewise-affine

systems the existence of a common Lyapunov function

and the requirement similar to the continuity conditions

(11), provided that some passivity-like condition is

satisfied, are even necessary and sufficient for the

quadratic convergence, as follows from the result

presented hereafter.
Consider the bimodal system

_x ¼
A1xþ b1 þDw, for HTx � 0

A2xþ b2 þDw, for HTx < 0,

�
ð12Þ

where x2R
n, w2R

m and Ai, bi, i¼ 1, 2, and D are

matrices of the appropriate dimensions. The switching

plane is determined by the constant vector H2R
n.

Denote �A :¼A1�A2, �b :¼ b1� b2.

Theorem 2: Consider system (12). The following

statements are equivalent.

(i) System (12) is quadratically convergent.
(ii) There exist a positive definite matrix P¼PT>0 and

numbers �>0 and � � 0 satisfying the following

LMI

PA1 þ AT
1Pþ �I P�A�

1

2
HHT

�ATP�
1

2
HHT �HHT

0
B@

1
CA � 0, ð13Þ

P�b ¼ ��H: ð14Þ

a(x)

x

−w

Figure 1. Piecewise affine characteristics a(x).

1238 A. Pavlov et al.



D
ow

nl
oa

de
d 

B
y:

 [T
ec

hn
is

ch
e 

U
ni

ve
rs

ite
it 

E
in

dh
ov

en
] A

t: 
07

:5
0 

25
 O

ct
ob

er
 2

00
7 

(iii) There exist a positive definite matrix P¼PT>0, a
number � 2 f0, 1g and a vector G2R

n such that

PAi þ AT
i P < 0, i ¼ 1, 2, ð15Þ

�A ¼ GHT, ð16Þ

P�b ¼ ��H: ð17Þ

Proof: see Appendix.

Remark 7: In part (iii) of Theorem 2 there are two
options: �¼ 0 and �¼ 1. For the case �¼ 0 condition
(17) yields �b¼ 0. This, together with condition (16),
implies that the right-hand side of system (12) is
continuous (see Lemma 2). For the case of �¼ 1, we
see that the discontinuity may occur only due to the shift
terms bi. In this case conditions (15) and (17) express
that the two linear systems (A1,�b,HT) and (A2,�b,
HT) with the state matrices A1, A2, input matrix �b and
output matrix HT are strictly passive with the same
matrix P.
The implication (iii))(i) in Theorem 2 can be

extended to the case of PWA systems (7) having more
than two modes with the switching surfaces not
necessarily going through the origin, i.e., given by
equations of the form HT

j xþ hj ¼ 0. This statement is
formulated in the next theorem.

Theorem 3: Consider PWA system (7). Suppose there
exists a positive definite matrix P¼PT>0 satisfying

PAi þ AT
i P < 0, i ¼ 1, . . . , l, ð18Þ

and for any pair of cells �i and �j having a common
boundary given by HT

ij xþ hij ¼ 0 (such that �i � fx2R
n:

HT
ij xþ hij � 0g and �j � fx2R

n: HT
ij xþ hij < 0g) there

exist a vector Gij 2R
n and a number �ij 2 f0, 1g satisfying

Ai � Aj ¼ GijH
T
ij , ð19Þ

P bi � bj � Gijhij
� �

¼ ��ijHij: ð20Þ

Then system (7) is quadratically convergent.

Proof: see Appendix.

Remark 8: In general, the converse statement is not
true. There is an example of a quadratically convergent
PWA system with 4 switching modes with the system
matrices satisfying condition (18), but not satisfying
condition (19); see van den Berg et al. (2006).

6. Illustrating example

In this section, we illustrate the theory presented in x 4
on the convergence condition for continuous PWA
systems. An important class of engineering systems,
namely mechanical systems with one-sided restoring

characteristics (such systems also have their counter-
parts in electric circuits), can be described as continuous
PWA systems. Many mechanical systems exhibit such
one-sided stiffness characteristics. Practical examples are
elastic stops in vehicle suspensions, rubber snubbers on
solar panels on satellites (van Campen et al. 1997),
mooring cables securing drilling platforms to the sea bed
(Thompson and Stewart 1986) or suspension bridges.
From an engineering perspective, the behaviour of such
systems under external perturbations is important to
ensure performance and/or the avoidance of damage or
failure. Often the perspective of periodic disturbances
(Fey 1992, Fey et al. 1996, Heertjes 1999, Heertjes et al.
1999) or stochastic disturbances (van de Wouw et al.
2002) is taken to investigate the perturbed non-linear
dynamics of these types of systems. Here, we will adopt
the perspective of periodic disturbances. In Fey (1992),
Fey et al. (1996), Heertjes (1999) and Heertjes et al.
(1999) it is shown that the non-smooth non-linearity
induced by a one-sided restoring characteristic causes
a multitude of non-linear phenomena, such as period-1
solutions, period-k, k¼ 2, 3, . . . , solutions, quasi-
periodic behaviour and even chaos. In these references
extensive (and computationally expensive) numerical
bifurcation analysis are performed. Herein, it is shown
that in a wide range of parameters, steady-state sol-
utions, such as period-1 solutions, i.e., periodic with the
same period time as the period time of the excitation,
and period-k, k¼ 2, 3, . . . , solutions, i.e., periodic with
the period time k times larger than the period time of the
excitation can coexist. From the perspective of mechan-
ical vibrations the period-k solutions lead to additional
non-linear resonances (often called subharmonic reso-
nances), which are often considered to be unwanted.

Clearly, the coexistence of period-1 and period-k,
k¼ 2, 3, . . . , attractors is excluded in uniformly conver-
gent systems, since these systems exhibit, for any
bounded input, a unique solution bounded on R,
which is the globally asymptotically stable steady-state
solution, see x 3. Moreover, for periodic disturbances the
steady-state solution is also periodic with the same
period time; see Proposition 1. Clearly, the conditions
for uniform convergence proposed in this paper can help
in identifying areas in parameter space in which no
coexisting solutions that are bounded on R can occur
and can thereby support a bifurcation analysis in an
efficient manner. Of course it should be noted that
the convergence conditions proposed in xx 4 and 5 are
conservative and can therefore never identify the exact
location of a bifurcation point.

Here we will consider a single-degree-of-freedom
mass-spring-damper system with a one-sided spring, as
depicted in figure 2. An electric circuit equivalent to this
mechanical system is depicted in figure 3. In Fey (1992)
and Fey et al. (1996) it is shown that more complex

Convergence properties of piecewise affine systems 1239
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multi-degree-of-freedom systems exhibit a similar

behavioural complexity and therefore the systems

in these figures represent a relevant case-study.
The dynamics of the mechanical system shown in

figure 2 can be formulated in the form (7), with l¼ n¼ 2,

m¼ k¼ 1, x ¼ ½z _z�T, wðtÞ ¼ A sinð!tÞ, b1¼ b2¼ [0 0]T,

�1 ¼ fx jx1 > 0g, �2 ¼ fx j x1 < 0g and

A1 ¼

0 1

�
k

m
�

b

m

2
4

3
5, A2 ¼

0 1

�
kþ knl

m
�

b

m

2
4

3
5,

D ¼

0

1

m

2
4

3
5: ð21Þ

The displacement of the mass is denoted by z, its velocity

by _z. The system has mass m, (linear, two-sided) stiffness

k, damping constant b and the stiffness of the one-sided

spring is knl. Moreover, the harmonic input

wðtÞ ¼ A sinð!tÞ is characterized by an amplitude A

and an angular frequency !.
The dynamics of the equivalent electric circuit

depicted in figure 3 can also be represented in the

form (7), with l¼ n¼ 2, m¼ k¼ 1, x ¼ ½
R t

0 iðsÞds i�
T,

wðtÞ ¼ A sinð!tÞ, b1 ¼ b2 ¼ ½0 0�T, �1 ¼ fx j x1 � 0g,

�2 ¼ fx j x1 < 0g and

A1 ¼

0 1

�
1

LC1
�
R

L

2
4

3
5, A2 ¼

0 1

�
C1 þ C2

LC1C2
�
R

L

2
4

3
5,

D ¼

0

1

L

2
4

3
5: ð22Þ

Here i is current, w is voltage, C1 and C2 are capacities,

R is resistance and L is inductance.
Because of the equivalence of the mechanical system

shown in figure 2 and the circuit shown in figure 3,

we will consider only the dynamics of the mechanical

system. We adopt the following parameter setting:

m¼ k¼ 1, b¼ 0.2, A ¼ 1 and knl¼ 6. In van de Wouw

(1999), it shown that for this parameter setting, the

system exhibits coexisting period-1 and period-k,

k¼ 2, 3, . . . , for a wide range of excitation frequencies

!. For an excitation frequency !¼ 4.5, the coexistence

of a period-1 solution (period time 2�/!) and a period-3

solution (period time 3 � 2�/!) is illustrated in figure 4.

It should be noted that the period-k, k¼ 2, 3, . . . ,

solutions are generally born through fold bifurcations

or period doubling bifurcations, while taking ! as a

bifurcation parameter (Fey 1992). Clearly, the system

is not convergent in this case and no solution for the

LMIs (8) exists.
In figure 5, results are displayed for knl¼ 0.4.

The LMIs (8) are now solvable with a matrix P

satisfying the LMIs:

P ¼
1546:7 132:9
132:9 1274:6

� �
: ð23Þ

This figure illustrates that all solutions converge to

a unique globally asymptotically stable steady-state

solution. Moreover, this solution is period-1; i.e., it

exhibits the same period time as the input w. The

convergence condition implies the absence of a bifurca-

tion, giving rise to period-k, k¼ 2, 3, . . . , solutions, for

0 10 20 30 40 50 60 70

−0.2

0

0.2

0.4

0.6

0.8

Time

z

Non-convergent dynamics

period-1 solution
period-3 solution

Figure 4. Displacement z(t) for knl¼ 6 (non-convergent

dynamics); coexistence of period-1 and period-3 steady-state

solutions, for the respective initial conditions x0¼ [0.3 0.5]T

and x0¼ [1 0]T.

w(t) = A sin(w t)

C1

C2

R L

i

Figure 3. RLC circuit with a switching capacitor.

k

b m

knl

w(t) = A sin(wt)

z

Figure 2. Mass-spring-damper system with a one-sided

support.
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any frequency of the disturbance w (in fact the
convergence condition implies the absence of any type
of bifurcation). This, in turn, implies the absence of the
undesired non-linear resonances due to the existence of
period-k, k¼ 2, 3, . . . , solutions. Therefore, uniform
convergence of a system is a desired property, which
should be aimed at already at the stage of system design.
This example also clearly illustrates the difference

between the stability of the unperturbed system
and convergence. Namely, for any value knl>�k of
the one-sided spring stiffness, the unperturbed system,
i.e., with w¼ 0, exhibits a globally asymptotically stable
equilibrium point x¼ 0. This can easily be derived using
the dissipative nature of the system. However,
the discussion above shows that convergence property
encompasses much more than asymptotic stability
of the equilibrium point of the unperturbed system
(although it implies it) and that the system under
consideration is only convergent for small values of knl.

7. Conclusions

In this paper we have considered convergence properties
for piecewise affine (PWA) systems. First, we have
introduced the notion of (exponential, uniform) con-
vergence and studied some properties of convergent
systems. Secondly, the notion of quadratic convergence
has been introduced. Quadratic convergence is a useful
tool for establishing the exponential convergence
property. It is shown that for a non-linear system
with a possibly discontinuous right-hand side,
quadratic convergence implies exponential convergence.

Thirdly, for PWA systems with continuous right-hand

sides we have shown that quadratic convergence is

equivalent to the existence of a common quadratic
Lyapunov function for the linear parts of the system

dynamics in every mode. As it has been demonstrated

with an example, for discontinuous PWA systems the

existence of a common quadratic Lyapunov function

for the linear parts of the system dynamics does not
guarantee convergence. For a discontinuous bimodal

PWA system we have proved that for quadratic

convergence it is necessary and sufficient that disconti-

nuity occurs only due to the shift terms, while the state
matrices of the linear parts of the dynamics, the

difference between the shift terms, and the vector of

the switching plane satisfy certain passivity condition.

Then the sufficient conditions from this statement

have been extended to the case of (discontinuous)
PWA systems with arbitrary number of modes.

The obtained results provide tools for studying

convergence properties for non-smooth and discontin-

uous systems. Application of these results has been
illustrated with an example containing analysis

of dynamics of a mass-spring-damper system with a

one-sided spring, which is equivalent to some electric

circuit with a diode.
The presented results on convergence can be used in

several ways. A uniformly convergent system excited

with a periodic input has a unique periodic solution,

which is globally asymptotically stable and has the

same period time as the period time of the input.
In bifurcation analysis such a property allows one to

significantly reduce computational efforts for finding

other periodic (period-1 or period-k, k¼ 2, 3, . . .)

responses to periodic excitations. In practice period-k,

k¼ 2, 3, . . . , responses represent unwanted non-linear
phenomena. They may lead to undesired resonances in

the low frequency range and, for this reason, should be

avoided. If a system is designed to be convergent or it is

made convergent by means of feedback, it does not have
these problematic dynamics. Moreover, the existence

and uniqueness of the periodic response of a convergent

system to a periodic excitation substantiates many

numerical methods for computing periodic solutions

of periodically excited systems. Further work will
be directed towards exploiting the presented results

on convergent PWA systems in the scope of

tracking, observer design, synchronization and the

output regulation problem.
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Appendix

7.1 Proof of Lemma 1

Consider the system

_x ¼ fðx,wðtÞÞ, ð24Þ

where w(t) is some bounded piecewise-continuous input.
First, we show the existence of a solution �xwðtÞ of system
(24) that is defined and bounded on the whole time axis
(�1,þ1). The existence of such �xwðtÞ will be shown
using the following lemma.

Lemma 3 (Yakubovich 1964): Consider system (24)
with a given input w(t) defined for all t2R. Let D � R

n be
a compact set that is positively invariant with respect to
system (24). Then there is at least one solution �xðtÞ
satisfying �xðtÞ 2D for all t2 ð�1,þ1Þ.

In order to apply this lemma, we need to prove the
existence of a compact positively invariant set D.
Consider the function W(x) :¼ 1/2xTPx. The upper
derivative of this function along solutions of system
(24) satisfies

_W �ðx, tÞ ¼ sup
� 2Fðx,wðtÞÞ

xTP�

� sup
�2Fðx,wðtÞÞ

xTP� � inf
�1 2Fð0,wðtÞÞ

xTP�1

þ sup
�2 2Fð0,wðtÞÞ

xTP�2:

Notice that for the function V(x1, x2) from the definition
of quadratic stability it holds that

_V �ðx, 0, tÞ ¼ sup
�2Fðx,wðtÞÞ

xTP� þ sup
�1 2Fð0,wðtÞ

�xTP�1
� �

¼ sup
�2Fðx,wðtÞÞ

xTP� � inf
�1 2Fð0,wðtÞÞ

xTP�1:

Therefore,

_W �ðx, tÞ � _V �ðx, 0, tÞ þ sup
�2 2Fð0,wðtÞÞ

xTP�2
�� ��: ð25Þ

By the quadratic convergence property it holds that

_V �ðx, 0, tÞ � �2�Vðx, 0Þ ¼ ��jxj2P, ð26Þ

where jxj2P ¼ xTPx. At the same time, by the Cauchy
inequality it holds that jxTP�2j � jxjPj�2jP. Hence

sup
�2 2Fð0,wðtÞÞ

xTP�2
�� �� � jxjP sup

�2 2Fð0,wðtÞÞ

�2j jP: ð27Þ

Recall that the input w(t) is bounded, i.e. |w(t)|�R for
all t2R, for some R>0. By the assumption on the

right-hand side of system (4) (see x 2), the function
f(x,w) takes bounded values on any compact set of
(x,w). Therefore the set f�2R

n: �2Fð0,wÞ, jwj � Rg is
bounded. Therefore, for some constant �c > 0 it
holds that

sup
�2 2Fð0,wðtÞÞ

j�2jP � sup
�2 2Fð0,wÞ

jwj�R

j�2jP � �c: ð28Þ

Combining inequalities (25)–(28) we obtain

_W �ðx, tÞ � jxjP ��jxjP þ �cð Þ: ð29Þ

Hence, _W �ðx, tÞ � 0 for all t2R and all x satisfying
jxjP � �c=�. Taking into account the relation between the
derivative and upper derivative of W(x) along solutions
x(t) of system (24) (see (2)), we obtain

_WðxðtÞÞ � 0

for almost all t such that jxðtÞjP � �c=�. This implies that
the set D :¼ fx: jxjP � �c=�g is compact and positively
invariant. By Lemma 3 there exists a solution �xwðtÞ that
satisfies �xwðtÞ 2D for all t2R.

Next, we need to show global exponential stability
of �xwðtÞ. By the quadratic convergence property it
holds that

_V �ðx, �xwðtÞ, tÞ � �2�Vðx, �xwðtÞÞ:

Consider some solution xðtÞ :¼ xðt, t0, x0Þ of system (24).
Recall that the derivative of V along x(t) and �xwðtÞ
satisfies _VðxðtÞ, �xwðtÞÞ � _V �ðxðtÞ, �xwðtÞ, tÞ for almost
all t (see x 2). Therefore,

_VðxðtÞ, �xwðtÞÞ � �2�VðxðtÞ, �xwðtÞÞ

for almost all t� t0. Since V(x1, x2) is a quadratic
form with respect to the difference (x1� x2), the last
inequality implies

xðtÞ � �xwðtÞ
�� �� � Ce��ðt�t0Þ x t0ð Þ � �xw t0ð Þ

�� ��,
where the number C>0 depends only on the matrix P.
Therefore, the global exponential and, thus, uniform
asymptotic stability of the steady-state solution is
proved. œ

7.2 Proof of Theorem 1

(ii))(i) Denote the right-hand side of (7) by f(x,w).
Since P satisfies LMI (8), there exists a constant �>0
such that

PAi þ AT
i P < �2�P, i ¼ 1, . . . , l: ð30Þ

Let us show that for these � and P inequality (6) holds
for all x1, x2 2R

n and all w2R
m.

First, consider the case when both points x1 and x2
belong to the closure of the same cell �i with the

1242 A. Pavlov et al.
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dynamics _x ¼ Aixþ bi þDw. Then, f(x1,w)¼Aix1þ

biþDw and f(x2,w)¼Aix2þ biþDw. Therefore,

x1 � x2ð Þ
TP f x1,wð Þ � f x2,wð Þð Þ

¼ x1 � x2ð Þ
TP Aix1 � Aix2ð Þ

¼
1

2
x1 � x2ð Þ

T PAi þ AT
i P

� �
x1 � x2ð Þ

� �� x1 � x2ð Þ
TP x1 � x2ð Þ: ð31Þ

Thus, inequality (6) holds for such points x1 and x2.
Next, we consider the case of x1, x2 from different

cells. Denote y1 :¼x1, yp :¼ x2 and yi, i¼ 2, . . . , p� 1, —

the points of intersection of the line segment (x1, x2) with

the switching surfaces such that any pair of points yi,

yiþ1 lies in the closure of the same cell and the sequence

y1, y2, . . . , yp is ordered, see figure 6.
Denote e :¼ (x1� x2)/|x1�x2|P. Since all points yi,

i¼ 1, . . . , p, lie on the same line and they are

ordered, then

e ¼
yi � yiþ1

yi � yiþ1

�� ��
P

, i ¼ 1, . . . , p� 1: ð32Þ

Taking this fact into account, we obtain

x1�x2ð Þ
TP f x1,wð Þ� f x2,wð Þð Þ

¼ x1�x2j jP

Xp�1

i¼1

eTP f yi,wð Þ� f yiþ1,wð Þð Þ

¼ x1�x2j jP

Xp�1

i¼1

yi�yiþ1ð Þ
TP f yi,wð Þ� f yiþ1,wð Þð Þ

yi�yiþ1

�� ��
P

: ð33Þ

Since any pair of points yi, yiþ1 belongs to the closure of

the same cell, from the first step of the proof we obtain

yi � yiþ1ð Þ
TP f yi,wð Þ � f yiþ1,wð Þð Þ

� �� yi � yiþ1ð Þ
TP yi � yiþ1ð Þ

¼ �� yi � yiþ1

�� ��2
P
:

Substituting this inequality in (33) implies

x1 � x2ð Þ
TP f x1,wð Þ � f x2,wð Þð Þ

� �� x1 � x2j jP

Xp�1

i¼1

yi � yiþ1

�� ��
P
: ð34Þ

Since all points yi, i¼ 1, . . . , p, lie on the same line and

they are ordered,

Xp�1

i¼1

yi � yiþ1

�� ��
P
¼ y1 � yp

�� ��
P
¼ x1 � x2j jP: ð35Þ

This fact together with (34) implies (6). This completes

the proof of the implication (ii))(i).
(i))(ii). Consider the dynamics of system (7) in a cell

�i. The right-hand side of the system in �i equals

f(x,w)¼Aixþ biþDw. Therefore, quadratic conver-

gence of system (7) implies

x1 � x2ð Þ
TPAi x1 � x2ð Þ

� �� x1 � x2ð Þ
TP x1 � x2ð Þ ð36Þ

for all x1, x2 2�i. Consider a point x� from the interior

of �i. Then there exists " > 0 such that ðx� þ "yÞ 2�i

for all y2R
n satisfying |y|� 1. By substituting

x1 :¼x� þ "y and x2 :¼ x� in (36) and dividing both

sides of the resulting inequality by "2 we obtain

yTPAiy ¼
1

2
yT PAi þ AT

i P
� �

y � ��yTPy

for all y2R
n satisfying |y|� 1. This yields

PAi þ AT
i P � �2�P < 0: ð37Þ

Due to arbitrary choice of the cell �i, we conclude that

(37) holds for all i¼ 1, . . . , l. œ

7.3 Proof of Theorem 2

The theorem will be proved in the following order:

(i))(ii))(iii))(i).
(i))(ii). According to Remark 3, quadratic conver-

gence of system (12) implies that there exists a positive

definite matrix �P ¼ �PT > 0 and a number �>0 such

that for any x1 and x2 satisfying the inequalities

HTx1>0 and HTx250 it holds that

x1 � x2ð Þ
T �P A1x1 þ b1 � A2x2 � b2ð Þ

� �� x1 � x2ð Þ
T �P x1 � x2ð Þ: ð38Þ

By denoting e :¼x1�x2 and taking into account the fact

that �� �P � � ��I for some �� > 0, we conclude that

inequality (38) implies

eT �P A1eþ�Ax2 þ�bð Þ � � ��jej2 ð39Þ

Switching surfaces

x1 = :y1

x2 = :y4

y2

y3

Figure 6. The points yi on the line segment (x1, x2): each pair

yi, yiþ1 lies in the closure of the same cell and the sequence

y1, . . . , y4 is ordered.

Convergence properties of piecewise affine systems 1243
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for all e and x2 from the set �1 :¼ {(e, x2): HTx250,

HTeþHTx2>0}. Let us show that inequality (39) yields

eT �P A1eþ�Ax2ð Þ þ ��jej2 � 0 ð40Þ

eT �P�b � 0 ð41Þ

for all ðe, x2Þ 2�1. Consider some point ðe, x2Þ 2�1.

Then for all l>0 it holds that ðle, lx2Þ 2�1. As follows

from inequality (39), this yields

l2 eT �P A1eþ�Ax2ð Þ þ ��jej2
� �

þ leT �P�b � 0

for all l>0. One can easily check that this inequality is

satisfied for all l>0 iff the inequalities (40) and (41)

hold. Due to arbitrary choice of ðe, x2Þ 2�1, we conclude

that inequalities (40) and (41) are satisfied for all

ðe, x2Þ 2�1.
Repeating the same steps as in the first part of the

proof, but this time for points x1 and x2 satisfying

HTx150 and HTx2>0, we conclude that the inequality

eT �P A1e��Ax1ð Þ þ ��jej2 � 0 ð42Þ

holds for all ðe, x1Þ 2�2, where �2 :¼ fðe, x1Þ: H
Tx150,

�HTeþHTx1 > 0g. By denoting ~x1 :¼ �x1, we see that

eT �P A1eþ�A ~x1ð Þ þ ��jej2 � 0 ð43Þ

holds for all ðe, ~x1Þ 2 ~�2, where ~�2 :¼ fðe, ~x1Þ :

HT ~x1 > 0,HTeþHT ~x1 < 0g.
No we can show that (13) is feasible. Combining

inequalities (40) and (43) we obtain that the quadratic

form Fðe, �Þ :¼ eT �PðA1eþ�A�Þ þ ��jej2 satisfies

Fðe, �Þ � 0 for ðe, �Þ: Gðe, �Þ < 0, ð44Þ

where Gðe, �Þ :¼ �THðHTeþHT�Þ. Due to continuity of

F and non-strict inequality for F in (44), the last

inequality is equivalent to

Fðe, �Þ � 0 for ðe, �Þ: Gðe, �Þ � 0: ð45Þ

Applying the S-procedure, see e.g., Boyd et al. (1994)

and Yakubovich et al. (2004), we obtain that the

conditional inequality (45) is equivalent to the uncondi-

tional inequality

Fðe, �Þ � �Gðe, �Þ � 0 ð46Þ

for some �� 0 and all ðe, �Þ 2R
2n. The equivalence holds

because the S-procedure is lossless in case of one

quadratic constraint, see e.g., Yakubovich et al. (2004).

Notice that since the quadratic form Fðe, �Þ is not

negative semidefinite, � 6¼ 0 (otherwise the equivalence

between (45) and (46) does not hold). Notice that

inequality (46) is equivalent to the following LMI

�PA1 þ AT
1
�Pþ 2 ��I �P�A� �HHT

�AT �P� �HHT �2�HHT

� �
� 0: ð47Þ

Since �>0, from this inequality we obtain (13) with
P :¼ �P=ð2�Þ and � :¼ ��=�.

It remains to show that inequality (14) holds for
the presented P and some � � 0. To this end, consider
inequality (41), which holds for all ðe, x2Þ 2�1.
Notice that for all e satisfying HTe>0 there exists x2
such that ðe, x2Þ 2�1. Therefore, eT �P�b � 0 for all e
satisfying HTe>0. One can easily check that this is
possible iff �P�b ¼ � ��H for some �� � 0. After dividing
both sides of the obtained equation by 2�, we obtain (14)
with P ¼ �P=ð2�Þ and � :¼ ��=ð2�Þ. This finishes the proof
of implication (i))(ii).

(ii))(iii) First, we will show that conditions (15)–(17)
hold for some matrix P¼PT>0, vector G2R

n and
some � � 0. If �¼ 0 this proves this implication. If �>0,
then by dividing (15) and (17) by � we obtain that
relations (15) and (17) hold for ~P :¼ P=� and ~� ¼ 1.
This proves the remaining part of the implication.

Let us show that conditions (15)–(17) hold for some
matrix P¼PT>0, vector G2R

n and some � � 0. We
only need to show (15) and (16), since (17) coincides
with (14). One can easily see that inequality (13) implies
PA1 þ AT

1P � ��I < 0. Next we show that inequality
PA2 þ AT

2P � ��I < 0 holds. Denote the matrix in (13)
by M. Then inequality (13) yields

x
�x

� �T

M
x
�x

� �
� 0 ð48Þ

for all x2R
n. After elaborating the left-hand side of (48)

we obtain xTðPA2 þ AT
2Pþ �IÞx � 0 for all x2R

n.
Hence, we have shown (15). Let us show that (16)
holds for some G2R

n. This is done in the same way as
in Juloski et al. (2002). Suppose �2 kerðHTÞ. From the
structure of the matrix M we obtain

0
�

� �T

M
0
�

� �
¼ 0:

Since M¼MT50, this equality implies M(0, �T)T¼ 0.
Taking into account the structure of M, we obtain that
P�A�¼ 0. Since P is non-degenerate, we conclude that
�A�¼ 0. Thus we have shown that kerðHTÞ � kerð�AÞ.
This relation, in turn, implies the existence of a vector
G2R

n such that �A¼GHT. This concludes the proof
of the implication (ii))(iii).

(iii))(i) Let us write the system (12) in the following
form

_x ¼ ~fðx,wÞ þ bðxÞ, ð49Þ

where

~fðx,wÞ :¼
A1xþDw, forHTx� 0
A2xþDw, forHTx< 0,

�
ð50Þ

bðxÞ :¼
b1, for HTx � 0
b2, for HTx < 0:

�
ð51Þ

1244 A. Pavlov et al.
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As follows from Remark 3, for quadratic convergence

of system (49) it is sufficient that, for some matrix

P¼PT>0 and number �>0, the inequality

x1 � x2ð Þ
TP ~f x1,wð Þ þ b x1ð Þ � ~f x2,wð Þ � b x2ð Þ

	 

� �� x1 � x2ð Þ

TP x1 � x2ð Þ ð52Þ

holds for all x1 and x2 such that HTx1 6¼ 0 and

HTx2 6¼ 0, i.e. in the continuity points of the right-

hand side of system (49). The vector-field ~f(x,w) is

piecewise affine. Moreover, as follows from condition

(16) and Lemma 2, ~f(x,w) is continuous. Since the

matrices A1 and A2 satisfy (15) for some P¼PT>0,

then by Theorem 1 (see Remark 6) the inequality

x1 � x2ð Þ
TP ~f x1,wð Þ � ~f x2,wð Þ

	 

� �� x1 � x2ð Þ

TP x1 � x2ð Þ ð53Þ

holds for all x1 and x2 2R
n. Hence,

x1 � x2ð Þ
TP ~f x1,wð Þ þ b x1ð Þ � ~f x2,wð Þ � b x2ð Þ

	 

� �� x1 � x2ð Þ

TP x1 � x2ð Þ

þ x1 � x2ð Þ
TP bðx1Þ � bðx2Þð Þ: ð54Þ

It remains to show that

x1 � x2ð Þ
TP b x1ð Þ � b x2ð Þð Þ � 0 ð55Þ

for all x1 and x2 such that HTxi 6¼ 0, i¼ 1, 2. If x1 and x2
belong to the same cell, i.e. either HTxi>0, i¼ 1, 2 or

HTxi50, i¼ 1, 2, then b(x1)¼ b(x2) and, therefore, the

left-hand side of (55) equals zero. If HTx1>0 and

HTx250, then b(x1)� b(x2)¼ b1� b2¼�b. Taking into

account equality (17), we see that the left-hand side of

(55) satisfies

ðx1 � x2Þ
TP�b ¼ ��ðx1 � x2Þ

TH

¼ �� HTx1 �HTx2
� �

� 0:

In the same way inequality (55) is proven for all x1 and

x2 satisfying HTx150 and HTx2>0. Thus, we have

shown that inequality (55) holds for all x1 and x2 such

that HTxi 6¼ 0, i¼ 1, 2. Inequalities (55) and (54) jointly

imply (52). This completes the proof of the implication

(iii))(i). œ

7.4 Proof of Theorem 3

Let f(x,w) denote the right-hand side of (7), i.e.,

fðx,wÞ ¼ Aixþ bi þDw, for x2�i, i ¼ 1, . . . , l:

According to Remark 3, we only need to show

that for the Lyapunov function Vðx1, x2Þ :¼

1=2ðx1 � x2Þ
TPðx1 � x2Þ the inequality

_Vðx1, x2,wÞ ¼ ðx1 � x2Þ
TPðfðx1,wÞ � fðx2,wÞÞ

� �2�Vðx1, x2Þ ð56Þ

holds for any w2R
m, x1 and x2 from the continuity

domain of the function f(x,w).
If x1 and x2 belong to the same cell, then (56) is

obviously satisfied. Let us now consider the case of x1
and x2 belonging to the interior of two neighbouring

cells �i and �j, respectively. In this case, we can consider

our system as a bimodal system with the switching

surface HT
ij xþ hij ¼ 0. To apply Theorem 2 we need to

transform the coordinates of the system such that the

switching surface goes through the origin. This is

achieved by shifting the coordinates as ~x ¼ x� x� for

some x� lying on the switching surface, i.e. such that

HT
ij x� þ hij ¼ 0. Then the system transforms into

_~x ¼
Ai ~xþ ~bi þDw, HT

ij ~x � 0

Aj ~xþ ~bj þDw, HT
ij ~x < 0,

(
ð57Þ

with ~bi ¼ bi þ Aix� and ~bj ¼ bj þ Ajx�. For this system

the conditions (18), (19) coincide with the corresponding

conditions (15), (16) in Theorem 2. Condition (17) is

satisfied due to condition (20) and the fact that

~bi � ~bj ¼ bi � bj þ ðAi � AjÞx� ¼ bi � bj þ GijH
T
ij x�

¼ bi � bj � Gijhij,

where we have used (19). Hence all conditions of

Theorem 2 are satisfied for system (57) and therefore

the derivative _Vð ~x1, ~x2,wÞ along solutions of (57)

satisfies _Vð ~x1, ~x2,wÞ � �2�Vð ~x1, ~x2Þ for any ~x1 and ~x2
not lying on the switching surface HT

ij ~x ¼ 0. Since

Vðx1, x2Þ 	 Vð ~x1, ~x2Þ, this implies that the derivative
_Vðx1, x2,wÞ along solutions x1(t) and x2(t) of the original

system also satisfies _Vðx1, x2,wÞ � �2�Vðx1, x2Þ for any
x1 and x2 from the interior of �i and �j, respectively, i.e.

(56) holds.
Next we consider the case of arbitrary x1 and x2 from

the continuity domain of f(x,w). Consider the straight

line segment connecting the points x1 and x2. Let

y1 :¼x1, yp :¼ x2 and yi, i¼ 2, . . . , p� 1, be the points on

the line segment such that the points yi, yiþ1 for any

i¼ 1, . . . , p� 1, belong to the interior of two neighboring

cells and the sequence y1, . . . , yp is ordered, see figure 7.
According to the first part of the proof we have

yi � yiþ1ð Þ
TP f yi,wð Þ � f yiþ1,wð Þð Þ

� �� yi � yiþ1ð Þ
TP yi � yiþ1ð Þ

¼ �� yi � yiþ1

�� ��2
P
:

Convergence properties of piecewise affine systems 1245
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With this fact, by repeating the reasoning from the proof
of Theorem 1, see formulas (32)–(35), we prove that
inequality (56) holds for any x1 and x2 from the
continuity domain of f(x,w). This completes the proof
of the theorem. œ
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