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Abstract

High-speed milling is widely used in the manufacturing industry. For the efficiency of the milling process, high demands on the
material removal rate and the surface generation rate are posed. The process parameters, determining these two rates, are restricted
by the occurrence of regenerative chatter. Chatter is an undesired instability phenomenon, which causes both a reduced product
quality and rapid tool wear. In this paper, the milling process is modelled, based on dedicated experiments on both the material
behaviour of the workpiece material and the machine dynamics. These experiments show that both the material properties and the
machine dynamics are dependent on the spindle speed. Furthermore, a method for the prediction of the chatter boundaries is
proposed and applied in order to predict the chatter boundaries as a function of process parameters, such as spindle speed and
depth-of-cut, for spindle speed varying material and machine parameters. Finally, experiments are performed to estimate these
chatter boundaries in practice. The modelled chatter boundaries are compared to the experimental results in order to validate the
model and the stability analysis.
 2003 Elsevier Ltd. All rights reserved.

Keywords: High-speed milling; Regenerative chatter; Machine dynamics;D-partitioning method; Stability

1. Introduction

In the present manufacturing industry, the high-speed
milling process plays an important role. Some examples
are the fabrication of moulds and the aeroplane building
industry, where large amounts of material are removed
from a large structure. The milling process is most
efficient if the material removal rate is as large as poss-
ible, while maintaining a high quality level. For a certain
machine–tool–workpiece combination, the main factors
that influence this removal rate are the spindle speed, the
depth-of-cut (axial and radial) and the feed rate.

During the milling process, chatter can occur at cer-
tain combinations of axial depth-of-cut and spindle
speed. This is an undesired phenomenon, since the sur-
face of the workpiece becomes non-smooth as a result
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of heavy vibrations of the cutter. Moreover, the cutting
tool and machine wear out rapidly and a lot of noise is
produced when chatter occurs. Several physical mech-
anisms causing chatter can be distinguished[21]. Wierci-
groch et al.[20,22] and Grabec[5] showed that friction
between the tool and workpiece can cause chatter. Chat-
ter can also be caused by the thermodynamics of the
cutting process[4,21]. In [16], the phenomenon of
mode-coupling is discussed as a cause of chatter. Chatter
due to these physical mechanisms is often called primary
chatter. Secondary chatter is caused by the regeneration
of waviness of the surface of the workpiece. This so-
called regenerative chatter is considered to be one of the
most important causes of instability in the cutting pro-
cess. This type of chatter will be considered in this paper.

Several studies have been performed since the late
1950s regarding regenerative chatter, by e.g. Tobias and
Fishwick [18,19], Tlusty and Polacek[17], Merrit [10]
and Altintas[1]. It was shown that the border between
a stable cut (i.e. no chatter) and an unstable cut (i.e. with
chatter) can be visualized in terms of the axial depth-of-
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cut as a function of the spindle speed. This results in a
stability lobes diagram (SLD). Using these diagrams it
is possible to find the specific combination of machining
parameters, which results in the maximum chatter-free
material removal rate.

In order to predict the stability boundaries related to
chatter, an accurate dynamic model for the milling pro-
cess is needed. Various models have been suggested by
e.g. Tlusty [16], Altintas [1] and Insperger and Stépán
[6]. Despite the differences between these models, they
all use parameters to describe the cutting process and
machine dynamics, that are constant for the full spindle
speed range under consideration. This means that depen-
dencies of the dynamic behaviour of the milling machine
or the cutting process on the spindle speed are not mod-
elled. To investigate such dependencies, dedicated
experiments have to be performed. Furthermore, a differ-
ent model should be used, to account for these depen-
dencies. In order to construct stability lobes using this
model, a method which is capable of handling spindle
speed varying model parameters is necessary.

In Section 2, the modelling of the milling process is
described. The model consists of a part which describes
the machine–tool interaction and a part which describes
the machine dynamics. For both model parts, dedicated
experiments are performed to support such modelling for
a large spindle speed range. Based on these experiments,
it can be concluded that the parameters of this model are
dependent on the spindle speed. Furthermore, a material
model has been used which can predict the dependency
of the stability lobes on the feed rate. The resulting
model is described by a set of linear delay differential
equations. In Section 3, the D-partitioning method
[12,14] is used to analyse the stability boundary, in terms
of spindle speed and depth-of-cut, of the equilibrium
point (reflecting a stable cut) of those differential equa-
tions. This method can also be used for spindle speed
dependent model parameters. The results of such a stab-
ility analysis for the model, constructed in Section 2, is
compared to experimentally determined stability bound-
aries in Section 4 for validation purposes. Finally in Sec-
tion 5, conclusions are presented.

2. Modelling

In the milling process, material is removed from a
workpiece by a rotating cutting tool. While the tool
rotates, it translates in the feed direction at a certain
speed. A schematic representation of the milling process
is shown in Fig. 1. The process parameters shown are
the spindle speed �, the feed per tooth (also called chip
load) fz, the radial depth-of-cut ae and the axial depth-
of-cut ap. The chip thickness is not constant, but per-
iodic, as a result of the feed rate and the rotation of
the cutter.
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Fig. 1. Schematic representation of the milling process.

The milling process is an interaction between the tool
and the workpiece. This is shown in the block diagram
of Fig. 2. A certain displacement of the cutter, related
to the feed and rotation angle, is dictated to the spindle.
This displacement results in the static chip thickness hstat.
In order to achieve this displacement, the cutter encoun-
ters a resistance force F due to the workpiece–tool inter-
action, if the cutter is actually in cut. This resistance
force results in a displacement of the cutter u, which
causes a difference between the prescribed displacement
and the actual displacement of the cutter.

The mechanism described above results in vibrations
of the tool, which cause a wavy surface on the work-
piece. The next tooth in cut encounters this wavy surface
and generates its own wavy surface. The chip thickness
is, therefore, the sum of the static and dynamic chip
thickness. The static chip thickness is the result of the
feed per tooth fz and the rotation angle of the cutting
tooth f:hstat(t) = fzsin(f(t)), where the cutting path is
assumed to be a circular arc. The dynamic chip thickness
is a function of the vibration of the tooth in x and y
direction, see Fig. 1, and the vibration of the previous
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tooth in these directions. These displacement coordinates
are gathered in a displacement column u = [ux uy]T. The
dynamic chip thickness can now be described as
hdyn(t) = [sin(f(t)) cos(f(t))](u(t)�u(t�t)). The tooth
passing period time determines the delay time t in Fig.
2. Given the spindle speed � in rpm and z the number
of teeth on the cutter, the tooth passing period time is
defined as

t �
60
z�

. (1)

Appropriate modelling of the cutting process and
machine dynamics (see Fig. 2) is discussed in Sections
2.1 and 2.2, respectively.

2.1. Material model

As mentioned in Section 2, the milling process is an
interaction between the cutting process and the milling
dynamics. In this section, the focus lies on the cutting
process. In literature, various models have been pro-
posed to model the tangential and radial cutting forces
Ft and Fr as a function of the cutting parameters, such
as the depth-of-cut and the feed per tooth. For some of
these models, the forces acting on a single cutting tooth
are shown in Table 1. The parameter Kc1.1 in the model
by Kienzle, is defined as the force that is needed to cut
a chip of 1-by-1 mm.

As was stated before, the static chip thickness is
approximated by hstat = fzsinfj, where fj is the rotation
angle of tooth j. The dynamic chip thickness is assumed
to be the difference between the vibration of the current
tooth, determined by ux(t), uy(t) and fj(t), and the
vibration of the previous tooth, determined by ux(t�t),
uy(t�t) and fj�1(t�t), where fj(t) = fj�1(t�t). Conse-
quently, the chip thickness h encountered by tooth j can
be described as a function of rotation angle fj by h =
hstat + hdyn:

hj(fj(t)) � fzsinfj(t) � (ux(t)�ux(t�t))sinfj(t) (2)

� (uy(t)�uy(t�t))cosfj(t),

with

fj(t) � � t � j J, j � 0,1,…,z�1, (3)

where � is expressed in rad/s and J = 2π/z is the angle
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Fig. 2. Block diagram of the milling process.

between two subsequent teeth. The radial and tangential
forces are zero when the tooth is not in cut. This can be
modelled by multiplying the equations which describe
the force of Table 1 by a function gj(fj(t)), that describes
whether a tooth is in or out of cut. The tooth is in cut
if fs�fj�fe, where fs and fe are the start and exit
angles, respectively. This function is given by [6]:

gj(fj(t)) �
1
2
(1 � sign(sin(fj(t)�y)�p)) (4)

� �1, fs�fj(t)�fe

0, else
,

with

tany �
sinfs�sinfe

cosfs�cosfe
, p � sin(fs�y). (5)

In Table 1, both linear and exponential functions of
the chip thickness are shown. The main advantage of
an exponential model, is the fact that the stability lobes
calculated using such a model are feed rate dependent.
For a fixed spindle speed �, at low chip loads (0.08 or
0.12 mm/tooth) chatter can occur, while at the same
spindle speed for higher chip loads, chatter does not
occur. This behaviour was found in practice, performing
the experiments discussed later in this section, and can-
not be predicted using a linear model. The model used
in this paper is an exponential model, where a constant
term has been added. This term adds the effect of
“ploughing” or “ rubbing” at the flank of the cutting edge
[1]. For a single tooth, the tangential and radial force
are given by:

Ftj
(t) � (Ktaphj(t)xF � Kteap)gj(fj(t)), (6)

Frj
(t) � (Kraphj(t)xF � Kreap)gj(fj(t)), (7)

where 0 � xF � 1, Kt,Kr � 0 and Kte,Kre�0. Using (2),
(4) and (6), the cutting forces can be described as

F(t) � �Fx(t)

Fy(t)
�

� ap �x�1

j � 0

gj(fj(t))���Ktecosfj(t)�Kresinfj(t)

� Ktesinfj(t)�Krecosfj(t)
�

� (fzsinfj(t) � ux(t,t�t)sinfj(t) � uy(t,t�t)

cosfj(t))xF·��Ktcosfj(t)�Krsinfj(t)

� Ktsinfj(t)�Krcosfj(t)
��

(8)
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Table 1
Different models for the cutting force

Author (group) Model Year

Kienzle and Victor [7] F̄t = apKc1.1h̄1�m 1950s
Altintas [1,2] Ft = apKtch + apKte 1990s, 2000s

Fr = apKrch + apKre

Stépán [6,15] Ft = apKthxF 1990s, 2000s
Fr = apKrhxF

with u(t,t�t) = u(t)�u(t�t). This equation can also be
linearized around u = 0, which corresponds to a cut
where no vibrations occur, hence a stable cut without
chatter. This results in F = F(u = 0) + 	F. The linearized
force 	F can then be written as:

	F � ap k(t)u(t,t�t), (9)

with the matrix k(t) defined by

k(t) � �kxx kxy

kyx kyy
� � �z�1

j � 0

fxF�1
z xFgj(fj(t))sxF· (10)

��(Ktc � Krs) �s�1c(Ktc � Krs)

� (Kts�Krc) � s�1c(Kts�Krc)
� ,

where s = sinfj(t) and c = cosfj(t). It can be seen that
the parameters Kte and Kre disappear in this linearization.
However, including these parameters in the definition of
the model (6), gives the advantage to fit the model to
the experimentally found values more accurately, as will
be shown in Fig. 4, later in this section. It can also be
seen that the feed per tooth fz is explicitly included in this
equation. This is a result of the choice of the exponential
model. Should a linear model have been used, i.e. xF

= 1, the feed per tooth fz disappears from Eq. (10).
If the spindle dynamics can be modelled as a linear

mass–spring–damper system, the milling process
described by the block diagram in Fig. 2, obeys:

Mü(t) � Bu̇(t) � Cu(t) � apk(t)u(t,t�t), (11)

with M, B and C the mass, damping and stiffness matr-
ices, respectively. It should be noted that, in Section 2.2,
a higher-order model for the machine dynamics is con-
structed.

In order to identify the parameters Kt, Kr, Kte, Kre and
xF of the model described above, dedicated experiments
are performed. A schematic representation of the experi-
mental setup is shown in Fig. 3. An aluminium 6082
workpiece is mounted on a dynamometer type Kistler
9255. Using this dynamometer and a charge amplifier,
the forces in x, y and z direction, can be measured. The
dynamometer is placed on the machine bed in such a
way that x is the feed direction, y is the normal direction
and z the axial direction. At full immersion (i.e. fs =
0° and fe = 180°), a cut is made and the forces are meas-

Fig. 3. Schematic representation of the setup for the cutting experi-
ments.

ured. The cuts have been made using a Mikron HSM
700 milling machine and a two-teeth, 10 mm diameter
Jabro Tools JH420 cutter mounted in a Kelch shrink-fit
toolholder. The spindle speed has been varied from
15 000 to 40 000 rpm with increments of 5000 rpm. At
each spindle speed, the feed per tooth has been varied
from 0.08 to 0.24 mm/tooth with increments of 0.04
mm/tooth. Two cuts have been made at each combi-
nation of spindle speed and feed per tooth.

At each experiment, the mean cutting forces, F̄x =

�t
0

Fx(t)dt, F̄y = �t
0

Fy(t)dt , have been calculated. When

performing the experiments, a helical end mill has been

Table 2
Material parameters for cutting at 15 000 rpm

Kt 462 N/mm1 + xF

Kte 2.19 × 10–6 N/mm
Kr 38.6 N/mm1 + x

F

Kre 20.5 N/mm
xF 0.744 –
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Fig. 4. Estimated and measured mean forces at 15 000 rpm. Material
parameters can be found in Table 2.

used. Since the total amount of material removed is inde-
pendent of the helix angle, the material parameters are
independent of the helix angle [1]. At each spindle
speed, the exponential model has been fitted onto those
mean cutting forces using a least squares estimation pro-
cedure, as is shown in Fig. 4 for a spindle speed of
15 000 rpm. (At each spindle speed two cuts have been
made at five different chip loads. These 10 measure-
ments have been used to fit the material parameters for
this particular spindle speed.) The material parameters
of this exponential model can be found in Table 2.

The corresponding measured forces and modelled
forces, at a feed per tooth of 0.16 mm/tooth, are shown
in Fig. 5. If the spindle speed is changed, also the values
for the material parameters change to a certain extent.
In Fig. 6, the material parameters are shown as a func-
tion of spindle speed.

2.2. Machine model

The second part of the block diagram of Fig. 2 rep-
resents the modelling of the machine dynamics, i.e. the
tool, toolholder and spindle. In this section, the machine
dynamics will be modelled based on dedicated experi-
ments.

In literature [3,8,11], the machine system is assumed

Fig. 5. Forces in x and y direction as a function of time at 15 000
rpm and a feed per tooth of fz = 0.16 mm/tooth (solid: experiments;
dashed: model).

Fig. 6. Material parameters of the exponential model as a function
of spindle speed.

to be a 1DOF or 2DOF linear second-order (mass–
spring–damper) system. However, experiments will
show that a higher-order model is necessary to describe
the machine dynamics. The dynamics can be described
by the transfer function matrix between cutting forces
F = [Fx Fy]T and displacements of the cutter u =
[ux uy]T:

U(s) � HuF(s)F(s) � �Hxx(s) Hxy(s)

Hyx(s) Hyy(s)
�F(s), (12)

where U(s) = L (u(t)) and F(s) = L (F(t)), with L (·) the
Laplace operator.

Each entry of this transfer function matrix can be
modelled using the following model form:

Hij(s) � �bmsm � bm�1sm�1 � … � b1s � b0

ansn � an�1sn�1 � … � a1s � a0
�

ij

, (13)

where the coefficients a and b differ for different i and
j. It will be assumed that Hij = 0 for i 
 j. In other
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words, the dynamics in x and y direction is decoupled.
These transfer functions describe the dynamics of the
cutter (mill), due to flexibility of the mill, and the
dynamics of the spindle and toolholder, from now on
called the spindle dynamics. Firstly, experiments are per-
formed to measure the spindle dynamics at different
spindle speeds. Secondly, experiments are performed, at
� = 0 rpm, to measure the dynamics of the mill. Let us
now discuss these experiments performed to retrieve Hxx

and Hyy.
In order to measure the dynamic behaviour of the

spindle system, consisting of the tool, toolholder and
spindle, and the influence of the spindle speed on this
dynamic behaviour, impulse tests are performed. Using
the results of these tests, it is possible to find a frequency
response function between the force applied to the tool
and the displacement of the tool, which provides infor-
mation on the dynamical behaviour of the spindle sys-
tem. These impulse tests are performed at various
spindle speeds, in order to study the spindle speed
dependency of the machine dynamics. A schematic rep-
resentation of the setup is shown in Fig. 7. A 50 mm
long, 10 mm diameter carbide cylinder is mounted on a
Kelch shrink-fit toolholder and used on a Mikron HSM
700 milling machine. Since the spindle is rotating while
being hit by the impulse hammer, a mill cannot be used.
The first natural frequency of the cylinder is approxi-
mately 4 kHz and the dynamics of toolholder and spindle
is related to a lower frequency range. Therefore, the
dynamics of the toolholder and spindle can be dis-
tinguished from the dynamics of the cylinder and ident-
ified separately.

The displacement of the cylinder in x or y direction
is measured with an LMI Laser Twin Sensor (LTS 15/3).
An impulse force hammer is used to hit the cylinder and
to measure the force applied to it. A Siglab dynamic
signal analyser is used for data acquisition purposes. The

Cylinder
in spindle

Laser
Twin
Sensor

Impulse
hammer

Siglab in

out

PC

ch0

ch1

Fig. 7. Schematic representation of the setup for the impulse tests.

spindle speed has been varied from 0 to 25 000 rpm,
with increments of 5000 rpm. At each spindle speed, 20
impacts have been performed in both x and y direction,
while the laser has been placed opposite to the place
of impact.

In Fig. 8, the absolute value of the measured fre-
quency response function Hxx(iw) is depicted at different
spindle speeds (mean of 20 measurements). Statistical
significance tests showed that the differences between
these frequency response functions at different spindle
speeds are significant, especially in the frequency range
of 750–1750 Hz, in which the most important resonances
related to the spindle dynamics are situated. Since the
natural frequency of the cylinder lies in the order 4 kHz
and the measured natural frequencies are much lower,
the latter frequencies are not the natural frequencies of
the cylinder but are related to the toolholder and spindle.
Identical experiments are performed to measure Hyy(iw).

Next, the same type of experiments are performed on
a non-rotating mill in order to capture the dynamics of
the real cutter tool. Since the flexibility modes of the
tool do not depend on the spindle speed, only measure-
ments at 0 rpm are performed. The total dynamics of the
toolholder and spindle and the mill can now be con-
structed by superposition of the individual dynamics of
the toolholder and spindle on the one hand and the
dynamics of the mill on the other hand, see Fig. 9. In
doing so, up to 2530 Hz the spindle dynamics is taken
into account and above 2530 Hz the mill dynamics is
dominant.

The total machine dynamics, see Fig. 9, can now be

Fig. 8. �Hxx� at different spindle speeds �. Dotted line: 95% confi-
dence interval at 0 rpm.
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Fig. 9. Measured �Hxx� for � = 0 rpm incorporating both tool dynam-
ics and toolholder and spindle dynamics.

modelled using (12) and (13). In order to obtain the para-
meters of this model, the distance between the measured
and modelled frequency response functions in the com-
plex plane is minimized using an optimization routine
and a least squares type object function. In Fig. 9, the
resulting modelled frequency response function H is
compared to the measured frequency response function,
for � = 0. When performing this identification step, the
highest level of importance was assigned to the highest
resonance peaks in the absolute value of the experi-
mental frequency response function, because these res-
onances are dominant in the stability analysis, as will
be shown in Section 4. Of course, the same parametric
identification procedure was performed for other spindle
speeds, resulting in different dynamic models at different
spindle speeds.

2.3. The total milling model

The models for the material behaviour and the dynam-
ics of tool, toolholder and spindle can be combined to
form a model for the milling process using the block
diagram of the milling process as depicted in Fig. 2. This
leads to the following description of the milling process
in the Laplace domain:

H�1
uF (s)U(s) � apK(s)∗(1�e�st)U(s), (14)

where HuF(s) is defined by (12) and (13), the matrix
K(s) = L (k(t)) is the Laplace transform of the matrix
k(t) related to the material properties, and ‘∗’ denotes
the convolution operator.

It should be noted that (14) represents the Laplace
transform of a set of linear non-autonomous delay differ-
ential equations, where the non-autonomous nature is
due to the explicit time-dependency of k(t). For the

remainder of this paper, k(t) will be approximated by its
zero-th order Fourier approximation:

k �
1
t�t0k(t)dt (15)

which, since k(t) is only non-zero if a tooth is actually
in cut, equals

k �
1
J�fefsk(f)df, (16)

where J is the angle between two subsequent teeth, f
= �t and k(t) is defined by (10) for the linearized
exponential material model. This approximation is quite
common in literature and dramatically simplifies the
stability analysis since it transforms the model into an
autonomous model [1]. Consequently, the convolution
operation in (14) changes to a normal multiplication:

H�1
uF (s)U(s) � apK(1�e�st)U(s). (17)

where K is a constant matrix.

3. Stability analysis of the milling system

In this section, the model of the milling system pro-
posed in the previous section (see (17)) will be used for
the purpose of stability analysis. The linear autonomous
delay differential equation describing the dynamics of
(17) in the time-domain exhibits one unique equilibrium
point: u = 0, which corresponds to the desired no-chatter
situation. Therefore, the stability of this equilibrium
point corresponds to the stability of the milling process
and instability of the equilibrium point corresponds to a
response with chatter.

Here, the method of D-partitioning [12] will be used
to assess the stability of this equilibrium point. This
method was used by, e.g. Stépán [13,14] to investigate
the stability of the milling process using a single-degree-
of-freedom, single-mode milling model. Note that, for a
given spindle speed �, the stability of the equilibrium
point depends on the axial depth-of-cut ap. So, the stab-
ility analysis will aim at finding the critical value for ap,
at a given spindle speed �, which forms the stability
boundary, allowing for the construction of so-called
stability lobes diagrams.

The method of D-partitioning uses the criterion that
an equilibrium point of a system, described by a linear,
autonomous delay differential equation, is asymptoti-
cally stable if and only if all the roots of its characteristic
equation lie in the open left-half complex plane. It
should be noted that a delay-differential equation has an
infinite number of poles. The characteristic equation cor-
responding to (17) is given by

det(H�1
uF (s)�apK(1�e�st)) � 0. (18)
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A certain choice for the systems parameters (in this
case ap) determines the number of poles in the open left-
half complex plane. The parameter space can be divided
into domains D(k,n�k), 0�k�n which contains all the
points with poles with k negative real parts and n–k posi-
tive real parts. This is called D-partitioning. The domain
of asymptotic stability is the domain D(n, 0). An increase
of the number of roots with positive real parts can occur
if and only if a certain pole crosses the imaginary axis
from the left to the right. This corresponds with the situ-
ation that a certain point in parameter space moves from
the domain D(k,n�k) to D(k�1,n�(k�1)). Therefore,
the borders of the D-partitions are the map of the imagin-
ary axis s = iw, with �� � w � +� on the parameter
space.

Let us introduce a new complex variable S = st and
use this to rewrite the characteristic Eq. (18) into

det�H�1
uF�S
t��apK(1�e�S)� � 0. (19)

We will use this equation to determine the values for
the parameter ap for which at least one pole lies on the
imaginary axis (s = iw). Using the fact that HuF(s) is
given by (12), with Hxy = Hyx = 0, and choosing S =
iw∗, with w∗ = wt, which corresponds to s = iw, Eq.
(19) transforms to

a0a2
p � a1ap � 1 � 0, (20)

with

a0 � (1�cosw∗ � i sinw∗)2Hxx(w∗)Hyy(w∗)

(kxxkyy�kxykyx),
(21)

a1 � �(1�cosw∗ � i sinw∗)

(kxxHxx(w∗) � kyyHyy(w∗)).
(22)

The axial depth-of-cut as a function of w∗, ap(w∗),
can then be found by

ap(w∗) �
�a1 � 	a2

1�4a0

2a0

. (23)

The critical axial depth-of-cut (with respect to
stability) is defined as the depth-of-cut ap in the para-
meter set defined by {ap(w∗):Imap(w∗) = 0
Reap(w∗)
� 0}, for which �Reap(w∗)� has its minimum value, since
for ap = 0 all poles are in the open left-half complex
plane when all the modes of the machine dynamics are
damped, which is always the case in practice. The value
for w∗ for which this occurs, is the dimensionless chatter
frequency w∗ = w∗

c . The real chatter frequency that cor-
responds to the dimensionless chatter frequency is wc

= w∗
c /t. In summary, the following steps need to be

taken in order to use the method of D-partitioning to find
the chatter boundary in terms of ap (for a specific value
of the spindle speed):

(1) Choose a certain spindle speed �, and calculate the
delay factor t by Eq. (1);

(2) Choose a proper domain for w∗;
(3) In the characteristic Eq. (19), substitute S = iw∗;
(4) Solve Eq. (20) for ap. Now, ap(w∗) is known, but

apcrit
still has to be found;

(5) w∗ = w∗
c where �Reap(w∗

c )�, in the parameter set
defined by {ap(w∗):Imap(w∗) = 0
Reap(w∗) � 0},
has its minimum value. By scanning the positive real
axis, it is the point where a D-curve crosses the real
axis for the first time. This is shown in Fig. 10. In
this figure, the lines represent the boundaries
between the domains D(k,n�k);

(6) Calculate the chatter frequency wc = w∗
c /t;

(7) Repeat all steps for different spindle speeds.

In the second step of this procedure, a choice for the
domain of w∗ should be made, such that w∗

c lies in this
domain. For a milling model, in which the lowest angu-
lar eigenfrequency of the machine dynamics is denoted
by wl and the highest eigenfrequency by ωh, a suitable
choice for this domain is: 0.5 wlt � w∗ � 1.5 wht.

4. Results

The model of the milling process, constructed in the
previous section, will be used to pursue a stability analy-
sis. Stability lobe diagrams can be computed using the
analysis method illuminated in Section 3. In order to
study the accuracy of the model, the stability boundaries
obtained in this way need to be validated with the stab-
ility border determined in practice. The model used in
this analysis uses the material model given in Section
2.1, where the material parameters are found by interpol-
ating between the measured values at discrete spindle
speeds as shown in Fig. 6. Moreover, the spindle speed
dependency of the machine dynamics is taken into
account in the following way. At discrete values for the
spindle speed �, � = 0, 5000, 10 000, 15 000, 20 000,
25 000 rpm, models for the machine dynamics were con-

Fig. 10. D-partition diagram for a spindle speed of 25 024 rpm.
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structed. When the stability analysis is performed for an
arbitrary spindle speed (not at one of the discrete values
for which the models were constructed) in order to find
the critical value for the depth-of-cut ap at that spindle
speed, the dynamic model corresponding to the closest
spindle speed is used. In this way, the spindle speed
dependency of both the material and the machine
dynamics is accounted for in the stability analysis. Tak-
ing this spindle speed dependency into account in
determining the stability lobes demands for a method
such as the D-partitioning method. The method, e.g. used
by Altintas [1] cannot be used for an analysis, incorpor-
ating such spindle speed dependency of the model.

For validation purposes, the stability boundary, in
terms of ap as a function of �, has to be determined
experimentally. Hereto, a series of cuts has been made
at the Mikron HSM 700 milling machine using a two-
teeth, 10 mm diameter Jabro Tools JH420 cutter
mounted on a Kelch shrink-fit toolholder cutting an alu-
minium 6082 workpiece. For every spindle speed inves-
tigated, an initial depth-of-cut is chosen such that no
chatter occurs. Whether chatter is occurring or not is
detected using the experimental setup depicted in Fig. 11
and the software program Harmonizer [9]. This program
scans the sound of the cutting process measured using
the microphone. If the energy of the measured sound
signal at a certain frequency exceeds a certain threshold,
the cut is marked as exhibiting chatter. This threshold
can be set automatically by Harmonizer, but it can also
be set manually. Moreover, after the experiment, the
generated surface of the workpiece is examined in order
to decide whether chatter has occurred. Using Harmon-
izer, also the chatter frequency is measured. The fre-
quency at which the energy level exceeds the threshold
level is marked as the chatter frequency.

In Fig. 12, the experimental results are compared with
the modelled stability lobes. In Fig. 13, the measured
chatter frequencies are compared with the modelled
chatter frequencies and the natural frequencies of the
spindle and tool. It can be concluded that the dynamics
of the non-rotating mill highly influences the stability
lobes, since the chatter frequency is always close to a
resonance frequency of the mill. Clearly, the prediction
of the stability lobes diagram is good. Moreover, the

Mill

Microphone

PC

Workpiece

Fig. 11. Experimental setup for the determination of the chatter
boundary.

Fig. 12. Modelled stability lobes, compared with experimentally per-
formed cuts.

Fig. 13. Chatter frequencies. Asterisks: chatter frequencies in experi-
ments; dots: modelled chatter frequencies; solid lines: natural fre-
quencies of the tool; dashed lines: speed-dependent natural frequencies
of the spindle in x and y direction.

modelled chatter frequencies also resemble the measured
chatter frequencies very well. The natural frequencies of
the spindle are much lower. This indicates that the
dynamics of the spindle, which is spindle speed depen-
dent, is less important than the dynamics of the mill,
which is spindle speed independent. It can be concluded
that for this specific, rather slender, tool this speed
dependency of the spindle dynamics does not influence
the stability lobes diagram to a great extent. However,
when a shorter, thicker mill would have been used
(resulting in extremely high resonance frequencies for
the mill dynamics), the spindle dynamics may become
dominant. In such a case, the spindle speed dependency
of spindle dynamics is important to be included in the
stability analysis. The spindle speed dependency of the
material parameters causes the minima of the stability
lobes to vary with varying spindle speed. With increas-
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ing spindle speed, these minima of the stability lobes
increase. In order to model this spindle speed depen-
dency, it is necessary to use the method of D-partition-
ing.

5. Conclusions

In this paper, a dynamic model for the milling process
has been constructed based on dedicated experiments.
Using this model, the stability lobes have been gener-
ated. The model, a two-dimensional, linear, higher-order
delay-differential equation, includes the following fea-
tures: (a) an exponential model, in order to model the
feed dependency of the stability lobes, (b) spindle speed
dependent cutting process parameters, (c) spindle speed
dependent machine dynamics.

For the total model, the method of D-partitioning is
be used to generate the stability lobes. An advantage of
this method over the method used by Altintas [1] is that
while using the method of D-partitioning the critical
depth-of-cut can be found for a specific spindle speed,
whereas while using the method of Altintas the critical
depth-of-cut for a specific chatter frequency, which is an
unknown response variable, is found. This allows us, in
case of the method of D-partitioning, to account for
spindle speed dependencies of the milling model,
whereas this is not possible in the method of Altintas.

The location of the peaks of the stability lobes, con-
structed using the model, are in good agreement with the
experimentally determined stability limits. However, the
model structurally predicts the stability limit slightly too
conservative. Chatter frequencies predicted using the
model coincide within 3% with the chatter frequencies
measured in practice.

Future improvements of the model should account for
a helix angle of the cutter. Furthermore, the approxi-
mation of the matrix k(t) by its zero-th order Fourier
approximation (16) can be extended to higher-order
approximations, to improve the accuracy of the model.
Another issue that will be considered in the future, is
the possible time-dependency of the delay parameter t.
However, these latter two changes will demand a differ-
ent analysis method, since the set of differential equa-
tions will be non-autonomous.
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