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Abstract

The response of non-linear, dynamic systems to stochastic excitation exhibits many interesting characteristics. In this paper,
a strongly non-linear beam-impact system under both broad- and small-banded, Gaussian noise excitations is investigated.
The response of this system is investigated both numerically, through a multi-degree-of-freedom model, and experimentally
focusing on frequency-domain phenomena such as stochastic equivalents of harmonic and subharmonic solutions. An improved
understanding of these stochastic response characteristics is obtained by comparing these to non-linear periodic response
features of the system. It will be shown that in modelling such a continuous, linear system with a local non-linearity, the
linear part can be e4ectively reduced to a description based on several modes. Combining this reduced, linear part with the
local non-linearity in a reduced, non-linear model is shown to result in a non-linear model, which can be used to accurately
predict the stochastic response characteristics of the original, continuous, non-linear system. It is shown that including more
modes to the model causes its response to di4er signi5cantly from that of a single-degree-of-freedom model and show a
better correspondence with experimental results, also in the frequency range of the 5rst mode. ? 2002 Elsevier Science Ltd.
All rights reserved.

1. Introduction

Non-linear, dynamic systems forced by random
excitations are often encountered in practice. The
source of randomness can vary from surface random-
ness in vehicle motion, environmental changes, such
as earthquakes and wind exciting high rise buildings
or wave motions at sea exciting o4shore structures or
ships, to electric or acoustic noise exciting mechanical
structures. Often these stochastic excitations exhibit
a coloured frequency spectrum. Moreover, many
practical, non-linear systems comprise a continuous
linear part and a local non-linearity.
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In this paper, a system, representative for the class
of systems mentioned above, namely, a base-excited
beam system with a non-linear elastic stop is investi-
gated. Systems with elastic stops are typical examples
of systems with local non-linearities and represent a
wide range of practical non-linear dynamic systems.
Examples are gear rattle, ships colliding against fend-
ers and snubbers in solar panels on satellites. Although
the non-linearity is local, the dynamic behaviour of
the entire system is in@uenced by it. Non-linear pe-
riodic response phenomena of these kind of systems
have been studied extensively, see Refs. [1–4]. More-
over, a study of the stochastic response characteristics
of a single-degree-of-freedom (SDOF) model of this
system can be found in [5].
When stochastic excitations are applied to the

non-linear beam system, it features many interesting,
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stochastic, non-linear response phenomena. These
phenomena are of speci5c interest because they shed
light on the common characteristics of periodic and
stochastic dynamic behaviour. As a consequence,
the behaviour of the system can be understood more
thoroughly. The stochastic non-linear response phe-
nomena will be studied numerically as well as experi-
mentally. For the numerical investigations a model is
used, in which the linear, continuous part of the sys-
tem (the elastic beam) is reduced to a multiple-mode
description. It will be shown that the model obtained
by the reduction of the linear, continuous part of the
system (the elastic beam) based on a limited number
of elastic modes can accurately describe the stochastic
response of the experimental system. A comparison
of numerical and experimental results will display
the added value of the multiple-degree-of-freedom
(MDOF) model when compared with a SDOF model
[5]. Herein, the applied, stochastic excitations are
Gaussian and have a limited frequency band power
spectral density. Still, these excitations can be broad-
or narrow-banded processes. It should be noted that,
particularly, the non-linear phenomena in the power
spectral density of the response will be investigated
extensively.
In the next section, we introduce the non-linear dy-

namic system and its two-degree-of-freedom (2DOF)
model. In Section 3, a brief survey of simulated peri-
odic response characteristics will be given. In Section
4, the simulation approach for stochastic excitations
will be treated and the related simulation results will
be discussed in Section 5. In Section 6, we present
the experimental set-up. Furthermore, in Section 7, the
simulation results are compared to the experimental
results. Finally, in Section 8, we present some conclu-
sions.

2. The non-linear beam system

2.1. System description

The non-linear, dynamic system comprises a linear
elastic beam, which is clamped onto a rigid frame,
and an elastic stop, see Fig. 1. The elastic stop con-
sists of two ptfe (Te@on) half-spheres. The system is
excited by a prescribed, stochastic displacement y(t)
of the rigid frame. The response x(z; t) is the vertical

z

le

x (z,t)

y(t) prescribed Half sphere

Beam (�,A,E,I) Accelerometer

Rigid frame

l

Fig. 1. The non-linear, base-excited beam system with Young’s
modulus E = 1:9× 1011 N=mm2, density 	 = 8000 kg=m3, cross-
section A=58:3 mm2, second moment of area of the cross-section
I = 18:5 mm4, length l = 259:9 mm (le = 229 mm), mass of a
half-sphere ms = 12:4 × 10−3 kg and mass of the accelerometer
ma = 13:0× 10−3 kg.

displacement of the beam at the horizontal coordinate
z. Firstly, in Section 2.2, the approach in building a
MDOF model for the elastic beam will be illuminated.
Next, in Section 2.3, a model for the elastic stop will be
presented. The estimation of the parameters, describ-
ing the non-linearity, is based on experiments and will
be elucidated in that section. Finally, in Section 2.4, a
non-linear, 2DOF model of the beam-impact system
will be discussed.

2.2. Modelling the elastic beam

For the elastic beam, shear e4ects and rotational in-
ertia will be neglected (Euler beam). In a 5rst step,
spatially discretized models for such a continuous sys-
tem can be derived using the Rayleigh–Ritz method
[6]. This method was applied to obtain a 4DOF model
of the elastic beam, where the half-sphere and the
accelerometer have been modelled as rigid parts at
z = (l + le)=2. Note here that le = l − 2Rs, where
Rs is the radius of the half-sphere. Additional eval-
uations showed that a reduction of the 4DOF model
to a model incorporating only the two modes corre-
sponding to the lowest two eigenfrequencies is very
acceptable with respect to our research goal. More-
over, these eigenfrequencies match their experimen-
tal equivalents quite well, see Table 1. Therefore, the
4DOF model was reduced to a 2DOF model using
only these 5rst two eigenmodes of the 4DOF model
[7]. In Fig. 2, the modes corresponding to these eigen-
frequencies are displayed. Moreover, corresponding
dimensionless damping parameters are given, which
were estimated by experimental means.
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Table 1
Lowest two eigenfrequencies of the 4DOF model vs. experimental
eigenfrequencies

Eigenfrequencies (rad=s)

Experimental Model

101.5 109.1
781.6 790.7

z

x(z)-y Modal damping 1.5%

Modal damping 0.5%
l+le

l
2

l
2

2

l+le
2

Fig. 2. Modes shapes and modal damping parameters correspond-
ing to the lowest two eigenfrequencies.

2.3. Modelling the elastic stop

Here, the contact phenomenon will be modelled
as a ‘soft’ impact, indicating that the deformation
of the half-spheres during impact will be taken into
account. Herein, the contact force will depend on the
deformation (and deformation velocity) in a smooth
fashion.
The elastic stop is modelled using a Hertzian contact

model [8,9]. Using the Hertzian model, the following
relationship holds between the contact force F and
the relative displacement of the two colliding spheres
�= y − x(z = l+ le=2):

F = 2
3Er

√
Rr�1:5 = KHertz�1:5 for �¿ 0: (1)

In Eq. (1), the reduced Young’s modulus Er re-
@ects the material properties of both the col-
liding bodies. Furthermore, the reduced radius
of curvature Rr re@ects the geometrical proper-
ties of the colliding bodies. These parameters are

de5ned as

Er =
2

(1− �21)=E1 + (1− �22)=E2
; Rr =

R1R2
R1 + R2

;

(2)

where Ri is the principal radius of curvature of body i,
while Ei is the Young’s modulus of body i and �i the
Poisson’s ratio of body i. Note that Er = E=(1 − �2)
when the materials of the colliding bodies are identical
(E1 = E2 = E and �1 = �2 = �). In order to apply
Eqs. (1) and (2) to the problem at hand, the following
assumptions should be valid:

• the contact area is small compared to the geometry
of the colliding bodies;

• the contact areas are perfectly smooth, so there is
no friction between the colliding bodies;

• the material is isotropic and linearly elastic, so no
plastic deformation occurs;

• the contact time is long enough to establish a
quasi-static state.

It is to be noted that Eq. (1) still holds with signi5cant
deviation from these assumptions [10].
Contact model (1) can be re5ned by adding a hys-

teretic damping term, see [11], accounting for en-
ergy loss during collision. The inclusion of hysteretic
damping alters Eq. (1) to

F =KHertz�1:5
(
1 +

�
KHertz

�̇
)

=KHertz�1:5
[
1 +

3(1− e2)
4

�̇

�̇
−

]
for �¿ 0; (3)

in which e is the coeOcient of restitution, a geom-
etry and material dependent measure for energy dis-
sipation. Moreover, �̇

−
represents the velocity di4er-

ence of the two colliding bodies at the beginning of
the collision. In [12,13] other types of smooth impact
descriptions are discussed.
The parameter KHertz was determined experimen-

tally (KHertz = 2:1 × 108 N=m1:5). The coeOcient of
restitution e is also estimated by means of experi-
ments (e = 0:5). The fact that e di4ers signi5cantly
from 1 indicates that restitution should be added to the
model. Both KHertz and e are obtained as least-squares
estimates in which the information from several col-
lisions is accounted for. The underlying experiment



770 N. van de Wouw et al. / International Journal of Non-Linear Mechanics 38 (2003) 767–779
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Fig. 3. Measurement of several collisions to estimate KHertz and e.

resulted in information regarding the indentation �, the
indentation velocity �̇, and the contact force F . The
dependency of the contact force F between the collid-
ing half-spheres on the indentation � is visualized in
Fig. 3. The parameter KHertz can be estimated by com-
paring the contact force F and the indentation � at
maximum indentation (�̇=0), assuming that the static
contact force is proportional to �1:5, see Eq. (1). The
coeOcient of restitution e can be estimated by consid-
ering the amount of energy loss QT during a collision.
QT is equal to the surface within the hysteresis loop:

QT =
∮
��1:5�̇ d�: (4)

Therefore, � can be estimated from

� =
QT∮
�1:5�̇ d�

: (5)

The coeOcient of restitution can now be obtained from

e =

√
1−

4
3��̇

−

KHertz
: (6)

2.4. The non-linear dynamical model

In the previous two sections, the two components
of the beam-impact system, namely, the beam and
the elastic stop, were discussed. The assembled,
non-linear model can be described by the following

set of equations of motion:

M Rn+ C ṅ+ K n+ KH�(�)�
1:5

(
1 +

3(1− e2)
4

�̇

�̇
−

)

=m0 Ry (7)

with

j(�) =
{
1 for �¿ 0;

0 for �6 0:
(8)

Herein, n is a two-dimensional column matrix of nat-
ural coordinates, which represent the contribution of
the two modes to the total response, whereasM and K
are the mass matrix and sti4ness matrix, respectively,
following from the Rayleigh–Ritz procedure. C rep-
resents the damping matrix which takes into account
the measured modal damping (see Fig. 2). Moreover,
KH is a coeOcient matrix of the non-linearity while
the term, in which m0 is involved, expresses the fact
that the excitation is a prescribed displacement. Addi-
tionally, � is the 5rst component of �=[�; �m]T:=[y−
x(z= l+ le=2); y− x(z= l

2 )]
T, representing the rela-

tive displacement of the beam with respect to the rigid
frame at the point of contact of the two half-spheres.
Note that � can be written as a linear combination of
the components of n. Moreover, in (7) �̇ represents
the relative velocity at the same point.
This model will now be used to simulate (through

numerical time integration) the non-linear response
� for di4erent excitation forms y = y(t). It should
be noted that the magnitude of the elements in KH
considerably exceeds that of those in K . The system
can, therefore, be considered to be strongly non-linear.

3. Survey of simulated response to periodic
excitation

In order to enlarge the ability to interpret the
stochastic response phenomena, to be discussed later
on in this paper, we present some periodic response
phenomena of the non-linear beam system. In Fig. 4,
the maximum, absolute displacements |�|max (of the
periodic solutions) are plotted against the angular fre-
quency !e of the periodic (harmonic) base-excitation
y = y(t). These data were obtained using a peri-
odic solver and a path-following procedure [1,3].
Some very important non-linear response character-
istics can be extracted from Fig. 4. Firstly, besides
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Fig. 4. Maximum, absolute displacements |�|max of periodic solu-
tions of the 2DOF beam-impact system.

the harmonic resonance, corresponding to the 5rst
linear eigenmode of the elastic beam, related sub-
harmonic resonances appear. It should be noted that
the period time of a harmonic solution equals that of
the excitation. Moreover, a harmonic solution con-
sists of the frequencies !e; 2!e; 3!e; : : : and so on.
A 1=n subharmonic solution, however, comprises the
frequencies (1=n)!e; (2=n)!e; (3=n)!e; : : : ; where the
response period is the nth multiple of the excitation
period. Secondly, a remarkable feature can be found
in the fact that the maximum absolute values of the
subharmonic solutions are higher than those of the
harmonic solutions. Finally, a striking characteristic
is expressed by the fact that both the harmonic and
the 12 subharmonic resonance peak exhibit large dents
near their resonance frequencies. In Fig. 5, it is shown
that this e4ect is absent when the periodic response
of an SDOF model [7] of the beam-impact system
is investigated and that it is, therefore, most likely
caused by the presence of the second mode in the
model. Note in this respect that the second harmonic
resonance frequency (780 rad=s) lies at four times
the frequency at which the 5rst harmonic resonance
shows a dent (195 rad=s). This typically non-linear
characteristic was also observed in experiments [14].
Clearly, the inclusion of extra ‘modes’ in the model
not only a4ects the response in the neighbourhood
of the resonance frequency of this ‘mode’, but also
in@uences the response characteristics at lower fre-
quencies dramatically.
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Fig. 5. Maximum, absolute displacements |�|max of periodic solu-
tions of the SDOF beam-impact system.

4. Simulation approach for Gaussian excitation

4.1. Generation excitation signals

As mentioned before, the excitation form applied to
the non-linear beam system is Gaussian, band-limited
noise. Now, we would like to be able to generate real-
izations of such a Gaussian excitation process, which
exhibits the desired power spectral density Syy(!).
The energy of a band-limited, random process is con-
centrated in the frequency band !band = [!min ; !max]
(for both positive and negative frequencies). For any
shape of the power spectral density of the Gaussian
process, within that frequency band, one can simulate
realizations of such a process using a method devel-
oped by Shinozuka and Yang [15,16]. The idea be-
hind the method is that a one-dimensional Gaussian,
random process y(t) with zero mean and a one-sided
power spectral density Soyy(!), with

Soyy(!) =



2Syy(!) for !¿ 0

Syy(!) for != 0

0 for !¡ 0;

(9)

can be represented by a sum of cosine functions with
a uniformly distributed random phase  . A realization
Sy(t) of y(t) can be simulated by

Sy(t) =
√
Q!Re{F(t)}; (10)
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in which Re{F(t)} is the real part of F(t) and

F(t) =
N∑
k=1

{
√
2Soyy(!k) e

i#k}ei!k t (11)

is the 5nite complex Fourier transform of
√
2Soyy(!)

×ei#, in which # is a realization for  , and Q! =
!k − !k−1. The Fourier transform can be eOciently
computed using the fast Fourier transform (FFT)
algorithm.
Then, we can obtain a realization of the response

process using the numerical integration techniques.
Because the excitation y(t) does not contain in5nitely
high frequencies (like white noise does), Eq. (7) is
not a stochastic di4erential equation [17,18]. There-
fore, classical integration techniques can be used to
solve it numerically [7].

4.2. Numerical time integration

Numerical time integration is used to compute time
series of the response �(t). The computed realizations
of the response can be used to estimate the invariant
measures of the stationary solutions, such as statisti-
cal moments, probability density function and power
spectral density. For non-stationary responses many
computationally expensive simulations would have to
be executed in order to ensure an accurate estimate of
the invariant measures at each point in time. However,
the necessity of a large number of records can be elim-
inated when the response is stationary, as is the case
here. In this case, ergodicity with respect to a partic-
ular statistical moment can be assumed. This assump-
tion allows the determination of the speci5c ensemble
statistical moment by using its temporal counterpart.
The accuracy of the estimates of the stochastic in-

variants depends on the length of the time series used
(corresponding to a statistical error on the estimate
of the stochastic invariant) and the integration accu-
racy underlying the time series. Therefore, the eO-
ciency of the integration technique is an important
issue. Variable step size schemes, in which stability
checks and accuracy checks are performed at each in-
tegration step, are rather ineOcient for our purpose.
Therefore, a constant step size, second-order Runge–
Kutta scheme is used. Higher-order schemes do not
improve the order of convergence, since higher-order
derivatives of the function f(x; Ry; t) in the state-space

formulation of (7), where

f(x; Ry; t) = [ṅ1 ṅ2 Rn1 Rn2]T:=[ẋ1 ẋ2 ẋ3 ẋ4]T

=




x3
x4
−M−1 ([K C]x+KHj(�)(�)1:5[

1+
3(1−e2)

4
�̇

�̇
−

]
−m0 Ry

)


 ;

(12)

do not exist in the entire state space for systems with
stops. Since explicit integration schemes are only con-
ditionally stable, a minimum step size (that ensures
stability) can be determined. Due to the major di4er-
ence in sti4ness between contact and non-contact situ-
ations, the minimal step sizes for these situations di4er
enormously. It would be very ineOcient to choose one
single constant step size based on contact situations.
Therefore, two di4erent stable step sizes are used.
Consequently, the time of impact has to be deter-
mined accurately (and in a computationally eOcient
manner) to avoid entering contact with the large inte-
gration time step. For this purpose the HUenon method
[19] is implemented within the integration routine.

4.3. The H9enon method

The HUenon method [19] is used to determine the
time of impact. Here, the HUenon method means re-
arranging Eq. (12) without the non-linearities in
such a way that � becomes the independent variable
whereas t becomes one of the dependent variables.
The non-linear part is super@uous, because the last
time interval before the impact is observed. Recall
that � is a linear function of the components of n. At
the last time step before impact, this rearranged equa-
tion is integrated until � = 0. This integration step
results in the known variables tcontact; x(tcontact), for
which holds �(tcontact) = 0. Then, a switch is made
to a small integration step size, for solving Eq. (12),
continuing at tcontact. When leaving contact, the inte-
gration routine switches back to the large integration
time step.

5. Simulation results for Gaussian excitation

Here, the simulation results will be discussed. The
excitations y(t), applied to the model, are realizations
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Fig. 6. Power spectral density of the excitation for !band =
[0:0; 1226:6] rad=s.
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Fig. 7. Power spectral density of � for !band = [0:0; 1226:6] rad=s.

of Gaussian, band-limited stochastic processes. The
target spectrum 1 of the excitation is taken uni-
formly distributed within a limited frequency band
!band = [!min ; !max]. First, a band excitation with
!band = [0:0; 1226:6] rad=s is applied to the system.
This excitation is broad-banded in relation to the re-
sponse characteristics depicted in Fig. 4. In Fig. 6, the
power spectral density of a base excitation y is shown.
It should be noted that the excitation is Gaussian by
the nature of its generation. In Fig. 7, the power spec-
tral density of the response variable � is shown. The
power spectral densities are estimated numerically
using the Welch method [20]. The contribution of the

1 It should be noted that for the remainder of this paper one-sided
power spectral densities will be considered.
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Fig. 8. Power spectral density of �m for !band=[0:0; 1226:6] rad=s.

5rst eigenmode is clearly present near != 195 rad=s.
The contribution of the second mode of the linear
beam to � is now apparent around ! = 780 rad=s.
Note that the 5rst non-linear resonance frequency is
almost twice the lowest linear eigenfrequency of the
beam. In [21] is stated that in a piece-wise linear sys-
tem the non-linear resonance frequency approaches
twice the linear eigenfrequency (of the system with-
out non-linearity) for a very high non-linearity. Since
the impact phenomenon plays a less important role in
the non-linear response related to the second mode,
the second resonance frequency is much lower than
twice the second linear eigenfrequency of the beam.
The contribution of the second degree of freedom
becomes more evident when one observes the power
spectral density of the response variable �m for the
same excitation, see Fig. 8. Herein, �m is the dis-
placement of the beam relative to the rigid frame at a
horizontal position z= l=2 on the beam (middle of the
beam). The contribution of the second mode to the re-
sponse of the system appears in a more dominant way
in the mid-beam displacement (see Fig. 8), since the
second mode has its maximum displacement near the
middle of the beam. Note that, besides the resonances
near 195 and 780 rad=s, extra (multiple) resonance
peaks occur, which represent higher harmonics of the
resonance near 195 rad=s (related to the 5rst linear
eigenmode of the elastic beam). Furthermore, the
response signal contains a large amount of energy at
low frequencies (!¡ 50 rad=s). The latter observa-
tion can be explained by the following reasoning. Due
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Fig. 9. Probability density function of � for !band =
[0:0; 1226:6] rad=s.

to the asymmetry of the non-linearity of the system,
the frequencies in the response ‘interact’. It is well
known that when the excitation, and therefore the
response, contains two frequencies !1 and !2, the re-
sponse can also contain the frequency !2 − !1 when
the system exhibits an asymmetric non-linearity. Note
that the broad-banded excitation contains a large
number of nearby frequencies. Hence, a lot of in-
teraction can be expected in this case. When those
excitation frequencies lie in a resonance peak of the
system, these ‘di4erence’-frequencies will contain
a signi5cant amount of energy. Both phenomena were
also observed in the response of the SDOF model
of the beam-impact system [5] and other non-linear
systems with asymmetric sti4ness non-linearities [7].
In Figs. 9 and 10, estimates for the probability den-

sity functions of the relative end-displacement � and
the relative mid-beam displacement �m are shown.
Clearly, �m tends towards a Gaussian distribution.
From a physical point of view, it is clear that �m
should not exhibit such an extreme asymmetry as �,
since the beam does not encounter a contact at the
horizontal position z= l=2. Therefore, �m can become
positive more easily than �. From a more general
point of view, it is known [22] that the output of a
linear system, in the case of a non-Gaussian input,
will be closer to Gaussian than the input. In this per-
spective, we can view upon �m as an output of a linear
system (the beam) with a non-Gaussian input �. This
tendency towards a Gaussian distribution becomes
stronger for weakly damped systems.
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Fig. 10. Probability density function of �m for !band =
[0:0; 1226:6] rad=s.

Next, three di4erent narrow-band excitations were
applied:

1. a band-limited excitation with!band=[144:5; 270:2]
rad=s that covers the major part of the harmonic
resonance peak, see Fig. 4;

2. a band-limited excitation with!band=[351:9; 477:5]
rad=s that covers the major part of the 1

2 subhar-
monic resonance peak, see Fig. 4;

3. a band-limited excitation with!band=[559:2; 684:9]
rad=s that covers the major part of the 1

3 subhar-
monic resonance peak, see Fig. 4.

It should be noted that all three excitation signals are
realizations of Gaussian stochastic processes, which
exhibit the same variance and have uniformly dis-
tributed energy within their speci5c frequency bands.
The power spectral densities of the responses to

these excitations are displayed in the Figs. 11–13. Note
that a ‘harmonic’ solution of the non-linear, 2DOF
model to a harmonic excitation with frequency !e ex-
ists, see Fig. 4, and has a speci5c period time 2%=!e
but comprises multiple frequencies !e; 2!e; 3!e; : : : :
Clearly, this is also the case for stochastic excita-
tions, see Fig. 11. Moreover, remarkable, stochas-
tic, non-linear response phenomena are displayed in
Figs. 12 and 13. Namely, Fig. 12 shows a ‘stochastic 12
subharmonic’ solution and Fig. 13 shows a ‘stochastic
1
3 subharmonic’ solution. Note that in the same fre-
quency range subharmonic solutions exist when the
system is excited periodically, see Fig. 4. To be more
speci5c, a 1=n subharmonic e4ect is responsible for
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Fig. 11. Power spectral density of � for !band=[144:5; 270:2] rad=s.
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Fig. 12. Power spectral density of � for !band=[351:9; 477:5] rad=s.
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Fig. 13. Power spectral density of � for !band=[559:2; 684:9] rad=s.

the fact that the excitation frequency band [!min ; !max]
also results in an important response in the frequency
range [(!min=n); (!max=n)], see Figs. 12 and 13.
We can distinguish another, interesting, common

characteristic of the periodic and stochastic response
of the beam-impact system by comparing the Figs. 11–
13. Namely, the ‘stochastic 1

3 subharmonic’ solution
contains signi5cantly more energy than the ‘stochastic
1
2 subharmonic’ solution, whereas the ‘stochastic

1
2

subharmonic’ solution contains signi5cantly more en-
ergy than the ‘stochastic harmonic’ solution. Note that
a comparable phenomenon was observed in the peri-
odic response of the MDOFmodel of the beam-impact
system, see Fig. 4.

6. Experimental set-up

Several interesting, stochastic, non-linear response
characteristics were observed in the previously dis-
cussed simulation results. In the next section, simu-
lation results will be validated by comparison with
experimental results. The experimental set-up is pre-
sented schematically in Fig. 14. A uniformly dis-
tributed, Gaussian, band-limited excitation signal is
generated numerically using Shinozuka’s method
[15]. This signal is sent to a controller, which con-
trols a servovalve using feedback information from
an internal displacement transducer. The servovalve
provides the input for the hydraulic actuator by con-
trolling the oil @ow of the hydraulic power supply.
A hydraulic service manifold connects the hydraulic
power supply and the servovalve. This service mani-
fold reduces @uctuations and snapping in the hydraulic
lines during dynamic programs. All measurements
are monitored using the data acquisition software
package DIFA [23].
Fig. 15 shows the measurement equipment mounted

on the beam-impact system. A linear variable di4er-
ential transformer (LVDT) measures the displacement
of the rigid frame. The displacement and velocity of
the beam, at the point of contact, are measured by a
laser interferometer. Furthermore, the acceleration of
the beam is measured by an accelerometer and a force
transducer is used to measure the force acting on the
rigid frame, where the force transducer is positioned at
the centre of mass of the rigid frame and the rotations
of the rigid frame are assumed to be small. The rigid
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Fig. 14. The experimental set-up of the beam-impact system.
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Fig. 15. The measurement equipment.

frame displacement measurements are used as input
for the simulations described in the next section. Con-
sequently, we can compare the results of these simu-
lations to the experimental results.

7. Experimental results

In Section 5, several interesting, stochastic,
non-linear response characteristics were observed in
the simulation results. Comparable phenomena are
encountered in the experiments as well and will be
discussed here. Moreover, the validity of the 2DOF
model will be assessed by comparing the experimen-
tal results with the simulation results. Here, also the
added value of the 2DOF model with regard to the
SDOF model, as presented in [5], can be assessed.

A [0:0; 1226:6] rad=s band excitation was applied.
The realized excitation spectrum is depicted in Fig.
16. In contrast to the signal o4ered to the controller,
the power spectral density of the actual rigid frame
displacement is clearly not uniformly distributed
within the speci5ed frequency range. This is due to
the fact that the hydraulic actuator behaves like a
5rst-order low-pass 5lter. Therefore, it is necessary
to perform simulations with these rigid frame excita-
tion spectra in order to be able to make appropriate
comparisons between the results of the simulations
and those of the experiments. Both the simulated and
measured power spectral densities of the response
�(t) are shown in Fig. 17. The most important re-
sponse phenomena like higher harmonics, related to
the resonance near 195 rad=s, and the presence of
a large amount of low-frequency energy are clearly
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Fig. 16. Power spectral density of the excitation for !band =
[0:0; 1226:6] rad=s.
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Fig. 17. Comparison of the power spectral densities of � for the
experiment and the 2DOF model with !band = [0:0; 1226:6] rad=s.

visible in both experimental and simulation results.
However, the non-uniformity of Syy(!) obstructs
the observation of the second characteristic. Fig. 17
shows that the experimental and numerical results cor-
respond to a large extent. Clearly, the response of the
2DOF model exhibits the second harmonic resonance
at ! = 780 rad=s, which coincides with the experi-
mental data. This represents an important modelling
improvement in comparison with the SDOF model
[5], since, obviously, the second mode is absent in
the SDOF model.
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Fig. 18. Power spectral density of the excitation for !band =
[144:5; 270:2] rad=s.

In Fig. 19, the power spectral densities of the
responses of the SDOF model and the 2DOF model
for an ‘experimental’ [144:5; 270:2] rad=s excitation
(see Fig. 18) are compared.
This 5gure shows that the addition of the extra de-

gree of freedom has a signi5cant e4ect on the stochas-
tic response of the system: this e4ect not only ex-
presses itself through the second (stochastic) harmonic
resonance peak near 780 rad=s, but also a4ects the
response characteristics in lower frequency ranges.
Fig. 20 shows that particularly this e4ect of the second
degree of freedom makes the simulation results of the
2DOF model 5t the experimental results better than
the results of the SDOF model (observe, Figs. 19 and
20 simultaneously). The fact that the extension to-
wards a 2DOF model also a4ects the response at lower
frequencies corresponds to tendencies seen in the
periodic response of the 2DOFmodel, see Fig. 4. How-
ever, for stochastic excitations the e4ect of the addi-
tion of the second degree of freedom does not seem to
have such a dramatic e4ect on the response (at lower
frequencies) as for periodic excitation. Apparently,
local e4ects (in terms of frequency) are somehow
averaged for stochastic excitations. Note, moreover,
that the experimental data in Fig. 20 express the fact
that a ‘stochastic harmonic’ response also appears in
the experiment.
Fig. 22 displays an experimental ‘stochastic 1

2
subharmonic’ solution, which occurs when the ap-
plied, Gaussian excitation exhibits a power spectral
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Fig. 19. S��(!) for the SDOF model and the 2DOF model for
!band = [144:5; 270:2] rad=s.
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Fig. 20. S��(!) for the experiment and the 2DOF model for
!band = [144:5; 270:2] rad=s.

density as depicted in Fig. 21. Furthermore, Fig. 22
con5rms once more that the 2DOF model describes
all the important dynamic phenomena of the stochas-
tic response of the experimental system very well.
Moreover, by comparing the Figs. 20 and 22 we can

detect that the energy of both experimental stochastic
solutions are of a comparable level. Note, however,
that the power spectral density of the excitation in
Fig. 21 is signi5cantly lower than that in Fig. 18. So,
this e4ect corresponds with an e4ect, which was also
observed for the periodic and stochastic simulations,
see Sections 3 and 5, respectively. There, the 1

2 sub-
harmonic solution proved to be of a higher energy
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Fig. 21. Power spectral density of the excitation for !band =
[351:9; 477:5] rad=s.
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Fig. 22. S��(!) for the experiment and the 2DOF model for
!band = [351:9; 477:5] rad=s.

level than the harmonic solution (for identical input
levels).

8. Conclusions

We have investigated the stochastic response phe-
nomena of a beam-impact system under band-limited,
stochastic excitation both experimentally and numeri-
cally. Clearly, the simultaneous observation of the pe-
riodic and stochastic behaviour of the system proved to
be very fruitful in gaining understanding with respect
to the stochastic response phenomena. For a num-
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ber of periodic response phenomena stochastic equiv-
alents were presented, such as ‘stochastic harmonic’
and ‘stochastic subharmonic’ solutions. Here, it was
of utmost importance to observe the response from a
frequency-domain perspective.
Moreover, it was shown that the 2DOF model can

predict the stochastic behaviour of the experimental
system very accurately. Here, it is important to note
that the addition of the second mode (near 780 rad=s)
does not only result in a modelling improvement
near this second resonance, but also accomplishes a
signi5cant improvement for lower frequencies, when
compared to the SDOF model [5]. So, even for ex-
citation spectra up to 500 rad=s, the 2DOF model
should be preferred over the SDOF model. More-
over, an extension towards a 3DOF model will most
probably not yield a better approximation of the ex-
perimental response characteristics, since, 5rstly, the
2DOF description is already very accurate for the
frequency range observed in this paper. Moreover,
the third mode (eigenfrequency is approximately
2300 rad=s) will become more important when one is
interested in response characteristics in this ‘higher’
frequency range and when the excitation exhibits a
signi5cant amount of energy in this frequency range.
Furthermore, an extension towards a model with more
degrees-of-freedom will directly result in a decrease
in computational eOciency, which is crucial in the
numerical approximation of stochastic response char-
actertistics. It can, therefore, be concluded that the
modelling approach, in which the continuous, linear
part of the beam-impact system (the elastic beam) is
reduced to a two-mode description before merging it
with a model for the local non-linearity, is a valid and
successful one for both periodic (see Ref. [1]) and
stochastic excitations.
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